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Abstract 29 

The effects of habitat fragmentation on different taxa and ecosystems are subject to 30 

intense debate, and disentangling them is of utmost importance to support conservation and 31 

management strategies. We evaluated the importance of landscape composition and 32 

configuration, and spatial heterogeneity to explain α- and β-diversity of mammals across a 33 

gradient of percent woody cover and land use diversity. We expected species richness to be 34 

positively related to all predictive variables, with the strongest relationship with landscape 35 

composition and configuration, and spatial heterogeneity, respectively. We also expected 36 

landscape to influence β-diversity in the same order of importance expected for species richness, 37 

with a stronger influence on nestedness due to deterministic loss of species more sensitive to 38 

habitat disturbance. We analyzed landscape structure using: i) landscape metrics based on 39 

thematic maps and ii) image texture of a vegetation index. We compared a set of univariate 40 

explanatory models of species richness using AIC, and evaluated how dissimilarities in 41 

landscape composition and configuration and spatial heterogeneity affect β-diversity components 42 

using a Multiple Regression on distance Matrix. Contrary to our expectations, landscape 43 

configuration was the main driver of species richness, followed by spatial heterogeneity and last 44 

by landscape composition. Nestedness was explained, in order of importance, by spatial 45 

heterogeneity, landscape configuration, and landscape composition. Although conservation 46 

policies tend to focus mainly on habitat amount, we advocate that landscape management must 47 
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include strategies to preserve and improve habitat quality and complexity in natural patches and 48 

the surrounding matrix, enabling landscapes to harbor high species diversity. 49 

 50 

Resumo 51 

Os efeitos da fragmentação de habitats em diferentes táxons e ecossistemas estão sujeitos a 52 

intenso debate, e esclarecê-los é de extrema importância para subsidiar estratégias de 53 

conservação e manejo. Avaliamos a importância da composição e configuração da paisagem em 54 

escala grossa e da heterogeneidade espacial dentro do habitat para explicar a diversidade α e β de 55 

mamíferos em um gradiente de porcentagem de cobertura de vegetação lenhosa e de diversidade 56 

de uso da terra. Esperamos que a riqueza de espécies seja positivamente relacionada a todas as 57 

variáveis explanatórias, sendo a relação mais forte com medidas de composição, com medidas de 58 

configuração da paisagem em escala grossa e com a heterogeneidade espacial dentro do habitat, 59 

respectivamente. Também esperamos que a paisagem influencie ambos os componentes da 60 

diversidade β (substituição e aninhamento), na mesma ordem de importância esperada para a 61 

riqueza de espécies, e com uma forte influência no componente de aninhamento devido à perda 62 

determinística de espécies mais sensíveis ao distúrbio no habitat. Registramos ocorrências de 63 

mamíferos de pequeno, médio e grande porte em 20 paisagens no Brasil e analisamos a estrutura 64 

da paisagem usando: i) métricas da paisagem baseadas em mapas temáticos de cobertura da terra 65 

e ii) medidas de textura de imagem de um índice de vegetação calculadas a partir de imagens não 66 

classificadas. Comparamos um conjunto de modelos explicativos univariados de riqueza de 67 

espécies usando o Critério de Informação de Akaike e avaliamos como as diferenças entre pares 68 

de paisagens em medidas de composição e configuração da paisagem e medidas dentro de 69 

habitat de heterogeneidade espacial afetam os componentes da diversidade β usando uma 70 

regressão múltipla em uma matriz de distância. Descobrimos que, contrário às nossas 71 
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expectativas, a configuração da paisagem foi o principal fator que afeta a riqueza de espécies, 72 

seguido pela heterogeneidade espacial e, por último, pela composição da paisagem. O 73 

aninhamento das espécies foi explicado, em ordem de importância, pela heterogeneidade 74 

espacial, configuração da paisagem e composição da paisagem. Embora as políticas de 75 

conservação tendem a se concentrar principalmente na quantidade de habitat, defendemos que o 76 

manejo da paisagem deve incluir estratégias para preservar e melhorar a qualidade do habitat em 77 

manchas naturais e a incrementar a complexidade da vegetação na matriz circundante, 78 

permitindo que as paisagens abriguem maior diversidade de espécies. 79 

 80 

Keywords: biodiversity conservation, image texture, fragmentation, habitat modeling, habitat 81 

quality, landscape, Mato Grosso do Sul, species losses 82 

 83 

1 | INTRODUCTION 84 

The modern biodiversity crisis has been mainly attributed to the process of habitat 85 

fragmentation (Haddad et al. 2015), which changes landscape composition, configuration, and 86 

habitat quality, by affecting both natural vegetation patches and the anthropogenic matrix (Fahrig 87 

2003, Fischer and Lindenmayer 2007, Driscoll et al. 2013). The harmful effects of habitat loss on 88 

biodiversity are widely recognized among the scientific community, but the importance of 89 

habitat fragmentation per se and habitat degradation is subject to debate due to differences in 90 

conceptual foundations, statistical models, study systems, and resulting interpretations (Villard 91 

and Metzger 2014, Fahrig 2017, Fletcher et al. 2018). Habitat fragmentation per se is the sub-92 

division of habitat patch (Fischer and Lindenmayer 2007) and habitat degradation is the 93 

deterioration of habitat quality (Mortelliti et al. 2010). Some researchers have proposed that the 94 

effects of fragmentation per se are notable under certain levels of habitat cover, which is called 95 
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fragmentation threshold (Andrén 1994, Swift and Hannon 2010). Others have hypothesized that 96 

the effects of the process of habitat fragmentation depend exclusively of the amount of habitat 97 

within the landscape (Fahrig 2013, Melo et al. 2017). However, studies assessing the role of 98 

habitat quality are still largely unexplored (Mortelliti et al. 2010), so the importance of the 99 

variability of vegetation heterogeneity within-habitat is possibly underestimated (Kupfer et al. 100 

2006, Driscoll et al. 2013). Consequently, conservation recommendations beyond reducing 101 

habitat loss have not reached a consensus, posing significant challenges for landscape 102 

management and biodiversity conservation (Fletcher et al. 2018). In Neotropical regions, nature 103 

management is particularly more challenging due to i) high ecosystem complexity associated to a 104 

mega biodiversity (Lewinsohn and Prado 2005), ii) the highest global rates of forest loss (Hansen 105 

et al. 2013), and iii) lack of consistency in environmental policies, especially in Brazil 106 

(Brancalion et al. 2016). Thus, it is critical that we understand how structural modifications in 107 

fragmented landscapes drive the organization of assemblages in tropical ecosystems. 108 

Historically, landscape ecology theories and models were strongly influenced by Island 109 

Biogeography and Metapopulation theories, wherein patches of native vegetation are considered 110 

as islands of habitat immersed in an inhospitable matrix, and, consequently, patch area and 111 

isolation drive metapopulation dynamics (MacArthur and Wilson 1967, Hanski 1998, Kupfer et 112 

al. 2006, Fahrig 2013). Based on this approach, conservation strategies have been focused on the 113 

preservation of large remnants of natural vegetation, and, eventually, on enhancing the matrix to 114 

connect these areas through ecological corridors (Fischer and Lindenmayer 2006). This 115 

paradigm, however, has been challenged by recent studies, emphasizing the importance of 116 

explicitly considering differences between land cover types, contrary to the simplistic 117 

classification of habitat and non-habitat (Boscolo et al. 2016). Classifying different land use 118 

types is important because species occurrence may be driven by ecological requirements of non-119 
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substitutable resources from different habitat types (landscape complementation) and by 120 

substitutable resources from more than two habitat types (landscape supplementation; Dunning 121 

et al. 1992). The degree of matrix permeability also differs among land cover types because of 122 

variation in provision of food resources, water, shelters, and the presence of stepping stones 123 

(Russel et al. 2007, Brady et al. 2011, Ferreira et al. 2018). Thus, the anthropogenic matrix is not 124 

uniformly inhospitable for survival and reproduction of many species, nor an impenetrable 125 

barrier to its movement and dispersal (Kupfer et al. 2006, Driscoll et al. 2013). Nevertheless, the 126 

matrix permeability varies from species to species, once landscape perception itself is species-127 

traits dependent (Gehring and Swihart 2003, Goheen et al. 2003, Hansbauer et al. 2010, Kellner 128 

et al. 2019). In this regard, even patches of natural vegetation can differ in habitat quality due to 129 

natural variation or anthropogenic degradation, producing spatial heterogeneity within habitat 130 

patches (Mortelitti et al. 2010). Therefore, explicitly incorporating spatial heterogeneity 131 

gradients in landscape analysis approaches can improve our understanding of the relationship 132 

between species diversity and landscape/environmental conditions, leading to management and 133 

conservation strategies that combine natural environments and human land use in an integrated 134 

and functional way (Fischer and Lindenmayer 2006, Fahrig et al. 2011, Boscolo et al. 2015). 135 

The intensity of anthropogenic land use is a primary concern for the conservation of 136 

terrestrial mammal worldwide (Pekin and Pijanowski 2012). Mammalian species are highly 137 

diverse in terms of diet, trophic levels, body mass, and habitat use patterns, and are key 138 

components of tropical ecosystem (Paglia et al. 2012, Dirzo et al. 2014). Mammalian species 139 

richness has been shown to be sensitive to changes in landscape structure (Goheen et al. 2003, 140 

Russel et al. 2007, Brady et al. 2011, Haddad et al. 2015, Melo et al. 2017, Regolin et al. 2017, 141 

Berl et al. 2018), allowing the modeling of this diversity component using distinct scenarios of 142 

land use. Other components of species diversity, however, have different responses to 143 
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environmental variation and change (e.g. Dornelas et al. 2014), but are understudied in 144 

comparison with alpha diversity (Mori et al. 2018). Although measures of alpha diversity (such 145 

as richness, abundance, and occurrence probability) are the main response variables in most 146 

studies, recent research has shown that beta diversity (dissimilarity between communities) is an 147 

essential variable to understand the processes that shape assemblage differences (Baselga 2010). 148 

The beta diversity reflects two different phenomena: turnover and nestedness. The turnover 149 

component measures species replacement between communities, whereas nestedness refers to a 150 

non-random process of species loss between communities (Baselga 2010). Therefore, 151 

understanding how beta diversity varies within a spatially heterogeneous system can contribute 152 

to our understanding of landscape functioning (Mori et al. 2018). 153 

In this study, we assessed how mammalian communities are structured over 154 

heterogeneous fragmented landscapes, by combining analyses of landscape structure with 155 

measures of fine spatial heterogeneity. Specifically, we quantified the importance of coarse-scale 156 

measures of landscape structure with measures of within-habitat spatial heterogeneity in 157 

explaining mammal species richness, and the role of landscape variables in species 158 

compositional dissimilarity. We defined landscape composition as the amount of different land 159 

cover types present in the study landscapes, and landscape configuration as the spatial 160 

arrangement of landscape units (Villard and Metzger 2014), while spatial heterogeneity was 161 

quantified using proxies of vegetation structural complexity (Wood et al. 2012). We expected a 162 

positive relationship between species richness and landscape composition, configuration and 163 

spatial heterogeneity, with decreasing contributions from the former to the last respectively 164 

(Figure 1A). We also expected that β-diversity components (nestedness and turnover) would 165 

increase linearly with the differences among predictive variables between pairs of landscapes, 166 

with the same order of importance expected for species richness. Nestedness should be more 167 
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strongly influenced by landscape differences than turnover due to deterministic losses of species 168 

more sensitive to environmental modifications (Figure 1B). Our expectations were based on the 169 

following assumptions: i) natural vegetation cover captures resource availability and 170 

environmental conditions that produce species occupancy (Fischer and Lindenmayer 2007); ii) 171 

higher composition heterogeneity (diversity of land use types) increases the occurrence 172 

probability for species that use two or more vegetation types (landscape supplementation and 173 

complementation, Dunning et al. 1992); iii) Landscape supplementation and complementation 174 

also depend on landscape configuration, and are favored in patchy landscapes due to higher 175 

incidence of abrupt transitions between different land use types (edge areas, Fahrig 2017); iv) 176 

edge areas have biotic and abiotic conditions that are different from both the matrix and the 177 

patch core region, with either positive or negative effects on species (Murcia et al. 1995, Berl et 178 

al. 2018); and v) structural complexity is positively related to resource and shelter availability for 179 

both habitat patches and the matrix, and ultimately affect species movement capacity (Russel et 180 

al. 2007, Driscoll et al. 2013). 181 

 182 

[Figure 1 here] 183 

        184 

2 | METHODS 185 

2.1 | Study areas 186 

Our study was conducted on 20 landscapes located in Mato Grosso do Sul State, western 187 

Brazil, covering an area of 534,598 hectares. We distributed the landscapes across a gradient of 188 

seasonal Atlantic Forest, Cerradão and Cerrado stricto sensu cover (hereafter ‘woody cover’), 189 

while also considering land use composition heterogeneity (Figure 2). The sampled landscapes 190 

are within an ecotonal region, with biogeographic influences from the Atlantic Forest, Cerrado 191 
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and a small portion of the dry Chaco in the southwest. Both Atlantic Forest and Cerrado are 192 

biodiversity hotspots for conservation priorities (Myers et al. 2000). Some landscapes are also 193 

biogeographically influenced by Amazon forest (Chiquitana forest). The study region is under 194 

constant anthropogenic pressure and has been undergoing intensive conversion of natural areas 195 

to anthropogenic land uses, especially croplands and pastures (Klink and Machado 2005, Roque 196 

et al. 2016). The deforestation ranges from 22,000 to 30,000 km2/year, which is higher than rates 197 

in Amazon (Klink and Machado 2005).  198 

 199 

[Figure 2 here] 200 

 201 

2.2 | Mammal diversity data 202 

We performed four field expeditions in April 2009, August 2009, May and June 2010, 203 

and July and August 2010. This effort was carried over 20 landscapes, distant from each other 204 

between 20 km to 634 km, yielding 20 independent samples of terrestrial mammal occurrence 205 

with body sizes varying from small (>1 kg) to large (Figure 2). On each expedition, we sampled 206 

mammals in five landscapes during five consecutive days and four nights using the following 207 

complementary methods: i) identification of vestiges, such as tracks (identified according to 208 

Angelo et al. 2008), feces, teeth, and others bones (bones were collected and compared to 209 

collection material for identification); ii) direct observation; iii) camera trapping; and iv) capture 210 

of small mammals with live traps. The sampling goal was not to estimate abundances, but to get 211 

a tally of species in each landscape for calculating species richness and composition. 212 

For the first two methods, we performed walks on foot or by car at different periods of 213 

day and night, covering the different environments within each landscape. For the third method, 214 

we installed between 11 and 16 camera traps (Tigrinus®, Timbó, Santa Catarina State, Brazil) at 215 
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30-40 cm above the ground, in tree trunks of forest or Cerrado patches in each landscape. 216 

Cameras were placed on transect lines of 110 m in length containing two cameras in each 217 

extremity (in the border and in the interior of each forest fragment), operating 24 hours a day, 218 

during four consecutive days and nights. Transect lines were distant at least 150 m from each 219 

other (in small areas), but usually a minimum distance of 300 m was set. The total sampling 220 

effort was of 1,128 traps-night, with the mean effort per landscape being 56 ± 7 traps-night. We 221 

captured rodents and marsupials (<1 kg, Cricetidae, Echimyidae and Didelphidae families) using 222 

65 wire (33x12x12 cm) and Sherman live-traps (30x9x7 cm). Traps were installed in forest 223 

ground (wire) and understory (Sherman), between 1.5 and 2 meters above the ground, during 224 

four consecutive nights, totaling 6,800 trap-night overall and 340 traps-night per landscape. We 225 

baited the traps with a mixture of pumpkin, bacon, peanut butter and cod liver oil. In each 226 

landscape, we installed the traps along transects between the camera trap sampling points, 10 m 227 

apart from each other in the same transect, separated at least 150 m from each other transect line 228 

and at least 20 m from the nearest patch edge. Captured animals were identified and 229 

subsequently released. When necessary, we collected voucher specimens for identification, 230 

which were deposited in the mammalian collection of the Universidade Federal de Santa Maria 231 

(UFSM). 232 

 233 

2.3 | Land use and land cover maps 234 

We generated an 8-km buffer around the camera trap sampling points within each 235 

landscape to delimit landscape extent. We chose this extent based on previous studies reporting 236 

landscape structure effects on small-, medium- and large-sized mammal assemblage composition 237 

within the Atlantic Forest (e.g. Lyra-Jorge et al. 2010, Beca et al. 2017, Melo et al. 2017, 238 

Regolin et al. 2017), as well as to avoid spatial overlap (Jackson and Fahrig 2015). We mapped 239 
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land cover for each landscape using orthorectified images from the RapidEye satellite 240 

constellation, with 5m spatial resolution. Images were selected preferably from the dry season, 241 

due to lesser cloud cover and greater contrast between land use classes (47 images acquired 242 

between January 2011 and August 2013). Image processing was performed over all five spectral 243 

bands (blue, green, red, red edge and near infrared) and included: i) atmospheric correction using 244 

the ‘Quick Atmospheric Correction – QUAC’ algorithm implemented in the ENVI 5.0 software 245 

and ii) unsupervised classification using the ‘Auto Class’ software (github.com/JohnWRRC). 246 

Auto Class uses the GRASS function ‘i.segment’ to generate image segments and the K-means 247 

Clustering function of the ‘foreign’ R package (R Core Team 2017) to group the segments into 248 

classes according to the mean and standard deviation of pixel values. We then converted this 249 

unsupervised map into a thematic classification by supervised visual interpretation and manual 250 

editing, based on image visualization at 1:2,500 cartographic scale, generating a final map with 251 

11 classes (Figure 2). 252 

 253 

2.4 | Landscape structure metrics 254 

The produced land cover maps in raster format were used as inputs for landscape 255 

structure metric calculations. We used the ‘raster’ R package (Hijmans et al. 2017) to load the 256 

raster data and define custom functions to calculate the following landscape structure metrics: (i) 257 

woody cover — percent woody (forest plus cerrado) cover in the landscape, (ii) patch density — 258 

ratio between the number of woody patches and total landscape area, (iii) edge density — ratio 259 

between area of woody patch edges and landscape area, and (iv) landscape diversity — Shannon 260 

index for mosaic of patches including all cover types. Woody cover and landscape diversity are 261 

used as measures of woody habitat composition, whereas edge density and patch density are 262 

measures of woody habitat configuration (Villard and Metzger 2014). 263 
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 264 

2.5 | Within-habitat spatial heterogeneity 265 

We estimated within-habitat spatial heterogeneity by calculating image texture measures 266 

from the normalized difference vegetation index (NDVI). NDVI is a spectral index sensitive to 267 

photosynthetically active vegetation, which is related to plant biomass productivity (Justice et al. 268 

1998). We calculated NDVI using the red and near-infrared spectral bands of RapidEye images 269 

(5-m spatial resolution) using the ‘spatial.tools’ R package (Greenberg 2018). Image textures are 270 

statistical descriptors of the spatial relationship among pixel values within an image region, thus 271 

capturing spatial heterogeneity (St-Louis et al. 2009, 2014). When calculated using NDVI, 272 

texture therefore represents spatial variability in photosynthetically active vegetation within a 273 

given area (Wood et al. 2012). Texture measures calculated from high resolution images have 274 

been related with descriptors of vegetation heterogeneity such as leaf-area index and foliage 275 

height diversity (Colombo et al. 2003, Wood et al. 2012). Particularly, textures can yield larger 276 

explanatory power for species richness than classified images because it captures fine-scale 277 

variability within coarse habitat classes in areas of gradual transition between vegetation types 278 

(St-Louis et al. 2009, Wood et al. 2013).  279 

We calculated 12 texture measurements from NDVI, using the ‘r.texture’ GRASS GIS 280 

function, being seven first order metrics: (i) sum average, (ii) entropy, (iii) difference entropy, 281 

(iv) sum entropy, (v) variance, (vi) difference variance, (vii) sum variance; and five second-order 282 

metrics based on a pairwise matrix of spatial relationships among pixels (grey-level co-283 

occurrence matrix; Haralick 1979),  (viii) angular second moment, (ix) inverse difference 284 

moment, (x) contrast, (xi) correlation, and (xii) information measures of correlation. Each texture 285 

was calculated in four directions (0, 45, 90 and 135 degrees) considering a central pixel and its 286 

neighbors within the specified window, and then average of texture metrics were calculated to 287 
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summarize all directions. We derived textures using four different moving window sizes on each 288 

pixel (3x3, 5x5, 7x7 and 9x9 pixels of 5m). 289 

 290 

2.6 | Data analysis 291 

We first evaluated potential spatial autocorrelation and multicollinearity among 292 

explanatory variables (Supplementary material Appendix 1, Figs. A1, A2 and A3), and then 293 

selected seven uncorrelated predictive variables (|r|<7, as suggested by Dormann et al. 2013); 294 

two representing woody habitat composition: wood cover and landscape diversity; two 295 

representing woody habitat configuration: edge density and patch density; and three representing 296 

within-habitat spatial heterogeneity (texture measurements): correlation, sum entropy and 297 

difference entropy of the 3x3 moving window size that represents more local environmental 298 

information (Table 1). 299 

 300 

[Table 1 here] 301 

 302 

Mammal species richness ̶ We fitted generalized additive models (GAMs) to quantify how 303 

mammalian species richness relate to heterogeneous fragmented landscapes, using the ‘gam’ 304 

function of the ‘mgcv’ R package (Wood 2011) and assuming a Poisson distribution for count 305 

data (Zuur et al. 2009). We choose GAMs as they are able to capture non-linear and linear 306 

effects (Zuur et al. 2009). We computed seven univariate models, each including one of the four 307 

landscape structure metrics or the three spatial heterogeneity variables as predictors. We also 308 

included a null model representing a neutral response of richness to landscape structure 309 

(intercept only), totalizing eight competing models. We then compared the set of models using 310 

Akaike’s Information Criterion corrected for small samples (AICc), to select the best explanatory 311 
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model using the ‘Ictab’ function of the ‘bbmle’ R package (Bolker and R Development Core 312 

Team 2017). All models with ΔAICc <2 were considered equally plausible to explain the 313 

patterns, i.e., a given landscape predictor influences species richness as much as the other 314 

included on best model list (Burnham and Anderson 2002). We evaluated model weight (wi) of 315 

plausible models as a proxy of predictor importance, since model weight can be interpreted as 316 

the probability of a model to be the best among competing models (Wagenmakers and Farrell 317 

2004). We also reported deviance explained to access model fit. 318 

 319 

β-diversity ̶ We estimated total β-diversity and partitioned it in two components – turnover and 320 

nestedness – using a presence-absence assemblage matrix as input to the ‘beta.pair’ function of 321 

the ‘betapart’ R package (Baselga 2010, Baselga and Orme 2012). Total β-diversity was 322 

calculated as Sorensen’s dissimilarity index (βsor), turnover as Simpson dissimilarity index (βsim), 323 

and nestedness (βnes) as the difference between total β-diversity (βsor) and turnover (βsim). We 324 

used a multivariate linear regression (Multiple Regression on distance Matrix  ̶ MRM) 325 

(Linchstein 2007) using the dissimilarities matrices (beta diversity components), using the 326 

‘adonis’ function of the ‘vegan’ R package (Oksanen et al. 2017) with 9,999 permutations to test 327 

the effect of predictive variables (landscape structural metrics and spatial heterogeneity) on β-328 

diversity measures (turnover and nestedness). We considered that predictors affected beta 329 

diversity components where the significance levels of the coefficients were equal or lower than 330 

0.05. We calculated the adjusted coefficient of multiple determination (R2), which is the ratio of 331 

the sum of squares of distances of the estimated values to the mean, to the sum of squares of 332 

distances of the original response variable values to the mean — adjusted by the numbers of 333 

degrees of freedom of the numerator and denominator of the coefficient of multiple 334 

determination (Legendre & Legendre 2012). We opted to analyze the effect of the landscape on 335 
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beta diversity through a frequentist approach - evaluating the p-value and the R² - as recent 336 

research has criticized the use of model selection for multivariate data on genetics and beta 337 

diversity (Franckowiax et al. 2017, Rocha et al. 2019) 338 

 339 

3 | Results 340 

3.1 | Overview 341 

We recorded a total of 48 species of terrestrial mammals from 20 families and nine orders 342 

(Supplementary material Appendix 1, Table A1). Species richness per landscape ranged from 343 

eight to 25 (16 ± 4; mean ± sd). The richest groups registered were rodents and carnivores, both 344 

with 12 species, followed by marsupials, with eight species. We recorded six ungulates, of which 345 

the most frequently were brocket deers (Mazama gouazoubira and M. americana) and the 346 

lowland tapir (Tapirus terrestris). The yellow bearded capuchin (Sapajus cay) was frequently 347 

detected, while three other primate species were rarely recorded. Regarding Xenarthra, we 348 

recorded three species of armadillos and two of anteaters. Finally, we verified the occurrence of 349 

the tapeti rabbit (Sylvilagus brasiliensis) in most studied landscapes. 350 

 351 

3.2 | Landscape structure influence on mammal richness 352 

Among the set of eight competing models, three were equally plausible to explain species 353 

richness (Table 2): landscape configuration – edge density (ΔAICc = 0.0; wi = 0.374), spatial 354 

heterogeneity – sum entropy (ΔAICc = 0.3; wi = 0.316), and landscape composition – woody 355 

cover (ΔAICc = 1.1; wi = 0.211). We found a positive linear relationship between species 356 

richness and landscape configuration – edge density (Figure 3A) and also for spatial 357 

heterogeneity – sum entropy (Figure 3B). In addition, we also observed a positive relationship of 358 
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woody cover on species richness below 30% of woody cover, with no effect above this threshold 359 

(Figure 3C). 360 

 361 

[Table 2 here] 362 

 363 

[Figure 3 here] 364 

 365 

3.3 | Patterns of β-diversity 366 

Total β-diversity was composed mainly by turnover (0.78±0.13 sd) with a small 367 

proportion of nestedness (0.22±0.10 sd). Nestedness (βnes) was driven by spatial heterogeneity 368 

(sum entropy), landscape configuration (edge density), and landscape composition (landscape 369 

heterogeneity and woody cover) – see Table 3 and Figure 4. Turnover (βsim) was not explained 370 

by any predictive variable. 371 

 372 

 [Table 3 here] 373 

 374 

[Figure 4 here] 375 

 376 

4 | Discussion 377 

Species assemblage in heterogeneous fragmented landscapes of tropical ecosystems are 378 

shaped by many ecological processes acting simultaneously. Consequently, identifying the main 379 

drivers of changes in mammalian species richness (α-diversity) and variation in communities’ 380 

composition (β-diversity) is challenging (Mori et al. 2018). Our results contradicted our 381 

expectations; landscape configuration (edge density) was the main driver of species richness, 382 
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followed by spatial heterogeneity (sum of entropy) and landscape composition (woody cover). 383 

The order of importance of predictive variables explaining β-diversity was also different from 384 

our expectations; loss of species between communities (βnes) was driven mainly by spatial 385 

heterogeneity (sum of entropy), followed by landscape configuration (edge density) and 386 

landscape composition (woody cover and landscape heterogeneity). In accordance to our third 387 

prediction, βnes responded more strongly than βsim to differences in predictive variables.  388 

Although several studies have reported that landscape composition – especially the 389 

amount of natural vegetation – as the main drivers of biodiversity patterns (Fahrig 2013), the role 390 

of landscape configuration [such as fragmentation per se (Fahrig 2003)] beyond the effect of 391 

landscape composition has been recently debated. While some studies highlight the predominant 392 

effect of habitat amount (Fahrig 2003, 2013), others advocate that habitat configuration has an 393 

important additional effect on biodiversity (Villard and Metzger 2014, Hanski 2015, Fletcher et 394 

al. 2018). Furthermore, some authors also advocate that the effects of habitat fragmentation and 395 

loss on biodiversity are mediated by habitat quality (Kupfer et al 2006, Driscoll et al. 2013). We 396 

corroborate here the importance of habitat quality by showing how spatial heterogeneity in 397 

fragmented landscapes strongly contributes to explain mammalian species richness and changes 398 

in species composition. 399 

 400 

4.1 | Reliability of field data 401 

Although a higher sampling effort on each landscape would decrease our variability 402 

resulting in a smaller error in species detection, a larger sample size (more landscapes) would 403 

result in a higher statistical power by increasing our degrees of freedom. We choose to increase 404 

sample units in detriment of a larger sampling effort in each landscape considering that the 405 

predictors (landscape metrics and measurements of spatial heterogeneity) were logistical easier 406 
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and financial cheaper to measure than the response variable (Brennan et al. 2002). In this way, 407 

we were able to sample 20 independent landscapes, which is a high number of independent 408 

sample units in comparison to other studies sampling mammals at landscapes scale (see 409 

examples in the review of Presley et al. 2019). Although our sampling effort in each landscape 410 

could limit the detection of rare or cryptic species, we used an equal sampling effort along the 411 

landscapes, so we consider our results are not bias and represent the relationship of the most 412 

representative local mammal species and landscape patterns.  413 

 414 

4.2 | Habitat composition influence 415 

Species richness was positively associated with landscape configuration and spatial 416 

heterogeneity, but the relationship with percent woody cover was nonlinear. Richness was 417 

positively influenced by woody cover up to approximately 30% of total cover, followed by a 418 

slow decline of species above this threshold. This pattern is consistent with empirical studies 419 

showing similar thresholds of species diversity, where decreases of habitat amount result in 420 

abrupt decreases of species richness (e.g. Radford et al. 2005, Banks-Leite et al. 2014, Ochoa-421 

Quintero et al. 2015). Our results indicate that, for landscapes below this 30% threshold, 422 

increasing native vegetation cover must be the main strategy to improve mammal diversity. 423 

Woody cover, which we expected to be the strongest predictor of β-diversity, had the 424 

weakest effect on species richness and βnes. The contribution of landscape composition to explain 425 

species richness and loss of species between communities seems to be larger in other landscapes 426 

with ample differences in habitat amount (e.g. 5-95%) and low landscape use diversity.  An 427 

example is the study by Beca et al. (2017), who related mammals occurrence and richness to 428 

measures of landscape structure of forest patches immersed in a homogeneous matrix of biofuel 429 

plantation within the Brazilian Atlantic Forest. However, our study had a limited range of 430 
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variation in habitat amount (5-55%) and higher heterogeneity of both native vegetation and 431 

matrix components than Beca et al. (2017), who classified land use types in two classes, forest 432 

and matrix. Therefore, the simpler view that habitat amount can alone support landscape 433 

management is unlikely to be applicable to heterogeneous landscapes under intense anthropic 434 

use in tropical ecosystems. 435 

The positive relationship between landscape heterogeneity (Shannon index) and βnes, 436 

which reflects natural and human land use diversity, refers to the processes of landscape 437 

complementation and landscape supplementation (sensu Dunning et al. 1992). The former occurs 438 

when species persistence depends on non-substitutable resources that are available in two or 439 

more different habitat types. For example, the crab-eating raccoon (Procyon cancrivorus) feeds 440 

in water bodies and shelters in the forest interior. On the other hand, landscape supplementation 441 

exists when species occurrence is favored by the provision of substitutable resources in different 442 

habitat types. It occurs, for example, when jaguars (Panthera onca) and pumas (Puma concolor) 443 

prey on cattle and sheep livestock in addition to wild mammals.  Therefore, mammalian species 444 

loss can be related to a lack of structurally complex matrices where species can find 445 

complementary or supplementary resources. However, species-specific responses to landscape 446 

structure must be noted (Goheen et al. 2003, Hasbauer et al. 2010) and, consequently, effects of 447 

landscape composition may vary according to species traits (e.g. niche breadth and mobility; 448 

Kellner et al. 2019) and temporal variation in matrix structure (e.g. crop cycles within agriculture 449 

matrix; Berl et al. 2018). 450 

 451 

4.3 | Habitat configuration effects 452 

Our results go beyond the paradigms of habitat composition, and evidence the role of the 453 

configuration of natural vegetation patches for the maintenance of species richness. We found a 454 
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positive relationship between edge density and the number of mammalian species, which 455 

suggests a positive effect of habitat fragmentation per se (Fahrig 2003). Our studied system 456 

encompassed a range of small to intermediate proportions of woody cover, where the variation in 457 

possibilities of landscape configuration is highest (Villard and Metzger 2014), possibly 458 

increasing the influence of landscape configuration on species richness. The positive response of 459 

species richness and βnes to landscape configuration (edge density) is also related to the processes 460 

of landscape complementation and landscape supplementation (sensu Dunning et al. 1992), 461 

which depend on landscape configuration (Fahrig 2017). Species movement among land cover 462 

types is favored in patchy landscapes due to decreased distances between each land use type.  463 

Nonetheless, movement decisions also depend on vegetation structure similarity among natural 464 

vegetation and matrix (Russel et al. 2007, Berl et al. 2018). 465 

 466 

4.4 | Within-habitat spatial heterogeneity matters 467 

The relationship between spatial heterogeneity (sum entropy) and both α- and β- diversity 468 

results from deterministic losses of the most sensitive species due to reduction in vegetation 469 

structural complexity within both native vegetation patches and anthropogenic matrices. Larger 470 

vegetation structural complexity within habitat patches increases niche availability, and 471 

consequently, patch capacity to host high species diversity (Brady et al. 2011). Furthermore, high 472 

similarity between patch and matrix vegetation structure favors species movement through the 473 

landscape (Kupfer et al. 2006). By providing habitat breeding and food resources, the 474 

anthropogenic matrix can guarantee (re)colonization of habitat patches by species, increasing 475 

population size and reducing the risk of extinction (Driscoll et al. 2013). For example, 476 

polyculture and agroforestry systems are wildlife-friendly matrices, as they are more structurally 477 
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complex than pasturelands, intensive cereal cropping, and other annual monocultures, which in 478 

turn erode mammal diversity (Ferreira et al. 2018).  479 

Previous studies have shown that within-habitat spatial heterogeneity, measured using 480 

image texture measures, explain bird species richness in ecosystems where vegetation 481 

heterogeneity is high and transitions between land-use classes are gradual (St-Louis et al. 2009, 482 

Wood et al. 2013). Within-habitat spatial heterogeneity also drives compositional variation of 483 

tropical anuran communities (Sugai et al. 2019). In contrast, our study region comprises a set of 484 

landscapes that vary in the amount of woody cover and in the diversity of land uses, with sharp 485 

boundaries delineating the different land cover types. Therefore, even in a region characterized 486 

by less diversity of vegetation formations, spatial heterogeneity played an important role in 487 

shaping the patterns of species diversity, possibly reflecting the availability of resources, shelters 488 

and structures that favor dispersal. Qualitative thematic mapping obscures differences in 489 

landscape structure that are potentially essential to species survival, and land cover mapping 490 

procedures are susceptible to subjective bias and errors in image segmentation (the delineation of 491 

boundaries of landscape units) and classification (St-Louis et al. 2009).  492 

 493 

4.5 | Concluding remarks 494 

As far as we know, this is the first study that reports the role of landscape spatial 495 

heterogeneity as one of the main drivers on mammals assemblages. The effects of spatial 496 

heterogeneity on human-modified landscapes will be better understood by calculating texture 497 

metrics per land cover type. Thus, it will be possible to distinguish the effects of spatial 498 

heterogeneity by land cover types, i.e. “functional heterogeneity” framework proposed by 499 

Boscolo et al. (2016).   500 
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The effects of spatial heterogeneity and habitat configuration overcame the influence of 501 

habitat composition on alpha and beta mammal diversity in heterogeneous fragmented 502 

landscapes within western Brazil. Patch configuration may influence species movement and, 503 

consequently, habitat (re)colonization rates. Vegetation structural complexity in the 504 

anthropogenic matrix may also affect species movement, as it defines the matrix capacity to 505 

provide breeding and food resources. Therefore, landscape composition alone should not be used 506 

to support landscape management strategies aimed at mammalian conservation, that should also 507 

include strategies to preserve and improve vegetation structural complexity in both habitat 508 

patches and the matrix, enabling landscapes to harbor high species diversity by increasing niche 509 

availability. 510 
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Tables 690 

Table 1. Description of the seven non-correlated predictive variables of landscape structure 691 

measurements assessed to explain mammalian species richness and changes in species 692 

composition in 20 fragmented landscapes in western Brazil. 693 

Metric type Landscape 

metric name 

 Landscape metric description 

Landscape 

composition 

Woody cover  Percentage of Atlantic Forest, Cerradão and Cerrado 

stricto sensu in the landscape area. 

 Landscape 

diversity 

 Shannon index for mosaic of patches including all cover 

types. 

Landscape 

configuration 

Edge density  Ratio between area of woody edges and landscape area.  

 Patch density  Ratio between the number of patches of woody and total 

landscape area. 

Within-habitat 

spatial 

heterogeneity 

Correlation  Linear dependency of pixel values on those of 

neighboring pixels (Haralick 1973, Wood et al. 2012). 

 Sum entropy  Entropy is the system level disorder. The greater the 

entropy, the greater the heterogeneity. Measures the 

disorder related to the gray level-sum distribution of the 

image (Haralick 1973, Wood et al. 2012). 

 Difference 

entropy 

 Measures the disorder related to the gray level difference 

distribution of the image (Haralick 1973, Wood et al. 

2012). 
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Table 2. Set of eight competing univariate models to explain mammalian species richness in 20 696 

fragmented landscapes in western Brazil. Two models refer to landscape composition (woody 697 

cover, landscape heterogeneity), two to habitat configuration (edge density, patch density), three 698 

to spatial heterogeneity (correlation, sum entropy, and difference entropy), and a null model with 699 

intercept-only that represents absence of effect. Model selection statistics include: ∆AIC is the 700 

relative difference in AIC values compared with top-ranked model; K is the number of 701 

parameters; wi is the AIC model weight; and Deviance explained is proportion of null deviance 702 

explained by the model. 703 

Model ΔAICc K wi Deviance explained 

Landscape configuration (edge density) 0.0 2 0.374 38.7% 

Spatial heterogeneity (sum entropy) 0.3 2 0.316 37.1% 

Landscape composition (woody cover) 1.1 4.04 0.211 61.9% 

Landscape composition (landscape heterogenity)  4.4 2 0.041 17.7% 

Spatial heterogeneity (correlation) 5.4 2.73 0.025 22.5% 

Null 5.7 1 0.021 << 0.0001% 

Landscape configuration (patch density) 7.6 2 0.008 2.84% 

Spatial heterogeneity (difference entropy) 8.8 2.78 0.004 7.26% 

 704 

705 
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Table 3. Coefficients of determination (R2) using Multiple Regression on distance Matrix for 706 

each predictive variable to explain β diversity components (turnover and nestedness) of 707 

mammalian communities within twenty fragmented landscapes of western Brazil. Significant p-708 

values (<0.05) are in bold. 709 

Predictive variables 

β diversity  

Nestedness (βnes)  Turnover (βsim) 

Landscape composition    

     Woody cover 0.278 (p=0.025)   0.052 (p=0.475)  

     Landscape heterogeneity 0.314 (p=0.028)  0.075 (p=0.233) 

Landscape configuration    

     Patch density 0.023 (p=0.438)  0.069 (p=0.286) 

     Edge density 0.412 (p=0.008)  0.023 (p=0.821) 

Spatial heterogeneity    

     Correlation 0.176 (p=0.10)  0.040 (p=0.574) 

     Sum Entropy 0.565 (p<0.001)  -0.037 (p=0.998) 

     Difference Entropy 0.097 (p=0.243)  0.032 (p=0.709) 

 710 

Figures legends 711 

Figure 1. Expected patterns between α (A) and β-diversity (B) of mammalian species and 712 

predictive variables of landscape composition, configuration and spatial heterogeneity in 20 713 

heterogeneous fragmented landscapes in western Brazil. 714 

 715 

Figure 2. Land use maps of 20 study landscapes in south-western Brazil where terrestrial 716 

mammals were studied to understand the effects of landscape composition (woody cover, 717 
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landscape heterogeneity), configuration (edge density, patch density), and spatial heterogeneity 718 

(satellite image texture) on α- and β-diversity. 719 

 720 

Figure 3. Best-supported models for explaining mammalian species richness in heterogeneous 721 

fragmented landscapes of western Brazil: (A) landscape configuration (edge density), (B) spatial 722 

heterogeneity (sum entropy), and (C) landscape composition (woody cover). Green shading is 723 

the confidence interval. 724 

 725 

Figure 4. Relationship between mammalian species nestedness and (a) spatial heterogeneity 726 

(sum entropy), (b) landscape configuration (edge density), (c) landscape composition (landscape 727 

heterogeneity), and (d) landscape composition (woody cover) in heterogeneous fragmented 728 

landscapes of western Brazil. Blue shading is the confidence interval. The x-axes represent 729 

absolute differences in explanatory variables. 730 

 731 
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SUPPLEMENTARY INFORMATION 746 

 747 

Spatial autocorrelation ̶ We evaluated spatial autocorrelation between species assemblage 748 

composition and landscape geographic coordinates applying the Mantel test (Fortin and Dale 749 

2009) using the ‘mantel’ function of the ‘vegan’ R package (Oksanen et al. 2017). Spatial 750 

correlation was weak (r=0.224; P-value=0.014), indicating a low level of spatial autocorrelation 751 

(Fig. S1). 752 

 753 

 754 

Figure S1. Correlation between mammalian assemblage and landscapes locations. Spatial 755 

correlation was negligible (r=0.224; P-value=0.014).  756 

 757 
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Multicollinearity ̶ We evaluated multicollinearity of predictive variables using Pearson’s 1 

correlation, considering less correlated variables where absolute r < 0.7. We verified high 2 

correlation between the four sizes of moving windows for all the twelve NDVI texture 3 

measurements. Thus, we only used textures computed with the 3x3 window size for subsequent 4 

analysis, and performed a second round of correlation analysis among all textures calculated 5 

with this extent. As expected, we found that just three of the twelve texture measurements were 6 

poorly correlated: correlation, sum entropy, and difference entropy (Fig. S2). In a third round of 7 

correlation analysis, we compared the three non-correlated texture measurements with the four 8 

landscape metrics and found no correlation between them (Fig. S3). Thus, we selected seven 9 

uncorrelated predictive variables, two representing landscape composition (woody cover and 10 

landscape heterogeneity) two representing landscape configuration (edge density, and patch 11 

density) and three representing spatial heterogeneity (texture measurements of correlation, sum 12 

entropy and difference entropy, Table 1).  13 

 14 



 

40 

 

 1 

Figure S2. Scatter plot matrices of correlation between twelve measurements of spatial 2 

heterogeneity. The diagonal panels present the frequency histograms of data distribution. The 3 

upper panels show the value of the Pearson correlations among metrics. Lower panels include 4 

the point plots with data for the pairs of metrics. Three of twelve texture measurements are not 5 

correlated: correlation, sum entropy and difference entropy. 6 

 7 
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 1 

Figure S3. Scatter plot and correlation between three measurements of spatial heterogeneity and 2 

four metrics of landscape structure. The diagonal panels present the frequency histograms of data 3 

distribution. The upper panels show the value of the Pearson correlations among paired metrics. 4 

Lower panels include the scatterplots with data for the pairs of metrics.  5 
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Mammalian species check list 1 

Table S1. Check list of mammalian species detected in 20 heterogeneous fragmented landscapes 2 

in south west Brazil. 3 

Order Family Genus Species 

Artiodactyla Tayassuidae Pecari Pecari tajacu 

  Tayassu Tayassu pecari 

 Cervidae Blastocerus Blastocerus dichotomus 

  Mazama Mazama americana 

   Mazama gouazoubira 

Carnivora Felidae Leopardus Leopardus pardalis 

  Panthera Panthera onca 

  Puma Puma concolor 

   Puma yagouaroundi 

 Canidae Cerdocyon Cerdocyon thous 

  Chrysocyon Chrysocyon brachyurus 

  Lycalopex Lycalopex vetulus 

 Mustelidae Eira Eira barbara 

  Pteronoura Pteronura brasiliensis 

  Lontra Lontra longicaudis 

 Procyonidae Nasua Nasua nasua 

  Procyon Procyon cancrivorus 

 Dasypodidae Dasypus Dasypus novemcinctus 

  Euphractus Euphractus sexcinctus 

  Cabassous Cabassous tatouay 

Didelphimorphia Didelphidae Didelphis Didelphis albiventris 

  Gracilinanus Gracilinanus agilis 

  Marmosa Marmosa murina 

  Marmosops Marmosops ocelatus 

  Micoreus Micoreus constantiae 

  Monodelphis Monodelphis domestica 

  Philander Philander opossum 

  Thylamys Thylamys macrurus 

Lagomorpha Leporidae Sylvilagus Sylvilagus brasiliensis 

Perissodactyla Tapiridae Tapirus Tapirus terrestris 

Pilosa Myrmecophagidae Myrmecophaga Myrmecophaga tridactyla 

  Tamandua Tamandua tetradactyla 

Primates Cebidae Sapajus Sapajus cay 

 Atelidae Alouatta Alouatta caraya 

 Pitheciidae Callicebus Callicebus pallescens 

 Aotidae Aotus Aotus azarae 
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Order Family Genus Species 

Rodentia Caviidae Hydrochoerus Hydrochoerus hydrochaeris 

 Dasyproctidae Dasyprocta Dasyprocta azarae 

 Cuniculidae Cuniculus Cuniculus paca 

 Echimyidae Proechimys Proechimys longicaudatus 

  Thrichomys Thrichomys pachyurus 

 Sigmodontinae Akodon Akodon montensis 

  Cerradomys Cerradomys scotti 

  Hylaeamys Hylaeamys megacephalus 

  Oecomys Oecomys bicolor 

  Rhipidomys Rhipidomys macrurus 

  Oligoryzomys Oligoryzomys sp. 

  Calomys Calomys sp. 

 1 


