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A rigorous approach to investigating common assumptions

about disease transmission

Process algebra as an emerging modelling methodology for epidemiology

Chris McCaig - Mike Begon - Rachel Norman

Abstract Changing scale, for example the ability to
move seamlessly from an individual-based model to a
population-based model, is an important problem in
many fields. In this paper we introduce process algebra
as a novel solution to this problem in the context of
models of infectious disease spread. Process algebra al-
lows us to describe a system in terms of the stochastic
behaviour of individuals, and is a technique from com-
puter science. We review the use of process algebra in
biological systems, and the variety of quantitative and
qualitative analysis techniques available. The analysis
illustrated here solves the changing scale problem: from
the individual behaviour we can rigorously derive equa-
tions to describe the mean behaviour of the system at
the level of the population. The biological problem in-
vestigated is the transmission of infection, and how this
relates to individual interactions.

Keywords epidemiology, multiscale modelling,
theoretical computer science, changing scale

Mathematics Subject Classification (2000) 92D30 -

63Q85

1 Introduction

Wing (2006) puts forward the notion that “Computa-
tional thinking is a fundamental skill for everyone, not
just for computer scientists.” and advocates the appli-
cation of computational approaches in other disciplines.
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One discipline which might particularly benefit from
the structured abstraction tools of computer science
is biology. For example, in Systems Biology (Kitano
2002), biologists have embraced the computational ap-
proach to unravel the dynamics of cell behaviour (Ber-
nardo et al. 2008; Cohen 2008; Priami 2006). Computa-
tional models are part of a virtuous cycle (Kitano 2002)
consisting of: hypothesis generation, hypothesis testing
in silico (which is cheap and fast), leading to hypoth-
esis testing in vivo or in vitro (which is thus targetted
more efficiently to interesting cases), providing more
information to refine the original hypothesis. Thus far,
other areas of biological research, such as ecology and
epidemiology, have been slower to take up computa-
tional approaches to modelling and analysis.

The traditional approach to modelling ecological
systems, such as those investigating the spread of in-
fectious disease, has made use of systems of coupled or-
dinary differential equations (ODEs) which describe the
system in terms of changes in the population as a whole
(Anderson and May 1981; Kermack and McKendrick
1927). Such models of disease are often referred to as
SIR models: where S are susceptible individuals who
have never had the disease; I are infected individuals
who can pass on the disease to susceptibles; and R are
recovered individuals who are assumed to be immune
from future infection. The advantage of these models
is that they are amenable to a wide range of well es-
tablished analytical techniques, for instance equilibrium
analysis. Such SIR models are, however, based on as-
sumptions about how individual behaviour, such as in-
teractions between infected and susceptible individuals,
affects the population as a whole. In particular, there
is much debate on the correct form of the transmission
term for disease spread (Fenton et al. 2001). The orig-
inal SIR type models (Anderson and May 1981) use



density dependent transmission (8ST) which assumes
that as the population size increases, the number of con-
tacts an individual makes increases proportionally. This
describes a well mixed population and might be suit-
able for some wildlife populations. Another commonly
used alternative is frequency dependent transmission
(BSI/(S + I+ R)) which assumes that an individual
makes a constant number of contacts no matter what
the population size. This is often used to model sexually
transmitted diseases, but is being used increasingly to
model other human diseases under the assumption that
people usually interact in relatively fixed social groups.
In reality, transmission will be much more complicated
than either of these, incorporating, for example: super-
spreaders, where some individuals are more likely to
transmit the disease than others; different mixes of spa-
tially local and global interactions to take into account
the fact that people travel more extensively; or dynamic
interactions where individuals change their behaviour
in response to the disease (e.g. increased handwashing
in response to swine flu).

Our goal in this paper is to present a particular com-
putational approach, process algebra (Baeten 2005), as

an exciting method for modelling infectious disease spread.

Process algebra gives ways to think about a model from
several angles, including the behaviour of individuals,
and the more abstract properties of the population.
We will show that the computational style brings addi-
tional ways of thinking about a problem through ab-
straction and modular composition of sub-problems,
and through various forms of qualitative and quanti-
tative analysis. Although originally developed to study
distributed computer systems, process algebras are in-
creasingly used to study biological systems. Early ex-
amples include the behavioural models of task alloca-
tion and synchrony in ants of Tofts (1993), the model
of the reproductive cycle of honeybee parasite Varroa
jacobsoni of Sumpter and Broomhead (2001) and Regev
et al.’s model of the RTK-MAPK signal transduction
pathway  (2001). More recently, Calder and
Hillston (2010) have surveyed approaches to a num-
ber of signalling pathway models. The key advantages
of the process algebra approach are illustrated in this
paper by investigating the biological problem alluded
to above: the link between different forms of individ-
ual level interaction and the resultant population level
transmission terms for the disease. This is done through
a rigorous method for deriving equations to describe
the mean behaviour of an infectious disease system as
a whole (McCaig et al. 2008; 2009).

The structure of the paper is as follows. We re-
view the advantages of process algebras in Section 2,
considering them in relation to the established mathe-

matical approaches. The biological problem to be ad-
dressed is described in Section 3. Novel technical work
in the shape of process algebra models to investigate
that problem are presented in Section 4. Finally, we
conclude with a discussion on the utility of process al-
gebra for epidemiology.

2 Process algebra

In the 1970’s computers and computer networks were
growing and becoming more complex. Such systems are
by nature highly distributed (components in different
locations), concurrent (components evolving separately
but simultaneously), and involve communication be-
tween components to allow some coordinated activity
to occur. Process algebras (Baeten 2005) were devel-
oped to describe such systems in an abstract way to
allow computer scientists to analyse the structure of
the network, the intercommunication between compo-
nents, and the ways in which some greater goal could be
achieved by many interacting components. Typically,
process algebras are small languages with a limited set
of operations, to make modelling simple, and mathe-
matically based, to make rigorous analysis possible.

Process algebras describe complex systems by the
composition of multiple parallel agents, called proces-
ses. A process can carry out actions or events, some of
which may involve interactions with other processes.
Choices between actions may be made deterministi-
cally, non-deterministically, or probabilistically. There
are a wide range of process algebras; see Baeten (2005)
for a historical review. In addition to the core features
(processes, events, choice, parallelism and interaction),
variants can include timed events, passing of data in in-
teractions, alternative synchronisation mechanisms for
events, and inclusion of spatial information.

Process algebras are therefore ideally suited to de-
scribing biological systems which may typically be
viewed as networks of (many) interacting components,
where the components themselves may have complex,
nondeterministic, individual behaviour. Our group has
pioneered the use of process algebra for epidemiology
(Norman and Shankland 2003; McCaig 2007; McCaig
et al. 2009). Process algebra is particularly suited for
epidemiology and ecological systems, because these can
be considered in terms of individual behaviours and in-
teractions between individuals, or in terms of changes
in the age- or stage- structure of a population. More-
over, these local changes may be fundamental to the
way a population changes over time. Many of these be-
haviours and interactions can potentially be observed
and measured in the field. For example, animals can
be observed to be solitary or gregarious, or to interact



in small or large groups. In contrast, parameters such
as transmission of disease can only ever be estimated
since they come from a complex interaction of several
elements.

Despite the range of different process algebras avail-
able, all share the same advantages both in constructing
models, and in investigation of those models. Process al-
gebra models depend on a notion of observation, which
can be varied to suit the requirements of the mod-
eller. This yields abstraction. Process algebra models
are composed of smaller interacting parts. This yields
modularity. Lastly, a process algebra model gives access
to a range of investigatory techniques', each of which
contributes to understanding of the system in a differ-
ent way, allowing a fuller picture to be developed.

The modular and compositional nature of process
algebra makes it straightforward to incrementally de-
velop a model. The abstract nature of process algebra
means that the modeller can decide how much informa-
tion to include about a system, and what to ignore. And
of course they can change their mind later. Further,
only the behaviour of the individuals is considered ex-
plicitly; the complex state space of the combined activ-
ities of individuals is generated automatically using the
process algebra semantics. Lastly, process algebra gives
access to quantitative analysis and qualitative analysis:

Stochastic simulation. Gillespie simulation and related
techniques (1977) can be used to simulate system
behaviour. This is particularly appropriate for a small
number of individuals, where stochastic variability
is more influential in the system.

Markov analysis. The semantics of (stochastic) process
algebras are given in terms of Markov Chains. This
gives access to a range of established mathematical
analysis techniques.

Algebraic manipulation. Process equivalences can be
applied to transform the model (perhaps into one
with known properties).

Verification. Logically expressed properties can be eval-
uated against the model. For example, properties re-
lating to the size of population groups such as peak
of infection, or infection dying out.

Derivation of Mean Field Equations (MFEs). The mo-
del can be translated to give a population-based
model in terms of MFEs (McCaig et al. 2008; Hill-
ston 2005; Cardelli 2008b). This also gives access to
a range of established mathematical analysis tech-
niques commonly used in mathematical biology.

I The process algebra community refers to these as analysis
techniques, but the word is used in a far more general sense
of investigation rather than the specific sense of mathematical
analysis.

While the others are useful, we believe this last to
be the most exciting, and focus on this analysis tech-
nique in Section 4. The translation process is rigorous
and automated, therefore this is a way of changing scale
in the model from the level of individuals to the level
of the population. Explicit features in the individual-
based model, together with the underlying semantics
of interaction in process algebra, are translated into
high level population properties. These are often termed
emergent properties. Such properties are hard or impos-
sible to grasp by looking at individual components: they
often only become apparent in the whole system model.
Changing scale yields greater insights about the effect
of individual interactions on population dynamics.

The computational approach allows us to use the
huge amounts of experimental data being generated
through wet lab experimentation and field observations.
This is a constructive rather than reductionist appr-
oach: improving understanding of a system by building
models capturing hypotheses about the functionality of
its components and the way those components work to-
gether to achieve the functionality of the system as a
whole. Most importantly, given a model we can test it
(and therefore our hypotheses) in a variety of computa-
tional and analytical ways. Testing hypotheses through
in silico methods is much cheaper and faster than thr-
ough lab based in vitro or in vivo tests. Further, in the
face of overwhelming quantities of data, biologists need
an abstract functional view of the dynamic evolution of
a system through time to better understand that sys-
tem (Priami 2006). Through in silico testing, the range
of interesting parameter values can be narrowed down,
and more focussed lab or field based tests identified.
For epidemiology this is particularly important: it may
not even be possible to carry out in wvivo tests due to
practical and ethical constraints.

Process algebras have been strongly adopted for use
in Systems Biology, e.g. (Bernardo et al. 2008; Calder
and Hillston 2010; Priami 2006). The most common ap-
proach is to view molecules or species as processes, and
biochemical reactions as the evolution of one
process to another (possibly through interaction with
other processes). Calder and Hillston (2010) review ap-
proaches to molecular biology, also considering process
algebras which have been specially enhanced to facil-
itate biological modelling. Process algebras have also
been used in other areas of biology. For example, the
synapse model of Bracciali et al. (2008), the ant colonies
of Tofts (1993) and Sumpter and Broomhead (2001),

and the models of vertical parasite transmission of Hatcher

et al (1995).

Some others have followed us in applying process
algebra to epidemiology. For example, Cardelli (2008a)



presents a small epidemiological model (based on the
classic Kermack and McKendrick model (1927)) and
Bio-PEPA is used in a model of avian flu (Ciocchetta
and Hillston 2010). Bio-PEPA has been developed for
biochemical reactions, and the H5N1 model includes
spatial aspects and event-driven introduction of dis-
ease control. The modelling approach is population-
based, and therefore essentially equivalent to writing
an ODE description, so not all of the advantages men-
tioned above are exploited. In particular, they do not
exploit the possibility of changing scale and assume the
usual mass action transmission rate, instead of deriving
it as we do.

2.1 How does process algebra differ from other
techniques?

Process algebra allows us to develop probabilistic indi-
vidual-based models and to carry out a range of analy-
ses, including derivation of population level behaviour.
There are several other approaches to both individual-
based modelling and population-based modelling: what
advantages can modellers obtain through using process
algebra?

Cellular Automata Another approach to modelling eco-
logical systems uses individual-based cellular automata
models, which describe a system in terms of the indi-
viduals that make up the population (Joo and Lebowitz
2004; Turner et al. 2002). Individuals are modelled on
a grid, interacting with their nearest neighbours. This
approach captures the fact that properties emerging at
the whole population level are the result of interactions
at the subpopulation or individual level. Model analysis
is typically carried out by performing simulations. As
with process algebra simulations, an individual simula-
tion considers only a single realisation of the stochastic
model and it is only by performing a large number of
simulations that we can comment on the average be-
haviour of the system. This becomes computationally
infeasible as the number and range of parameters in-
creases.

Some algebraic analysis is available through meth-
ods such as pair approximation. This method was in-
troduced by Matsuda et al. (1992). It is a moment clo-
sure method which produces a system of ordinary dif-
ferential equations for the frequency of each type of
neighbouring site pairs. Higher order frequencies (e.g.
triplets) are approximated by pair frequencies in order
to obtain a closed system of equations (Ellner 2001).
There are a number of ways in which this closure ap-
proximation can be done and it is not yet clear what the
consequences of making each of these approximations

is, or when they are equivalent (Webb et al. 2007Db).
Although pair approximations have been shown to pre-
dict the behaviour of lattice models (Webb et al. 2007b)
there are examples in which discrepancies between the
equilibrium analysis of the pair approximations and the
simulations arise. For example, the pair approximations
sometimes predict cycles when these do not appear in
the simulations (Boots and Sasaki 2001). Another limi-
tation is that in most cases interactions are purely local;
however, some authors have included longer range in-
teractions e.g. (Ellner 2001; Webb et al. 2007a).

A key difference between cellular automata and
many process algebras is the explicit inclusion of space.
The simpler process algebras assume random mixing in
the first instance. This assumption makes the process
algebra more immediately comparable to SIR ODE
models. Cellular automata and process algebra become
more similar in the limits of global interactions in cellu-
lar automata or totally local interactions in the process
algebra. It is possible to impose spatial relationships in
a process algebra model through the topology of com-
munications, and there are spatial variants of process
algebra. For example, Bio-PEPA (Ciocchetta and Hill-
ston 2010) includes compartments. Such extensions al-
low description of explicitly spatial models and meta-
population models.

The final type of models to which process algebra
models could be compared are individual-based models
in which simulations are run and the fate of each indi-
vidual is determined, e.g. (Railsback and Harvey 2002).
However, these models are often complex and rely on
simulation. Process algebra allows us to do the same
thing, but also derive mean field equations.

Stochastic models There are a number of ways of for-
mulating stochastic models. In ecological models sto-
chasticity is often added to ODE models through ei-
ther environmental noise which we add as a noise term
to each equation, e.g. (Nowicki et al. 2009), or demo-
graphic noise in which we allow individual parameter
values to vary randomly, e.g. (Cornell et al. 2004). Mod-
els with environmental noise cannot readily be com-
pared to process algebra models. Models with demo-
graphic noise essentially allow for probabilistic varia-
tion between individuals. From such models MFE can
be derived, therefore this is similar to the process alge-
bra approach. However, models with demographic noise
start with assumptions about the population level be-
haviour and then add in randomness. The behaviour
of each individual is not explicitly modelled, therefore
there can be no derivation of population equations from
individual level interactions.



Stochastic reaction equations are a further alterna-
tive. In a stochastic reaction equation, the transition
probabilities between states are explicitly modelled and
mean field equations can be derived. Reaction equations
can be simulated using techniques such as Gillespie’s
algorithm (1977) and its derivatives. This is therefore
rather similar to the rules describing how one process
evolves to another in process algebra, especially for non-
interaction evolutions such as birth and death rates.
Process algebra models can also be simulated in the
same way. The difference with process algebra lies in
the approach to derived terms involving interaction be-
tween processes. Transmission rates for disease are a
classic example. Such terms emerge from the process
algebra semantics directly, whereas stochastic reaction
equations resort to assumptions about density depen-
dence in these terms.

Process algebras are closely related to stochastic
models in that the same underlying theory, i.e. the work
of Kurtz (1970), can be used to prove the relationship
between the individual-based models and the mean field
equations. Ultimately, process algebra is the only one
of the techniques considered in which it is possible to
model the interaction of individuals explicitly and rig-
orously determine the impact of that behaviour on the
population.

Priami (2006) suggests that process algebra brings
a fundamentally different, algorithmic, approach to de-
scribing biological systems. While ODEs describe the
function “computed” by a system, i.e. the end result
given a set of inputs, the process algebra model al-
lows a more direct mechanistic description of the steps
carried out moment by moment to effect that func-
tion. This captures causal, temporal and spatial infor-
mation (depending on the process algebra used). We
might capture this as the difference between “what” the
result is (equations) and “how” the result is obtained
(process algebra). This is particularly important in sys-
tems where the transient dynamics are of interest. Two
systems may have the same initial conditions and equi-
libria, but have quite different transient dynamics. The
appropriate process algebra model can capture that ex-
plicitly. Equations can only do so implicitly.

3 Biological Problem

Traditional ODE models for the spread of infectious
diseases have utilised different terms to describe trans-
mission of the disease (Anderson and May 1981; Begon
et al. 2002; Briggs and Godfray 1995; Hochberg 1991).
The classical model developed by Kermack and McK-
endrick (1927) introduced ideas which have formed the

basis of models up to the present day. In particular they
introduced the transmission term

BSI, (1)

where S and I are the numbers (or densities) of sus-
ceptible and infectious individuals respectively and [ is
the transmission rate. This term has been widely used,
for example in the seminal models of Anderson and
May (1981), and is referred to as density dependent
or mass action transmission. Here, contacts between S
and I are assumed to increase linearly with host den-
sity.

Several authors have suggested that density depen-
dent transmission may not be the most suitable term
to describe disease spread, proposing alternative trans-
mission terms (Briggs and Godfray 1995; Fenton et al.
2001; Hochberg 1991; Knell et al. 1998). Most notable
amongst these is frequency dependent transmission,
% ®
where 3 is dimensionally different from 3 in (1) (Be-
gon et al. 2002) and N is the total number (or density)
of individuals in the population. Frequency dependent
transmission is used most commonly in diseases where
contact saturation is assumed to have occurred. This
means that only a fixed number of contacts are made
per unit time, regardless of the total population size.
The choice of which term to use is based on assump-
tions about how the behaviour of individuals affects the
population as a whole.

Begon et al.(2002) propose a general transmission
term from which both frequency dependent and density
dependent transmission can be derived:

Sepv, 3)

where S is the number of susceptibles, ¢ is the rate
of ‘appropriate’ contacts between individuals, p is the
probability that contact for a susceptible host is with
an infected host, and v is the probability that contact
between an ‘infected’ and a susceptible host leads to
successful transmission. The difference between the fre-
quency and density dependent transmission terms is
simply the form of ¢: if ¢ is constant we have frequency
dependent transmission and if ¢ is proportional to the
population size we have density dependent transmis-
sion. In the models presented in Section 4 we investigate
the effect of varying the contact rate in this way.
Turner et al. (2002) employ cellular automata mod-
els that implement analogues for density and frequency
dependent transmission at the level of the individual
(one individual per cell). Their first model has suscep-
tibles making contact with the immediate neighbours in
the spatial grid, with the number of contacts reduced



if neighbouring grid squares are empty — analogous to
density dependent transmission. In their second model,
susceptibles make a fixed number of contacts, travelling
outward to seek contacts if neighbouring grid squares
are empty — analogous to frequency dependent trans-
mission.

Fitting equations statistically to the results
obtained from the cellular automata, Turner et al.
found that irrespective of the individual-based behav-
iour implemented, the frequency dependent transmis-
sion term most accurately describes behaviour at the
population level. This implies that whatever rules oper-
ate at the individual level, frequency dependent trans-
mission will be the outcome at the population level.
This is counter to normal assumptions and has serious
implications for models of infectious disease spread.

More recently, Rhodes and Anderson (2008) devel-
oped a population level model including the movement
of individuals, in which transmission depends on how
close together susceptible and infected individuals are.
By making differing assumptions about how individuals
behave they found that both density dependent and fre-
quency dependent transmission can accurately describe
the behaviour of the population. The models of Turner
et al. and Rhodes and Anderson contain spatial infor-
mation but support the traditional terms of (1) and (2)
in which random mixing is assumed. This suggests that
random mixing might be a suitable simplifying assump-
tion. In the next section this question is investigated
using process algebra.

4 Models

The present work makes use of the process algebra
Weighted Synchronous Calculus of Communicating
Systems (WSCCS) (Tofts 1994), because it has proved
particularly useful in studying a wide range of biological
systems including the behaviour of social insects (Tofts
1993; Sumpter and Broomhead 2001), the spread of in-
fectious disease (Norman and Shankland 2003), popula-
tion growth controlled through limited resource, added
to an HIV model (McCaig et al. 2009), and vertical par-
asite transmission in Gammarus duebeni (Hatcher et al.
1995). WSCCS is a discrete time process algebra with
each agent (representing an individual in the popula-
tion) performing an action (representing
some aspect of individual behaviour) in each step of
time. These time steps are not of a defined length and
there is no notion of absolute time in WSCCS; however,
choices are made probabilistically and the selection of
values for these probabilities reflects a notion of time
scale. For example, if a probability of contact between
individuals is described, then it must be associated with

a time scale such as contacts per minute, per hour, or
per day. We describe different types of individual in the
syntax of WSCCS and place many individuals in par-
allel to represent a population. A brief summary of the
syntax of WSCCS can be found in Appendix A.

The models considered in this section are process al-
gebraic interpretations of standard SIR models and as-
sume random mixing. We present the WSCCS syntax of
our models (Figs. 1 and 2) and give a description of the
individual behaviours captured, along with the mean
field equations (MFEs) that are derived (making use
of a rigorous algorithm described by the authors else-
where (McCaig et al. 2008; 2009)). The derived equa-
tions depend on the individual behaviour captured in
WSCCS and do not rely on population level assump-
tions (other than random mixing). In this way we hope
to either validate existing population level equations
of host-pathogen systems, which have previously relied
on assumptions about the population, or propose new
equations to describe such systems. As mentioned in
Section 2 other forms of analysis are possible, but we
do not present these here.

Sumpter and Broomhead (2001) used an unstated
heuristic to derive equations to describe the mean be-
haviour at the population level of social insect colonies.
Norman and Shankland (2003) used a similar method
to derive MFEs for their models of infectious disease
spread, in particular finding that frequency dependent
transmission (Begon et al. 2002) is most naturally de-
scribed in WSCCS. In McCaig’s thesis (2007) and the
related report (McCaig et al. 2008) a method is de-
scribed to automatically derive Mean Field Equations
from WSCCS models. Essentially, a model of the form
A1{ny}|...|Am{n,,} will evolve to a model composed of
the same agents, but in different numbers
ie. A1{ni}|...|Am{n],}. The translation is based on
analysis of the potential actions of each agent in the
context of the whole population, producing a term in
the MFE capturing change in the number of that agent.
The translation is purely syntax based: the classifica-
tion of WSCCS operators relates directly to a range
of possible terms to be added to the MFE. For exam-
ple, given an unprioritised communicating action a, and
processes Al = a.A2 and B1 = a.B2 then the method
prescribes that the resulting change in numbers of A2
and B2 agents is (the number of A1 x the number of
B1)/N where N is the total number of agents poten-
tially able to carry out a or @ actions.

The translation from process algebra to mean field
equations is based on a well known result for Markov
chains by Kurtz (1970). The underlying semantics of
a WSCCS model can be viewed as a Discrete Time
Markov Chain (DTMC). McCaig shows in his thesis



that the translation from WSCCS syntax to MFE is
the same one as would be obtained by converting the
WSCCS syntax to a DTMC and using the Kurtz result
to obtain a MFE. The models have also been simulated
(not shown here), and in accordance with McCaig’s re-
sult match the MFE time series exactly.

Due to the discrete time nature of WSCCS, our
MFEs are difference equations, the discrete time ana-
logues of ODEs. Another consequence of the discrete
time nature of WSCCS is that behaviour in our model
is separated into several stages. For instance, we sepa-
rate probabilistic behaviours (e.g. birth, death, recov-
ery) from those involving contact between individuals
(e.g. transmission of infection). By doing this we can
more easily reason about the overall behaviour of the
system. The different stages happen sequentially dur-
ing one iteration of the model which corresponds to the
interesting unit of time for the modeller. The length of
the time step depends on the units of the parameters.

Begon et al.’s general transmission term (2002) as-
sumes that susceptibles can make contact with any type
of individual but can only become infected by contact
with an infectious individual. The nature of WSCCS
means it is more natural to write models in which in-
fecteds can make contact with any type of individuals,
and it is only susceptibles that can become infected af-
ter contact. This means that for our purposes we con-
sider a basic equation of the form

Iepl, (4)

where [ is the number of infected individuals, p’ is the
probability that contact is with a susceptible, c¢ is the
rate of contacts and v is the probability that contact
between a susceptible and an infected leads to trans-
mission of the disease.

4.1 Frequency dependent transmission

The model presented in Fig. 1 is based on the dis-
ease models of Norman and Shankland (2003), with
the addition of birth and death to the model (Mc-
Caig et al. 2009). In this model the rate of contacts
is constant. The model consists of three stages. In the
first stage all individuals can give birth (to a single
newborn Nb2) with a density dependent probability
(pp = pb, — kN, where pp, is the probability of birth
in the absence of crowding, k is a scaling constant and
Ny = S; + I + R;). The infected individuals (I1) can
also probabilistically become transmitters (becoming
the parallel agents Trans x 12 with fixed probability
pe), which make contact in the current iteration of the
model.

po "= by — k(LS1] + L11] + [R1))

51 € py/ 52X Nb2+ (1 —py)y/: 52

I1 = pp/: 12X Nb2+ pe./: 12 X Trans
+ (1 —pp —pe)/: 12

Rl = pp/: R2X Nb2+ (1 —pp).\/: R2

S2 = w.infect: SI3+1.4/: 53
12 = w.infect: I3+ 1.4/ : I3
Trans = w.infect: 0+ 1.4/:0
R2 = w.infect: R3+1.4/: R3
Nb2 %' 1./ Nb3

SI3 = pi/: I14+pa/:04+ (1 —pg—pi)/:S1
53 = pa-v/: 0+ (1 —pa)y/: 51

I3 = prv/:Rl4+pay/: 0+ (1 —pr—pg)y/: 11
R3 = pav/:0+(1—pa)y/: Rl

Nb3 & 1./:81

Popn ¥ 51{s} x I{i} x R1{r}[{V/}

Fig. 1 Frequency dependent transmission model.

The second stage features interaction between in-
dividuals (through the complementary actions infect
and infect), which can lead to disease transmission. The
transmitters (T'rans) each make a single contact with
any member of the population, although it is only sus-
ceptible individuals (52) that are affected by contact.
The newborn individuals from the previous stage (Nb2)
do not take part in this interaction.

In the final stage individuals make probabilistic
choices, with all probabilities being fixed. The contacted
susceptibles (ST3) can become infected (becoming I1
with probability p;), die (becoming the null agent 0 with
probability pg) or return to being susceptible (becoming
S1 with probability 1 — p; — pg). The infected individ-
uals (I3) either recover (becoming R1 with probability
pr), die (becoming 0 with probability p;) or remain in-
fected (becoming I1 with probability 1 — p, — pg). The
recovereds (R3) and uncontacted susceptibles (S3) each
die (becoming 0 with probability pg) or remain in their
current state (becoming R1 and S1 respectively, with
probability 1 — pg). The newborns from the first stage
all mature to be susceptible individuals (S1) in the next
iteration of the model.

Through the three stages of the model we have
moved from a population consisting of some numbers of
S1,11 and R1 agents (representing susceptible, infected



and recovered individuals), to a population consisting of
these same types of agent but in differing numbers. The
mean of this change, across an iteration of the model
(in this case three stages), is what is captured in the
derived MFEs.

The MFEs derived from this model are

iDeS
St1 = (1 —pa)Se — ijcvt Ly (Pvy — kN¢) Ny
t
i CS I
ILivi =1 —pg—pr)ly + pipN il )
t
Rit1 = (1 —pa)Re + pry . (5)

By choosing 3’ = p;p. the transmission term in these
MFEs can be rewritten as 3'S.I;/N; i.e. the standard
frequency dependent transmission term, (2).

Relating the transmission term in (5) to the general
term, (4): the probability that contact is with a suscep-
tible (p’ in (4)) is S¢/Ny; the probability that contact
leads to infection (v in (4)) is p;; and the contact rate
(cin (4)) is the constant probability p..

We can see that we have derived the frequency de-
pendent transmission term by making the same
assumption about contact rate as Begon et al. (2002).
The advantage of our approach is that our population
level equations have been rigorously derived from the
WSCCS model of Fig. 1. Our equations are therefore
a direct consequence of the individual behaviour de-
scribed above and captured in Fig. 1.

4.2 Density dependent transmission

This second model (Fig. 2) differs from the first only
in the form of p., the infecteds’ probability of making
contact. Rather than a fixed probability we now con-
sider a density dependent value, directly proportional
to the size of the population (McCaig 2007; McCaig et
al. 2009)(p. = kNN, where & is a scaling constant). The
MFEs derived for this model are of the same general
form as (5), with the substitution of p. = KNy, which
gives

i KNS,
St1 = (1 —pa)Se — % + (v, — kN¢) Ny
¢
Livi =1 —pa—pr)ls + % )
t
Riyr = (1 —pa)Ri + prly . (6)

If we simplify and choose 8 = p;k the transmission term
in these MFEs becomes (35.1; . By once again making
the same assumption about contact rate as Begon et al.
(2002) we have rigorously derived the standard density
dependent transmission term, (2).

prob

Py "= pyy — k(|S1] + [I1] + |R1])
pe "2" K(|S1] + [11] + |R1])

S1 = ppy/: 52X Nb2+ (1 —pp).y/: S2

I1 = pp.y/: 12 X Nb2 + pe.y/: 12 X Trans
+ (1 —pp —pe)y/: 12

Rl = py.y/: R2 X Nb2+ (1 —pp).y/: R2

52 L' wlinfect: SI3 + 1.4/:53
I2 = w.infect: I3+ 1.4/ : I3
Trans = w.infect: 0+ 1.4/:0
R2 ¥ w.infect: R3+1.\/: R3
Nb2 % 1./ Nb3

SI3 = pi/: 11+ pg/: 0+ (1 —pg —pi)s/: 51
S3 = pav/:0+(1—pa)y/: 51

I3 = pr/: Rl4+pay/: 0+ (1 —pr —pg)/: 1
R3 = pg.v/:0+ (1—pa)v:RL

Nb3 X 1./: 81

Popn ' S1{s} x I1{i} x R1{r}[{V/}

Fig. 2 Density dependent transmission model, in which p. is
proportional to Ny.

5 Conclusions

In this paper we have presented process algebra as an
emerging modelling methodology for epidemiology. The
approach provides benefits both in modelling and ana-
lysis of such systems. In particular, the ability to change
scale has the possibility to transform the way we think
about disease models. This particular form of analy-
sis was illustrated through models of infectious dis-
ease spread developed in the stochastic process algebra
WSCCS that make use of the same assumptions that
Begon et al (2002) used in producing biological jus-
tification for the commonly used transmission terms:
density- and frequency-dependence. We found that the
resulting MFEs reflect the individual-level assumptions
in the expected manner. This is in contrast to the re-
sults of Turner et al. (2002), who found that irrespective
of the individual level behaviour modelled the popula-
tion was most accurately described by the frequency de-
pendent transmission term. One key difference between
the models, likely to account for this, is the treatment
of space. The cellular automata developed by Turner et
al. are inherently spatial, with individuals located on
a grid. Individuals do not move so no mixing occurs.



In that case clustering of infection is likely, which will
restrict the opportunities for some infected individuals
to spread the disease. In contrast our WSCCS models
contain no spatial information, which amounts to an
assumption of random mixing. While contact is likely
to have some heterogeneity, which is not captured by
random mixing, it is unlikely to be a strict grid as used
by Turner et al. In fact Rhodes and Anderson (2008)
found that random mixing is a reasonable assumption
for sufficiently large populations, which gives us confi-
dence in our approach.

The technique presented here, then, allows us to
relate the dynamics of the population as a whole to
the behaviour of individual members of the population.
Models developed in other ways generally describe the
population at one of these levels, and attempts to re-
late the two rely, for instance, on fitting equations to
simulation results. By rigorously deriving population
level equations from the description of the population
in terms of individuals we can be sure that the equa-
tions we obtain are a direct consequence of the indi-
vidual level behaviour described. This is an important
step forward in our understanding of disease transmis-
sion dynamics.

The work presented here is at the proof of concept
stage. Work is under way to explore the consequences,
at the population level, of introducing more complex
interaction rules at the individual level, where those
population-level consequences cannot be predicted with
confidence in advance. For example, transmission
within spatially heterogeneous populations, transmis-
sion with superspreaders (Kemper 1980) and transmis-
sion between subgroups generally. It may be expected
that as more biological detail is added to the individual
level descriptions of the system, the resulting equations
will become more complex than the simple equations of
Section 4.

At the heart of our work is the rigorous derivation of
population level system dynamics from the individual-
based process algebra model. This automatic conver-
sion between scales allows each perspective to be used in
the strongest way possible. In particular, individual ob-
servations can inform the individual-based model. Use
of process algebra brings additional benefits. The model
is composed in a modular fashion of smaller agents. The
model can be explored directly through stochastic sim-
ulation. Algebraic analysis of the model via standard
process algebra manipulations is also possible. At the
population level, the emergent behaviour of the system
is revealed. The equations are well justified since they
are derived from local interactions and therefore based
on explicit rather than implicit assumptions. The MFE

are amenable to further standard mathematical numer-
ical and algebraic analyses.

Moving between scales is a challenging general theo-
retical problem. It is important because we wish to un-
derstand how large scale properties emerge from small
scale interactions. Using process algebra we can exper-
iment with different interactions and observe their im-
pact on the system dynamics.
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Electronic Notes

A WSCCS

The Weighted Synchronous Calculus of Communicating Systems
(WSCCS) is one of many process algebras based on Milner’s sem-
inal Calculus of Communicating Systems (CCS) (1980). For our
work, the main difference between CCS and WSCCS is the ad-
dition of weighted, or probabilistic, choice. A full introduction
to the notation of WSCCS can be found in Tofts’ introductory
paper (1994). Here we use examples from our models to give
a brief overview of the WSCCS notation. Biological models in
WSCCS utilise various different types of agents. Complex be-
haviours within the system can be constructed by having agents
interact with each other and by allowing different simple behav-
iours to happen at different stages.

Consider the agent S3, which is written

S3 L pav/ 04+ (1 —pg)y/: S1.

This says that S3 will become the agent S1 with weight (1 —pg),
or become the null agent 0 with weight pgy. In each case it per-
forms the action 4/, which can be thought of as representing a
step of time, though this is not equal to any particular unit of
time and tick actions need not be uniformly distributed in time.
It is convenient to consider agents which can perform only tick
actions as representing a probabilistic choice between the differ-
ent outcomes. In general weights in WSCCS define the relative
frequencies of the different outcomes but for probabilistic agents
such as S3 we choose the weights to be between 0 and 1 with the
sum of the weights equal to 1.

Another type of agent which must be considered is a parallel
agent. The probabilistic agent

def

I1 = pp/: 12X Nb2 4+ pe.y/ : 12 X Trans + (1 — pp — pe) ./ : 12

can become the agent /2 and also the parallel agents

12 x Nb2 (M
and
I2 x Trans . (8)

The agent in (7), which consists of an I2 agent in parallel with
an Nb2 agent, represents an infected individual giving birth to a
newborn individual. On the other hand the agent in (8), which
consists of an 12 agent in parallel with a T'rans agent, represents
two different aspects of an infected individual’s behaviour (ab-
sorbing an infectious contact and making an infectious contact).
In the next stage the T'rans agent will always become the null
agent 0 so that the infected individual is once more represented
by a single agent.
The agent

Popn & §1{s} x I1{i} x R1{r}[{\/}

is another type of parallel agent, which defines an initial popula-
tion with which to analyse the system, consisting of s S1 agents,
¢ I1 agents and r R1 agents. The [{{/} forces communicating
agents to cooperate on all actions other than /.

Interaction between agents forms an important part of agent
behaviour in WSCCS. For example the agent T'rans,

Trans < w.infect : I3 + 1.4/ : 13,

will either perform the infect action or perform a tick, in either
case becoming I3. The special weight w (which is larger than
any real number weight) means that this agent must perform
the infect action when available. However, the restrictions on the
actions which are possible in Popn mean that Trans can only
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perform the infect action if an agent is available to perform a
complementary action. For example the agent S2,

52 L Ginfect: SI3 4+ 1.,/ : S3

can perform the action infect which would allow Trans to per-
form infect. If this happens the S2 agent will become an SI3
agent, indicating that it has made an infectious contact. Other-
wise the S2 agent will perform a tick and become an S3 agent.
The action infect is thought of as the input action while infect is
the output action.

The probabilities with which agents interact is influenced by
the number of agents of the same type in the population, as well
as the number of agents available to perform a complementary
action. For example if there are no agents in the population avail-
able to perform an infect action then an S2 agent would be unable
to perform the input action and would be forced to perform a tick

action.

Our models are designed in such a way that interaction and
probabilistic choice happen in different stages. This means that
behaviours in the models happen over multiple consecutive stages
with behaviour being averaged over these stages to represent one
time step in the MFEs. By separating probabilistic choice and
communication it is easier to write the models and correctly de-
termine the MFEs for the system.

Previous work introduced notation for functional parameters
in WSCCS (McCaig 2007; McCaig et al. 2009). The models con-
sidered here make use of this notation to incorporate density de-
pendent behaviour. For example the probability of birth in both
models is density dependent:

P "2 oy — K([S1) + 11 + [R1]) ®)

where |S1]|, |I1] and | R1] are respectively the numbers of S1, I'1
and R1 agents present in the population. When deriving MFEs
functional parameters are incorporated by substituting the func-
tional form of the parameter into the equations. For (9) this
means substituting for

Pb = Dvy — k(S1t + It + R1y) ,
= Poy — kNt .



