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Abstract 

Noisy situations cause huge problems for suffers of hearing loss as hearing aids 

often make speech more audible but do not always restore the intelligibility. In 

noisy settings, humans routinely exploit the audio-visual (AV) nature of speech 

to selectively suppress the background noise and focus on the target speaker. 

In this paper, we present a language, noise and speaker independent AV deep 

neural network (DNN) architecture for causal or real-time speech enhancement 

(SE). The model jointly exploits the noisy acoustic cues and noise robust visual 

cues to focus on the desired speaker and improve speech intelligibility. The 

proposed SE framework is evaluated using a first of its kind AV binaural speech 

corpus, called ASPIRE, recorded in real noisy environments including cafeteria 

and restaurant. We demonstrate superior performance of our approach in terms 

of objective measures and subjective listening tests over the state-of-the-art SE 

approaches as well as recent DNN based SE models. In addition, our work 

challenges a popular belief that, scarcity of multi-language large vocabulary AV 

corpus and a wide variety of noises is a major bottleneck to build a robust 

language, speaker and noise independent SE systems. We show that a model 

trained on synthetic mixture of Grid corpus (with 33 speakers and a small En-

glish vocabulary) and ChiME 3 Noises (consisting of bus, pedestrian, cafeteria, 
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and street noises) generalise well not only on large vocabulary corpora, wide 

variety of speakers/noises but also on completely unrelated language (such as 

Mandarin). 

Keywords: Audio-Visual, Speech Enhancement, Speech Separation, 

Deep Learning, Real Noisy Audio-Visual Corpus, Speaker 

Independent, Causal 

1. Introduction 

The human brain integrates the available heterogeneous information received 

from the five sensory organs (ears, eyes, nose, tongue and skin) with prior con-

texts to perform day-to-day cognitive tasks including vision, hearing, logic and 

5 reasoning. In the literature, the integration of multiple modalities have shown 

significant performance improvements as compared to unimodal systems [1] in 

terms of acquiring cognitive functionalities. For example, during busy social 

gatherings, human brain integrates the acoustic and visual cues in order to bet-

ter perceive speech. This multi-sensory hearing phenomenon was first demon-

10 strated in the McGurk effect [1] where a visual /ga/ with a voiced /ba/ is 

perceived as /da/ by most subjects. In particular, the visual cues provide in-

formation on the place of articulation [2] and muscle movements which can 

often aid to differentiate between speech with similar acoustic sounds (e.g. the 

unvoiced consonants /p/ and /k/) or phonological ambiguities [3]. In addition, 

15 further studies have shown the importance of visual cues in improving the speech 

intelligibility as well as speech detection in noisy environments [4, 5]. 

In the recent years, speech enhancement (SE) has attracted wide atten-

tion due to the noise reducing ability that helps hearing impaired listen better 

in noisy social situations and opened the doors for speech processing systems 

20 (such as speech recognition and voice activity detector systems) in noisy envi-

ronments [6, 7]. SE approaches can be categorised into statistical analysis based 

noise reduction models such as spectral subtraction (SS), linear minimum mean 

square error (LMMSE), Wiener filtering and computational auditory scene anal-
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Figure 1: CochleaNet Framework: Audio-Visual Mask Estimation based Speech Enhancement 

ysis (CASA) [8]. It has been observed that the statistical methods fail to achieve 

25 improved speech intelligibility in some scenarios due to introduction of distor-

tions such as musical noises. In contrast, CASA has shown to be more effective 

in stationary and non-stationary noises [9]. In CASA, the speech is separated 

from interfering background noise by using a time-frequency (T-F) spectral mask 

to the T-F representation of noisy speech. The T-F spectral mask is used to 

30 enhance speech dominant regions and suppress the noise-dominant regions. 

In the literature, extensive research has been carried out to develop audio-

only (A-only) and audio-visual (AV) SE methods. Researchers have proposed 

several SE models such as deep neural network (DNN) based spectral mask 

estimation models [10, 11], DNN based clean spectrogram estimation models [12, 

35 13], Wiener filtering based hybrid SE models [14, 15, 16], and time-domain SE 

models [17, 18, 19]. However, limited work has been conducted to develop 

robust language, noise and speaker independent AV SE models for low SNRs 

(< −3 dB) observed in everyday social environments (such as cafeteria, railway 

stations and restaurants) where traditional A-only hearing aids fail to improve 

40 the speech intelligibility. The few attempts to develop such robust models have 

been limited to speaker-dependent scenarios [13] and small scale (< 5 speakers) 

speaker independent scenarios [11, 16]. 

In addition, none of the aforementioned AV SE studies have conducted listen-
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ing tests on real noisy mixtures that often consists of speech signal reverberantly 

45 mixed with multiple competing background noise sources [20]. Finally, studies 

have shown that a pretrained DNN based SE model does not generalise well on 

new languages [21]. The model can be fine-tuned on large AV corpus consisting 

of wide variety of languages such as AVSPEECH [10] (consisting of 1500 hours 

recording) to potentially achieve the language-independent performance given 

50 enough model capacity. However, training on corpora like AVSPEECH requires 

a large number of graphics processing units (GPUs) or tensor processing units 

(TPUs) that are often unavailable in academic research environments. 

In this paper, we present a language, noise and speaker independent AV 

model to focus on a target speaker by selectively suppressing the background 

55 noise. More specifically, we design and train a cross-modal DNN architecture, 

called CochleaNet, that ingests the noisy sound mixture and cropped images 

of speakers lip as an input and output a T-F mask to selectively suppress and 

enhance each T-F bin. In addition, the model contextually exploits the available 

AV cues to estimate the spectral mask independent of the SNRs. 

60 The proposed AV SE model is evaluated using, ASPIRE, a first of its kind 

high quality AV binaural speech corpus recorded in real noisy settings such as 

cafeteria and restaurant. It is to be noted that, most of the aforementioned AV 

SE methods used a synthetic mixture of clean speech and noises for model eval-

uation. However, the synthetic mixture do not reflect the real noisy mixtures as 

65 speech is often reverberantly mixed with multiple competing noise background 

sources. Therefore, the ASPIRE corpus can be used by speech and machine 

learning communities as a benchmark resource to support reliable evaluation of 

AV SE technologies. 

We demonstrate superior speech quality and intelligibility of proposed ap-

70 proach over the state-of-the-art A-only SE approaches (including SS, LMMSE) 

as well as recent DNN based SE models (including SEGAN) using real noisy 

ASPIRE corpus. In addition, we show that a model trained on a synthetic mix-

ture of Grid corpus [22] (with only 33 speakers and a small English vocabulary) 

and ChiME 3 [20] noises (consisting of bus, pedestrian, cafe, and street noises) 
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75 generalise well on real noisy ASPIRE corpus, large vocabulary corpora (such as 

TCD-TIMIT [23]), other languages (such as Mandarin [13]) and wide variety 

of speakers and noises [24, 25]. An overview of our proposed AV SE model is 

shown in Figure 1. 

In summary, this paper presents four major contributions: 

80 (i) A language, noise and speaker independent AV DNN driven model for 

causal or real-time SE is proposed. To the best of our knowledge, our 

paper is first to propose a model that generalises on different languages 

even after training on a small English vocabulary Grid corpus. In the 

literature, it has been shown that a pretrained SE model trained on a 

85 single language does not perform well on new languages [21]. 

(ii) A first of its kind AV corpus, consisting of high quality binaural speech 

recorded in real noisy environments such as cafeteria and restaurant, is 

collected to evaluate the performance of the proposed model in challenging 

real noisy settings. In the literature, a synthetic mixture of clean speech 

90 and noise is generally used to evaluate the AV SE methods. However, 

the synthetic mixtures do not depict the real noisy mixtures as in real 

mixtures the speech is often reverberantly mixed with multiple competing 

noise background sources. 

(iii) We perform extensive evaluation of our proposed approach, using real 

95 noisy ASPIRE corpus, with state-of-the-art A-only SE approaches (in-

cluding SS, LMMSE) as well as recent DNN based SE models (including 

SEGAN) using objective measures (PESQ, SI-SDR, and ESTOI) and sub-

jective MUSHRA listening tests. 

(iv) We critically analyse and compare the performance of audio-only model 

100 with the audio-visual counterpart to empirically identify the role visual 

cues plays in the performance of audio-visual model. Specifically, we study 

the behaviour of the audio-only and audio-visual models in silent speech 

regions as well as we conduct listening tests to gauge the model perfor-
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mances on different phonemes. We hypothesise that the model performs 

105 better on visually distinguishable phonemes as compared to visually indis-

tinguishable phonemes. Finally, we study the behaviour of the trained AV 

model, in terms of objective metrics, when the visual cues are temporarily 

or permanently absent for random duration of time due to occlusions. 

The rest of the paper is organised as follows: Section 2 briefly reviews the 

110 related work, section 3 presents the ASPIRE corpus collection setup and the 

postprocessing involved. Section 4 presents, CochleaNet, an AV Mask Estima-

tion model for SE. Section 5 discuss the experimental setup and results. Section 

6 concludes this work and propose future research directions. 

2. Related work 

115 This section briefly reviews the related works in the area of A-only and AV 

SE. 

2.1. Audio-Visual Speech Enhancement 

Ephrat et al. [10] proposed a speaker independent AV DNN for complex ratio 

mask estimation to separate speech from overlapping speech and background 

120 noises. The model is trained on, AVSPEECH, a new large AV corpus consisting 

of 1500 hours recording with wide variety of languages, people and face pose. 

The main limitation, with the aforementioned study, is that the model is trained 

and evaluated on a fixed SNR. Similarly, Gogate et al. [11] presented a speaker 

independent AV DNN for IBM estimation to separate speech from background 

125 noises. However, the model is trained and evaluated using a limited vocabulary 

Grid corpus [22] and can help in achieving superior performance. In addition, 

Hou et al. [13] proposed a speaker-dependent based SE model, trained and 

evaluated on a single speaker, that predicts the enhanced spectrogram from 

the noisy spectrogram using multimodal deep convolutional network. However, 

130 the model was trained and evaluated on a single speaker corpus. On the other 

hand, Gabbay et al. [12] trained a convolutional encoder-decoder architecture to 
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estimate the spectrogram of the enhanced speech from noisy speech spectrogram 

and cropped mouth regions. However, the model fails to work when the visuals 

are occluded. Adeel et al. [15, 16] proposed a visual-only and AV SE models 

135 by integrating an enhanced visually-derived wiener filter (EVWF) and DNN 

based lip reading regression model. The preliminary evaluation demonstrated 

the effectiveness to deal with spectro-temporal variations in any wide variety 

of noisy environments. Owens et al. [26] proposed a self-supervised trained 

network to categorise whether audio and visual streams are temporally aligned. 

140 The model is then used for feature extraction to condition an on/off screen 

speaker source separation model. Afouras et al. [27] trained a DNN to predict 

both magnitude and phase of denoised speech spectrograms. Finally, Zhao et 

al. [28] presented a model to separate the sound of multiple objects from a video 

(e.g. musical instruments). 

145 2.2. Audio-only Speech Enhancement 

Hershey et al. [29] proposed deep clustering that exploits discriminatively 

trained speech embeddings to cluster and separate the different sources. For 

time-domain SE, Rethage et al. [17] proposed a non-causal Wavenet based SE 

model that operates on raw audios to address the invalid short-time fourier 

150 transform (STFT) problem [30] in spectral mask based models. Similarly, 

Pandey et al. [18] and Luo et al. [19] proposed a fully-convolutional time-domain 

SE model that address the shortcomings of separation in the frequency domain, 

including the decoupling of phase and magnitude, and high latency of calculat-

ing the STFT. 

155 A fundamental problem with A-only SE and separation is the label permu-

tation problem [29] i.e. there is no easy way to associate a mixture of audio 

sources with the corresponding speakers or instruments [31]. In addition, the 

main limitation with most of the aforementioned A-only and AV SE approaches 

is that the developed model is either evaluated on high SNRs (SNR > 0 dB) or 

160 on a fixed SNR. In addition, none of the aforementioned AV approaches have 

used an AV speech corpus recorded in real noisy settings for evaluation of the 
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Table 1: Grid Corpus Sentence Structure e.g. place blue in A 9 soon 

command colour preposition letter digit adverb 

bin blue at A-Z 1–9 again 

lay green by minus W zero now 

place red in please 

set white with soon 

proposed system with commonly observed multiple competing dynamic noise 

sources. 

3. ASPIRE Corpus 

165 In the literature, extensive research has been carried out to develop A-only 

real noisy mixtures that often consists of speech signal that is reverberantly 

mixed with multiple competing noise background sources [20]. However, to the 

best of our knowledge, no such AV corpus recorded in real noisy settings is 

available. In this section, we present ASPIRE, a first of its kind, AV speech 

170 corpus recorded in real noisy environments (such as cafeteria and restaurant) 

to support reliable evaluation of AV SE technologies. 

3.1. Sentence design 

ASPIRE corpus follows the same sentence format as the AV Grid corpus 

as shown in Table 1. The six words sentence consists of command, colour, 

175 preposition, letter, digit and adverb. The letter ”w” was excluded because it 

is the only multi-syllabic letter. Each speaker produced all combinations of 

colour, letter and digit leading to 1000 utterances per talker in both real noisy 

settings and acoustically isolated booth. As a result each talker recorded 2000 

utterances. 

180 3.2. Speaker population 

Three speakers (one male and two female) contributed to the corpus. The 

speakers age ranged from 23 to 55. All the speakers have spent most of their 
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Figure 2: Plan of ASPIRE recording setting showing location of listener, speaker, audio 

recorder, video recorder, sentence prompter and binaural/collar microphone 

lives in the United Kingdom and together encompassed a range of mixed English 

accents. All the participants were paid for their contribution. In total, the 

185 corpus consists of total 6000 utterances (3000 recorded in real noisy settings, 

3000 in acoustically isolated booth). 

3.3. Collection 

The ASPIRE corpus is recorded in real noisy settings specifically the uni-

versity cafeteria and restaurant during busy lunchtimes (11.30 to 1.30) as well 

190 as in an acoustically isolated booth. The recording setup is shown in Figure 2. 

Apple iPad mini 2, placed at an eye level to avoid noise and distraction from the 

video apparatus, was used to record the video (the distance between iPad and 

speaker was 90 centimetres) at 30 frames per second (fps) and 1080p resolution. 

A collar microphone was also connected to the iPad. The high quality binaural 

195 audio from speaker is recorded using Zoom H4n pro recorder at a sampling rate 

of 44100 Hz and binaural microphone. The listener was wearing the binaural 
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Figure 3: Sample video frames from ASPIRE corpus 

microphone at an approximate distance of 140 centimetres. 

The listener and speaker were sitting opposite to each other on the fixed 

chairs. Speaker was initially trained with few utterances and the purpose of 

200 research is also explained in detail. Periodic breaks were given to the speakers 

during the recording to avoid fatigue and each sentence was mandatory to be 

read correctly without any interruption. The sentences as detailed in section 3.1 

were presented to the speaker on a laptop in random order and speaker was 

allowed to repeat the sentence if the sentence recording is interrupted or sentence 

205 is incorrectly uttered. In addition, the speaker repeated the utterance if any 

mistake is spotted by the listener. In total, 2000 utterances per speaker (1000 

utterances in real noisy settings and 1000 utterances in the booth) around 2% 

and 4% of the utterances were re-recorded in booth and real noisy settings 

respectively. 

210 3.4. Postprocessing 

Audio postprocessing. Audio and video data were continuously collected through-

out a session. The drift between audio and video data was calculated by syn-

chronising the claps. The utterance start and end times were identified using 

Gentle (a robust forced-aligner built on Kaldi), speech recorded from the col-

215 lar microphone and the presented transcriptions. Finally, all the segmented 

utterances were manually checked to correct any additional alignment errors. 

Video postprocessing. The raw videos recorded in busy restaurant and cafeteria 

consists of a few clearly identifiable people except the speaker itself. Therefore, 

to ensure the privacy, we estimate the speaker area for the first frame using 
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Figure 4: CochleaNet DNN Architecture Overview: Audio-Visual Speech Enhancement 

220 a segmentation model and pixelate the non-speaker area for the complete ut-

terance using the estimated segmentation mask. This is possible because the 

speaker is sitting in a single position throughout an utterance. Figure 3 shows 

some sample video frames from the ASPIRE corpus. 

4. CochleaNet 

225 This section presents the stages involved in end-to-end processing of the pro-

posed model to output enhanced speech given noisy input speech. Specifically, 

input feature preprocessing, output feature representation, DNN architecture 

and speech resynthesis pipeline is described. 

4.1. Data Representation 

230 Input features. The DNN ingests both audio and visual as input. For batch 

training, 3 second video clips are considered. A cropped 80 x 40 lip region is 

extracted from the video and is used as a visual input (75 cropped lip images 
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245 

Table 2: Audio Feature Extraction 

conv1 conv2 conv3 conv4 conv5 

Num filters 96 96 96 96 96 

Filter size 5 x 5 5 x 5 5 x 5 5 x 5 1 x 1 

Dilation 1 x 1 2 x 1 4 x 1 8 x 1 1 x 1 

for 3 second clip recorded at 25 fps). For audio input, we compute STFT of 

audio segments and a magnitude spectrogram is used. The trained model can 

235 be applied to both streaming data as well as data of arbitrary lengths during 

inference time. 

Output. The output of our network is an IBM, a multiplicative spectrogram 

mask, that describes the T-F relationship between clean audio and background 

noise. The IBM assigns zero to a T-F unit if the local SNR is lower than the 

240 local criterion (LC), and unit value otherwise. IBM is defined as follows: 

IBM(t, f) = 

⎧ ⎪⎨ ⎪⎩ 

0 if SNR(t, f) ≤ LC 
(1) 

1 otherwise. 

The IBM has shown to improve the speech quality and intelligibility for the 

hearing impaired and normal hearing listeners [32, 33, 34]. The IBM cannot be 

calculated using equation 1 in real-world scenarios because the target speech and 

interfering background noise cannot be estimated with high accuracy. However, 

IBM estimation can be modelled as a data-driven optimisation problem that 

jointly exploits noisy speech and visual face images for the spectral mask esti-

mation. In literature, it has been shown that the multiplicative masks perform 

better than direct prediction of time-domain waveform and clean spectrogram 

magnitudes [35, 36]. 
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Table 3: Visual Feature Extraction 

conv1 conv2 maxpool1 conv3 conv4 maxpool2 lstm1 

Num filters 32 48 64 96 

Size 3 x 3 3 x 3 2 x 3 3 x 3 3 x 3 2 x 3 256 

Dilation 1 x 1 1 x 1 2 x 2 3 x 3 

250 4.2. Network Architecture 

This section describes the network architecture of the proposed AV SE 

model. Figure 4 depicts a high-level overview of the multi-stream modules 

present in the network. The subsequent subsections describes each module in 

detail. 

255 4.2.1. Audio Feature Extraction 

The audio feature extraction consist of dilated convolutional layers as de-

tailed in Table 2. Each layer is followed by a ReLU activation for non-linearity. 

The dilated convolutions have shown to aggregate the multi-scale contex-

tual information required for dense prediction problem (i.e. assigning 1 or 0 to 

260 the individual bin) without losing resolution [37]. In addition, dilated convolu-

tions allow exponential expansion of receptive fields without loss of coverage or 

resolution [37]. 

4.2.2. Visual Feature Extraction 

The visual feature extraction consist of dilated convolutional, max pooling 

265 and long short-term memory (LSTM) layer as detailed in Table 3. Each convo-

lutional layer is followed by a ReLU activation for non-linearity. 

As discussed in the aforementioned section, the dilated convolutions are 

also used to aggregate the multi-scale contextual information from visual lip 

images. It is to be noted that, the convolution weights are shared across each 

270 visual frame. Finally, a LSTM layer is used to exploit the temporal correlation 

between the extracted visual features using the dilated convolutional network. 
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4.2.3. Multimodal Fusion 

The visual features are sampled at 25 fps while the audio feature sampling 

rate is 75 vectors per second (VPS). Visual features were upsampled to match 

275 the audio vector per second rate and to compensate for the sampling rate dis-

crepancies. This is done using simple repetition of each element 3 times in the 

temporal dimension. After upsampling, the audio and visual features are con-

catenated across time dimension and are fed to a LSTM layer consisting of 622 

units. The LSTM output is then fed to two fully connected (FC) layers with 622 

280 neurons and ReLU activation. The weights of the FC layers are shared across 

the time dimension. Finally, the extracted features were fed to a FC layer with 

622 neurons and sigmoid activation. 

The LSTM layer exploits the joint temporal correlation between the con-

catenated visual and audio cues to learn the long-term temporal dependencies 

285 between the multimodal input. Finally, the FC layers map the integrated AV 

features to the output IBM. The binary cross-entropy between the estimated and 

the actual IBM is used as a loss function. It is to be noted that, no thresholding 

was applied to the predicted mask and the sigmoidal outputs were considered 

as the estimated mask. 

290 4.3. Mathematical Representation 

The framework, shown in Fig. 1, ingests noisy speech (X) and video (V ) to 

output and enhanced speech ( X̂). Let An, An−1, ..., A1 be the noisy STFT fea-

ˆ ˆ ˆtures obtained from x, An, An−1, ..., A1 be the enhanced STFT features,Ft, Ft−1, ..., F1 

be the cropped images of speakers lips extracted from v of time instance tn, tn−1, ..., t1 

where t is the current time instance and n the is current window frame. Let M 

ˆbe the IBM and M be the estimated IBM. The framework can be represented 

as follows: 

X̂ = f(X) (2) 

K 
ˆ ˆAn = M An (3) 
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J 
where represents the element wise multiplication. 

The DNN, shown in Fig. 4, ingest the noisy STFT features (A1, A2, ..., An) 

and cropped images of speakers lips (F1, F2, ..., Ft) as an input to output a 

multiplicative T-F mask ( M̂n) for the current time instance. The DNN can be 

represented as follows: 

M̂n = g(A1, A2, ..., An, F1, F2, ..., Ft) (4) 

i.e. 

ˆ ˆM1 = g(A1, F1),M2 = g(A1, A2, F1, F2), (5) 

It can be seen that, the model can be used for causal or real-time mask 

estimation as the predicted mask for the current time instance (tn) depends 

only on the past (tn−1, tn−2, ..., tn−j ) and current inputs but not future inputs 

295 (tn+1, tn+2, ..., tn+k). 

The network is trained to minimise the binary cross entropy between the 

ˆMn and Mn. The loss function can be represented as follows: 

NX 
Loss(M̂t,Mt) = − 

1 
Mt · log(M̂t) + (1 − Mt) · log(1 − M̂t) (6)

N 
i=1 

The mathematical formulation for the dilated convolutional network, and 

LSTM is detailed in [38] and [39] respectively· 

300 4.4. Post-processing: Speech Resynthesis 

The model estimates a T-F IBM when a noisy spectrogram and cropped 

lip images are fed. The estimated multiplicative spectral mask is applied to 

the noisy magnitude spectrum. The masked magnitude is then combined with 

the noisy phase to get the enhanced speech using ISTFT. Figure 1 depicts an 

305 overview of speech resynthesis. 

5. Experiments and Results 

We qualitatively and quantitatively evaluated our proposed approach with 

other state-of-the-art A-only and AV SE in real noisy environments and a range 

of synthetic AV corpora. 
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310 5.1. Synthetic AV Corpora 

This section presents the synthetic AV corpora used for training and testing 

of CochleaNet. 

5.1.1. Grid + ChiMe 3 

In our experiments, benchmark Grid corpus [22] is used for the training and 

315 evaluation of the proposed framework. All 33 speakers with 1000 utterances 

each are considered. The sentence format is depicted in Table 1. The Grid 

corpus is randomly mixed with non-stationary noises from 3rd CHiME chal-

lenge (CHiME 3)[20], consisting of bus, cafeteria, street, and pedestrian noises, 

for SNRs ranging [-12, 9] dB with a step size of 3 dB. It is to be noted that, 

320 the trained model is SNR-independent i.e. the utterances at all SNRs were 

combined for training and evaluation. For training, 21000 utterances from 21 

speakers were employed. The model was validated and tested on 4000 and 8000 

utterances from 4 and 8 speakers respectively. It is to be noted that, the exper-

iments are repeated 10 times for different set of train and validation speakers 

325 for statistically significant comparison with other state-of-the-art methods. 

5.1.2. TCD-TIMIT + MUSAN 

For large vocabulary generalisation analysis, we used benchmark TCD-TIMIT [23] 

corpus. Specifically, 5488 utterances from 56 speakers are mixed with randomly 

selected non-speech noises from MUSAN noises [25]. The MUSAN noises in-

330 clude technical noises (e.g. dialtones, fax machine noises etc.) as well as ambient 

sounds (e.g. thunder, wind, footsteps, animal noises etc.). It to be noted that, 

all the 5488 utterances were used as a test set to asses the model performance 

on large vocabulary, speaker and noise independent settings. 

5.1.3. Mandarin AV Corpus + NOISEX-92 

335 For language-independent generalisation testing, a Mandarin dataset [13] 

based on Taiwan Mandarin Hearing in Noise Test (MHINT) with 320 utterances 

is mixed with randomly selected noise from NOISEX-92 [24] consisting of voice 
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babble, factory radio channel and various military noises including fighter jets, 

engine room, operations room, tank and machine gun. 

340 5.2. Data Preprocessing 

5.2.1. Audio Preprocessing 

The audio signals were resampled at 16 kHz and a mono channel is used for 

processing. The resampled audio signal was segmented into N 78 millisecond 

(ms) frames and 17% increment rate to produce 75 fps. A hanning window and 

345 STFT is applied to produce 622-bin magnitude spectrogram. 

5.2.2. Video Preprocessing 

The Grid and TCD-TIMIT corpora are recorded at 25 fps. However, the 

Mandarin dataset [13], recorded at 30 fps, is downsampled to 25 fps using ffm-

peg [40]. A dlib face detector [41] is used to locate the faces in each frame 

350 of a video clip (75 face cropped images assuming 3 second clip recorded at 25 

fps). The speakers lip images are extracted out of the 25 fps faces video using 

a minified dlib [41] model optimised for extracting the lip landmarks. A re-

gion of aspect ratio 1:2 centred at lip-centre is extracted using the lip landmark 

points. The extracted region is resized to 40 pixels x 80 pixels and converted to 

355 a greyscaled image. It is to be noted that, the lip sequences are extracted at 25 

fps and audio features are extracted at 75 VPS. 

5.3. Experimental Setup 

For the AV features fusion and mask estimation, the network is trained us-

ing TensorFlow library and NVIDIA Titan Xp GPUs. A subset of speakers 

360 from Grid ChiME 3 corpus (as described in section 5.1) are used for train-

ing/validation of the neural network and rest of the speakers are used to test 

the performance of the trained neural network in speaker independent scenario 

(25% testing dataset). The preprocessed training set of Grid ChiME 3 corpus 

consists of around 25000 utterances, that are split into 21000 and 4000 utter-

365 ances for training and validation respectively. It is to be noted that, there was 
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no overlap between the speakers and the noises present in the train, validation 

and test set for ensuring the speaker and noise independent criteria. When a 

missing visual frame is encountered a vector of zeros is used in lieu of the lip 

image. The preprocessed dataset consists of cropped lip images and noisy au-

370 dio spectrogram as input and IBM as an output. The network is trained for 

50 epochs using backpropagation with Adam optimiser [42] with learning rate 

0.0003. The learning rate is divided by 2 when the validation error stops re-

ducing for 3 consecutive epochs. Finally, early stopping is used if the validation 

error stops decreasing for 6 consecutive epochs. 

375 5.4. Objective testing on Synthetic mixtures 

In the past, the quality of the speech processing system can only be evaluated 

by conducting subjective listening tests (i.e. by asking listeners to compare 

between different speech systems) or by conducting intelligibility test (where 

a listener writes down the intelligible words and metrics such as word error 

380 rate are used). However, as the size of data increases, conducting a subjective 

listening test take more time and the test results may not represent the actual 

distribution present in the data. Therefore, researchers have proposed methods 

such as PESQ [43], STOI [44], and SI-SDR [45] to computationally approximate 

the subjective listening tests. In this section, the proposed model is compared 

385 with the state-of-the-art using the following objective metrics. 

5.4.1. Perceptual Evaluation of Speech quality (PESQ) comparison 

PESQ [43] is one of the most commonly used objective assessment met-

ric to predict the subjective listening test scores in the SE literature and has 

shown to correlate well with the subjective listening tests [46]. PESQ is com-

390 puted as a linear combination of the average disturbance value and the average 

asymmetrical disturbance values between a reference signal and modified sig-

nal. However, PESQ only measures the effect of one-way speech distortion and 

noise speech quality, and the effect related to two-way interaction including 

loudness, loss, delay, sidetone, and echo are not reflected in the PESQ score. 
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395 PESQ score ranges from [−0.50, 4.50], indicating the minimum and maximum 

possible reconstructed speech quality. The PESQ scores for A-only and AV 

CochleaNet, SEGAN, SS, and LMMSE with Grid + ChiME 3, TCD TIMIT 

+ MUSAN and Hou et al [13] + NOISEX-92 for different SNRs are presented 

in Table 4, 5, 6 respectively. The variety of datasets ensure speaker and noise 

400 independent criteria, large vocabulary corpus as well as language-independent 

scenario. It is to be noted that, the model trained on Grid + ChiME 3 cor-

pus is used for evaluation. It can be seen that, at low SNRs, AV CochleaNet 

and A-only CochleaNet outperformed SS [47], LMMSE [48], and SEGAN [49] 

based SE methods. In addition, AV perform better than A-only CochleaNet 

405 especially for low SNR ranges (i.e. SNR < 0 dB), where AV CochleaNet model 

achieved the 1.98, 2.18, and 2.33 PESQ score at SNR levels, of -12dB, -9dB, and 

-6 dB respectively, as compared to 1.85, 2.05, and 2.24 PESQ score achieved 

by A-only CochleaNet model for Grid ChiME 3 speaker independent test set. 

However, at high SNRs (i.e. SNR >= 0 dB) AV slightly outperformed A-only 

410 mask estimation model, where AV CochleaNet achieved 2.58, 2.69, and 2.78 

PESQ score at SNR levels, of 0 dB, 3 dB, and 6 dB respectively, as compared 

to 2.52, 2.63, and 2.73 achieved by A-only CochleaNet model for Grid ChiME 

3 speaker independent test set. The overall PESQ improvement as compared 

to noisy audio is depicted in Figure 5, where AV CochleaNet outperformed the 

415 A-only CochleaNet, and achieved near optimal performance (close to an ideal 

IBM) for Grid ChiME 3 corpus. 

5.4.2. Short Term Objective Intelligibility (STOI) comparison 

STOI is a benchmark objective evaluation metric used for speech intelligi-

bility that shows a high correlation with subjective listening test scores [44]. 

420 The correlation of short-time temporal envelopes between the clean and mod-

ified speech is calculated in STOI with values ranging from [0, 1], and higher 

value indicates better intelligibility. STOI decomposes signals into T-F regions 

followed by energy clipping and normalization. The intelligibility predicts are 

based on cross-correlations between processed and signal across different T-
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Table 4: PESQ scores for Grid ChiME 3 speaker independent test set computed from the 

resynthesised speech using SEGAN+ [49], SS [47], LMMSE [48], Audio-only (A) CochleaNet, 

Audio-Visual (AV) CochleaNet, and Oracle IBM. The reference PESQ for the unprocessed 

(Noisy) signal is included for relative comparison. It is to be noted that, the mean and 

variance is calculated using the model trained on 10 different shuffled splits of the GRID 

CHiME3 corpus. 

dB -12 -9 -6 -3 

Noisy 1.30 ± 0.015 1.41 ± 0.014 1.54 ± 0.013 1.70 ± 0.016 

SEGAN+ 0.88 ± 0.012 1.05 ± 0.011 1.45 ± 0.011 1.80 ± 0.012 

SS 1.17 ± 0.011 1.23 ± 0.013 1.40 ± 0.014 1.60 ± 0.012 

LMMSE 1.38 ± 0.014 1.53 ± 0.014 1.73 ± 0.012 1.96 ± 0.015 

Proposed A 1.85 ± 0.011 2.05 ± 0.010 2.24 ± 0.011 2.39 ± 0.012 

Proposed AV 1.98 ± 0.012 2.18 ± 0.009 2.33 ± 0.012 2.46 ± 0.010 

Oracle IBM 2.05 ± 0.007 2.22 ± 0.007 2.33 ± 0.009 2.47 ± 0.008 

dB 0 3 6 9 

Noisy 1.87 ± 0.014 2.07 ± 0.012 2.27 ± 0.011 2.45 ± 0.010 

SEGAN+ 2.12 ± 0.011 2.37 ± 0.010 2.58 ± 0.010 2.76 ± 0.011 

SS 1.82 ± 0.012 2.08 ± 0.013 2.34 ± 0.011 2.58 ± 0.010 

LMMSE 2.17 ± 0.013 2.39 ± 0.011 2.58 ± 0.012 2.75 ± 0.011 

Proposed A 2.52 ± 0.010 2.63 ± 0.011 2.73 ± 0.010 2.81 ± 0.009 

Proposed AV 2.58 ± 0.009 2.69 ± 0.009 2.78 ± 0.008 2.85 ± 0.008 

Oracle IBM 2.58 ± 0.007 2.70 ± 0.006 2.82 ± 0.006 2.90 ± 0.006 

425 F cells. The STOI scores for A-only and AV CochleaNet, SEGAN, SS, and 

LMMSE with Grid + ChiME 3, TCD TIMIT + MUSAN and Hou et al [13] 

+ NOISEX-92 for different SNRs are presented in Fig 6. It can be seen that, 

at low SNRs, AV CochleaNet and A-only CochleaNet outperformed SS [47], 

LMMSE [48], SEGAN [49] based SE methods. In addition, AV performs better 

430 than A-only model especially for low SNR ranges (i.e. SNR < 0 dB ), where AV 

CochleaNet model achieved the STOI scores of 0.521, 0.560, and 0.607 at SNR 

levels, of -12dB, -9dB, and -6 dB respectively, as compared to 0.483, 0.513, and 
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435 

Table 5: PESQ scores (µ ± σ) for large vocabulary TCD-TIMIT + MUSAN AV dataset 

computed from the resynthesised speech using SEGAN+ [49], SS [47], LMMSE [48], Audio-

only (A) CochleaNet, Audio-Visual (AV) CochleaNet, and Oracle IBM. The reference PESQ 

for the unprocessed (Noisy) signal is included for relative comparison. It is to be noted that, 

the mean and variance is calculated using the model trained on 10 different shuffled splits of 

the GRID CHiME3 corpus. 

dB -12 -9 -6 -3 

Noisy 1.46 ± 0.015 1.56 ± 0.014 1.64 ± 0.013 1.66 ± 0.015 

SEGAN+ 1.05 ± 0.012 1.13 ± 0.014 1.16 ± 0.013 1.25 ± 0.012 

SS 1.43 ± 0.013 1.44 ± 0.013 1.61 ± 0.014 1.64 ± 0.015 

LMMSE 1.61 ± 0.012 1.73 ± 0.013 1.75 ± 0.013 1.83 ± 0.014 

Proposed A 1.81 ± 0.011 1.91 ± 0.012 2.04 ± 0.012 2.14 ± 0.013 

Proposed AV 1.88 ± 0.012 1.98 ± 0.011 2.11 ± 0.010 2.15 ± 0.011 

Oracle IBM 2.55 ± 0.008 2.56 ± 0.007 2.68 ± 0.008 2.73 ± 0.009 

dB 0 3 6 9 

Noisy 2.23 ± 0.012 2.34 ± 0.015 2.44 ± 0.013 2.51 ± 0.011 

SEGAN+ 1.76 ± 0.011 1.88 ± 0.012 2.05 ± 0.011 2.15 ± 0.012 

SS 2.03 ± 0.012 2.14 ± 0.012 2.25 ± 0.011 2.33 ± 0.012 

LMMSE 2.34 ± 0.013 2.43 ± 0.013 2.55 ± 0.012 2.65 ± 0.011 

Proposed A 2.35 ± 0.010 2.46 ± 0.009 2.51 ± 0.010 2.56 ± 0.010 

Proposed AV 2.45 ± 0.011 2.55 ± 0.010 2.64 ± 0.011 2.65 ± 0.009 

Oracle IBM 2.81 ± 0.007 2.84 ± 0.008 2.86 ± 0.007 2.94 ± 0.006 

0.544 achieved by A-only CochleaNet model for Hou et al [13] + NOISEX-92 

language-independent test set. However, at high SNRs (i.e. SNR >= 0 dB) 

AV slightly outperformed A-only mask estimation model, where AV CochleaNet 

achieved STOI scores of 0.719, 0.739, and 0.776 at SNR levels, of 0 dB, 3 dB, 

and 6 dB respectively, as compared to 0.665, 0.701, and 0.752 achieved by A-

only CochleaNet model for Hou et al [13] + NOISEX-92 language-independent 

test set. 
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Table 6: PESQ scores (µ ± σ) for Hou et al. [13] + NOISEX92 AV language-independent 

dataset computed from the resynthesised speech using SEGAN+ [49], SS [47], LMMSE [48], 

Audio-only (A) CochleaNet, Audio-Visual (AV) CochleaNet, and Oracle IBM. The reference 

PESQ for the unprocessed (Noisy) signal is included for relative comparison. It is to be noted 

that, the mean and variance is calculated using the model trained on 10 different shuffled 

splits of the GRID CHiME3 corpus. 

dB -12 -9 -6 -3 

Noisy 1.04 ± 0.016 1.25 ± 0.018 1.28 ± 0.017 1.31 ± 0.014 

SEGAN+ 0.63 ± 0.014 1.06 ± 0.015 1.36 ± 0.014 1.34 ± 0.016 

SS 1.21 ± 0.015 1.44 ± 0.014 1.38 ± 0.014 1.41 ± 0.013 

LMMSE 1.14 ± 0.014 1.31 ± 0.014 1.16 ± 0.014 1.45 ± 0.013 

Proposed A 1.26 ± 0.014 1.44 ± 0.012 1.56 ± 0.011 1.53 ± 0.012 

Proposed AV 1.34 ± 0.012 1.53 ± 0.013 1.54 ± 0.012 1.56 ± 0.011 

Oracle IBM 1.55 ± 0.011 1.68 ± 0.0121 1.75 ± 0.011 1.71 ± 0.010 

dB 0 3 6 9 

Noisy 1.41 ± 0.014 1.48 ± 0.013 1.71 ± 0.014 1.64 ± 0.012 

SEGAN+ 1.26 ± 0.013 1.23 ± 0.012 1.36 ± 0.013 1.34 ± 0.012 

SS 1.41 ± 0.014 1.44 ± 0.010 1.61 ± 0.014 1.44 ± 0.011 

LMMSE 1.58 ± 0.012 1.66 ± 0.012 1.71 ± 0.012 1.74 ± 0.012 

Proposed A 1.66 ± 0.011 1.74 ± 0.009 1.78 ± 0.008 1.74 ± 0.008 

Proposed AV 1.71 ± 0.012 1.74 ± 0.010 1.75 ± 0.009 1.76 ± 0.009 

Oracle IBM 1.83 ± 0.010 1.86 ± 0.010 1.94 ± 0.009 1.85 ± 0.008 

440 5.4.3. Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) comparison 

SI-SDR [45] is slightly modified scale invariant version of SDR. SDR is one of 

the standard speech separation evaluation metrics that measure the amount of 

distortion introduced by the separated signal and is defined as the ratio between 

clean signal energy and distortion energy. The higher SDR values indicate 

445 better speech separation performance. The SI-SDR scores for A-only and AV 

CochleaNet, SEGAN, SS, and LMMSE with Grid + ChiME 3, TCD TIMIT 

+ MUSAN and Hou et al [13] + NOISEX-92 for different SNRs are presented 
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Figure 5: PESQ scores for (a) Grid + ChiME3 (b) TCD + MUSAN (c) Hou et al. [13] + 

NOISEx-92 AV dataset computed from the resynthesised speech using SEGAN+ [49], SS [47], 

LMMSE [48], Audio-only (A) CochleaNet, Audio-Visual (AV) CochleaNet, and Oracle IBM. 

The reference PESQ for the unprocessed (Noisy) signal is included for relative comparison. 

in Fig 7 respectively. It can be seen that, at low SNRs, AV CochleaNet and 

A-only CochleaNet outperformed SS [47], LMMSE [48], SEGAN [49] based SE 

methods. In addition, AV performs better than A-only mask estimation model 
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Figure 6: STOI scores for (a) Grid + ChiME3 (b) TCD + MUSAN (c) Hou et al. [13] + 

NOISEX-92 AV dataset computed from the resynthesised speech using SEGAN+ [49], SS [47], 

LMMSE [48], Audio-only (A) CochleaNet, Audio-Visual (AV) CochleaNet, and Oracle IBM. 

The reference STOI for the unprocessed (Noisy) signal is included for relative comparison. 

especially for low SNR ranges (i.e. SNR < 0 dB ), where AV CochleaNet model 

achieved the SI-SDR scores of 3.62, 4.80, and 5.41 at SNR levels, of -12dB, -9dB, 
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and -6 dB respectively, as compared to 3.04, 4.41, and 5.29 achieved by A-only 

CochleaNet model for TCD-TIMIT + MUSAN speaker independent and large 

455 vocabulary test set. However, at high SNRs (i.e. SNR >= 0 dB) AV slightly 

outperformed A-only mask estimation model, where AV CochleaNet achieved 

SI-SDR scores of 7.77, 8.64, and 9.31 at SNR levels, of 0 dB, 3 dB and 6 dB 

respectively, as compared to 7.76, 8.62, and 9.27 achieved by A-only CochleaNet 

model for TCD-TIMIT + MUSAN speaker independent and large vocabulary 

460 test set. 

Figure 9 presents the noisy, clean spectrogram and spectrograms for the 

reconstructed speech signal of a random utterance from GRID + ChiME 3 AV 

corpus using SS, LMMSE, SEGAN+, A-only CochleaNet, AV CochleaNet and 

Oracle IBM. It is to be noted that, the speech is completely swamped with 

465 background noise and the performance of CochleaNet models can be seen (i.e. 

close to the Oracle IBM). 

5.5. Subjective testing on ASPIRE Corpus 

In the literature, the significant number of objective metrics [43, 44, 45] 

have been proposed to computationally approximate the subjective listening 

470 tests. However, the only way to quantify the subjective quality is to ask listen-

ers for their opinions. We used MUSHRA-style [50] listening test method for 

subjective evaluation, using enhanced speech from real noisy ASPIRE corpus 

(section 3). A total of 20 native English speakers with normal-hearing partici-

pated in the listening test. The individual test consist of 20 randomly selected 

475 utterances drawn from the ASPIRE corpus. The first two screens were used to 

train participants to adjust the volume and to familiarise with the screen and 

the task. In each screen, the participants were asked to score the quality of 

each audio sample, on a scale from [0, 100], generated by each SE model for the 

same sentence. The range from [80, 100] is described as “excellent”, from [60, 80] 

480 as “good”, from [40, 60] as “fair”, from [20, 40] as “poor”, and from [0, 20] as 

“bad”. Noisy speech was included in the test therefore that participants would 

have a reference for the degraded speech as well as for checking if participants 
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Figure 7: SI-SDR scores for (a) Grid + ChiME3 (b) TCD + MUSAN (c) Hou et al. [13] + 

NOISEX-92 AV dataset computed from the resynthesised speech using SEGAN+ [49], SS [47], 

LMMSE [48], Audio-only (A) CochleaNet, Audio-Visual (AV) CochleaNet, and Oracle IBM. 

The reference SI-SDR for the unprocessed (Noisy) signal is included for relative comparison. 

go through the material. 

The times required to complete each screen were also recorded and used 
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Figure 8: Result of MUSHRA listening test for ASPIRE corpus for the reconstructed speech 

signal using SS [47], LMMSE [48], SEGAN+ [49], A-only CochleaNet, AV CochleaNet. The 

reference MUSHRA score for the unprocessed (Noisy) signal is included for relative compari-

son. 

485 for removing any outliers. We evaluated five SE models including SEAGN, SS, 

LMMSE, A-only CochleaNet and AV CochleaNet. Figure 8 shows the boxplot 

of listeners responses in terms of the rank order of systems for the ASPIRE 

corpus. The listening test results show that the superior performance of our 

AV CochleaNet, over A-only CochleaNet, SEGAN, spectral subtraction (SS), 

490 and log-minimum mean square error (LMMSE) based SE methods. The results 

demonstrate the capability of CochleaNet to deal with the reverberation caused 

by multiple competing background sources observed in a real-world noisy envi-

ronment, by exploiting the audio and visual cues. In addition, the results show 

that an AV model trained on synthetic additive mixtures generalise well real 

495 noisy corpus. 

5.6. Processing Latency 

The processing latency for a listening device (generally measures in millisec-

onds) such as hearing aids is defined as the difference between the time of the 

original speech and the time when the enhanced speech leaves the device. If 
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500 the processing latency is more than 10ms, the current speech and the enhanced 

speech will result in an echo effect. In addition, such delay results in incor-

rect synchronisation of the auditory information with visual information and 

interfere in speech understanding. 

The processing latency of the proposed model (25ms) is dependent upon 

505 the window shift of the Fourier transform (13ms), STFT latency (1ms), visual 

preprocessing latency for cropping lip images (1ms), CochleaNet model predic-

tion time per window size (9ms), and ISTFT latency (1ms). The above values 

are calculated with 3.4 GHz Intel i7 processor and 16 GB RAM. It can be seen 

that, the main bottleneck for the deployment of the proposed model in real-time 

510 application such as hearing aids is the window size and window shift used for 

Fourier transform as well as processing delay of the model itself. The window 

size and model complexity can be further optimised to use the model in listening 

devices. In addition, the Fourier transform delays can be removed if the model 

directly ingests the time domain noisy speech signal. However, the model can be 

515 used without modification in applications such as telephone/video conferencing, 

noise-robust speech recognition systems etc. 

5.7. Additional Analysis 

Effect of occluded visual information. The model is trained and evaluated on a 

professionally recorded corpus that ensured none of the visual frames consists 

520 of occluded lip images (except a small number of Grid corpus utterances where 

visuals are absent). However, in real life scenarios specifically, when the source 

and the target is non-stationary the model needs to be robust against the miss-

ing visual information. Therefore, to experimentally evaluate the trained AV 

CochleaNet behaviour in such conditions we randomly replaced a percentage of 

525 lip images with a blank visual frame. The results for lip occlusion is depicted in 

Figure 10. It can be seen that, for both -9 dB and -12 dB, as the visual occlusion 

increases the PESQ score initially remains constant and after 20% occlusion lin-

early starts decreasing. It is worth mentioning that, AV model performs similar 

to the A-only model when visuals are completely absent even though the model 
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Figure 9: Spectrogram of a randomly enhanced -6 dB utterance from GRID + ChiME3 

Speaker independent test set. It can be seen that A-only, and AV CochleaNet outperformed 

SS, LMMSE and SEGAN based enhancement. It is to be noted that, AV CochleaNet recovered 

some frequency components better than A-only CochleaNet. 

530 has not encountered such situation during training. 

Phoneme level comparison of audio-only and audio-visual CochleaNet. It is well 

known in the literature that, visual information help disambiguate the phono-

logical ambiguity. In addition, some phonemes such as /p/ are visually distin-

guishable and phonemes such as /g/ cannot be visually distinguished. However, 

535 the relationship between the visually distinguishable phonemes and the AV SE 
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Table 1

m12 m9

100 1.85764 2.04029

90 1.86977 2.047

80 1.87936 2.056

70 1.89285 2.074

60 1.90069 2.088

50 1.92276 2.108

40 1.9334 2.122
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Figure 10: PESQ scores for different percentage of masked lip images 

performance is not known. Therefore, we conducted comparative listening tests 

with 3 listeners and 1000 random enhanced utterances from Grid CHiME 3 

speaker independent test set to empirically identify if there is a relation between 

the visually distinguishable phonemes and the phonemes that AV CochleaNet 

540 can enhance better than A-only CochleaNet. The listening tests revel that AV 

model enhanced the /r/, /p/, /l/, /w/, /EH1/, /AE1/, /IY1/, /EY1/, /AA1/ 

and /OW1/ phonemes better than A-only model and the AV performance on 

phoneme such as /h/, /g/ and /k/ was similar to A-only performance. This 

confirmed the hypothesis that there is a direct relation between visually distin-

545 guishable phonemes and the phonemes that AV model works better on. 

Comparison of audio-only and audio-visual CochleaNet in silent speech regions. 

The superior performance of AV CochleaNet as compared to A-only CochleaNet 

could be because of the visual cues, specifically, the closed lip, could give extra 

information to AV model in silent speech regions. In ordered to verify this hy-

550 pothesis, we calculated the mean squared error (MSE) between the predicted 

masks and the IBM in the silent speech regions. The A-only model achieved 

MSE of 0.0123 as compared to the AV that achieved MSE of 0.0108. This 
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confirms the aforementioned hypothesis, however further analysis is needed to 

visualise the convolutional receptive fields and to check if a particular part of 

555 the model is active when the speaker is silent. Figure 11 presents the noisy 

spectrogram and spectrograms for the reconstructed speech signal of a ran-

dom utterance from TCD-TIMIT corpus using SS, LMMSE, SEGAN+, A-only 

CochleaNet, AV CochleaNet. It can be seen that, the speech is completely 

swamped with background noise and the A-only and AV CochleaNet managed 

560 to suppress the noise dominant regions and speech dominant regions as com-

pared to SS, LMMSE and SEGAN+. It can be seen that, in silent speech 

regions, AV CochleaNet outperformed A-only CochleaNet. 

The main limitation with the proposed work is that: (1) the process of IBM 

based SE ignore the phase spectrum that leads to invalid STFT problem [18] (2) 

565 the model cannot separate the overlapping speech if more than one speaker is 

speaking simultaneously as the model is not trained with such mixed AV corpora 

(3) the ASPIRE corpus consists of only three speakers recorded in controlled 

real noisy environments with stationary speaker-listener setting and more chal-

lenging non-stationary real noisy corpora are required to assess the robustness 

570 of the model (4) the proposed model works only on a single channel audio and 

cannot exploit the binaural nature of speech we experience everyday (5) extract-

ing the visual input (i.e. lip image) is still an open challenge for deployment of 

AV models as imperfections such as occlusion, poor lighting, head movements 

etc. need to be addressed. However, the aforementioned experiments on the 

575 effect of occluded visual information confirm that even if the visuals are absent 

the performance of the AV model is similar to the A-only model. 

6. Conclusion 

This paper presented a language, noise and speaker independent AV DNN 

model for causal SE that contextually exploits the audio and visual cues, inde-

580 pendent of the SNR, to estimate the spectral IBM and enhance speech. In addi-
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Figure 11: Spectrogram of a randomly enhanced utterance from ASPIRE corpus. It is to 

be noted that, AV CochleaNet outperforms A-only CochleaNet, specifically in silent speech 

regions where visual cues (lip position) help identify if the speaker is talking or not. 

tion, we presented a novel AV corpus, ASPIRE1, consisting of speech recorded 

in real noisy environments such as cafeteria and restaurant to evaluate the pro-

posed model. The corpus can be used as a resource by speech community to 

evaluate AV SE models. We perform extensive experiments taking into consid-

585 eration the noise, speaker and language-independent criteria. The performance 

evaluation in terms of objective metrics (PESQ, SI-SDR, and ESTOI) and sub-

jective MUSHRA listening tests revealed significant improvement of our pro-

posed AV CochleaNet as compared to the A-only CochleaNet, state-of-the-art 

SE (including SS, LMMSE) approaches as well as DNN based SE approaches 

590 (including SEGAN). The simulation results have validated the phenomena of 

1ASPIRE Corpus, enhanced speech samples, and additional supplementary material is 

available on the project website: https://cochleanet.github.io 
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more effective visual cues at low SNRs, less effective visual cues at high SNRs. 

The visual occlusion study depicts that the model performance initially remains 

constant till 20% of the visuals are removed and after 20% occlusion the per-

formance linearly decreases as the number of occluded frame increases. The 

595 empirical study to identify the role visual cues play in superior performance 

of AV model as compared to A-only model show that, there is a high correla-

tion between visually distinguishable phonemes and the AV model performance. 

Moreover, the study shows that AV model significantly outperforms A-only in 

silent speech region because it is relatively easier to audio-visually distinguish if 

600 a speaker is speaking or not as compared to only using only audio input. In fu-

ture, we intend to investigate the generalisation capability of our proposed DNN 

model with other more challenging conversational real noisy AV corpora as well 

as address issue of imperfect visual information. Ongoing and future work also 

addresses the real time implementation challenges and privacy concerns with 

605 multimodal AV hearing aids. 
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