
Injecting Shortcuts for Faster Running Java Code
Alexander E.I. Brownlee

Computing Science and Mathematics
University of Stirling

Scotland, UK
sbr@cs.stir.ac.uk

Justyna Petke
Department of Computer Science

University College London
London, UK

j.petke@ucl.ac.uk

Anna F. Rasburn
Computing Science and Mathematics

University of Stirling
Scotland, UK

Abstract—Genetic Improvement of software applies search
methods to existing software to improve the target program
in some way. Impressive results have been achieved, including
substantial speedups, using simple operations that replace, swap
and delete lines or statements within the code. Often this is
achieved by specialising code, removing parts that are unnec-
essary for particular use-cases. Previous work has shown that
there is a great deal of potential in targeting more specialised
operations that modify the code to achieve the same functionality
in a different way.

We propose six new edit types for Genetic Improvement
of Java software, based on the insertion of break, continue
and return statements. The idea is to add shortcuts that allow
parts of the program to be skipped in order to speed it up.
10000 randomly-generated instances of each edit were applied
to three open-source applications taken from GitHub. The key
findings are: (1) compilation rates for inserted statements without
surrounding “if” statements are 1.5–18.3%; (2) edits where the
insert statement is embedded within an “if” have compilation
rates of 3.2–55.8%; (3) of those that compiled, all 6 edits have a
high rate of passing tests (Neutral Variant Rate), >60% in all but
one case, and so have the potential to be performance improving
edits. Finally, a preliminary experiment based on local search
shows how these edits might be used in practice.

Index Terms—Genetic Improvement, GI, Search-Based Soft-
ware Engineering, SBSE

I. INTRODUCTION

Genetic Improvement of software [1] (GI) is a rapidly ex-
panding area of research. GI uses automated search to improve
existing software. It has been used for the purpose of bug
fixing (e.g. [2]), runtime improvement (e.g. [3]), optimisation
of energy (e.g. [4]) and memory consumption (e.g. [5]), among
others. Changes evolved by GI have been incorporated into
development [6] and GI-based repair has been incorporated
into software development process [7].

Most of these impressive results have been achieved by
making relatively simple modifications or edits to source code:
some combinations of moving, copying or deleting statements
or lines. This is rooted in the plastic surgery hypothesis [8],
that shows the building blocks of the most common human-
made patches to code were already present elsewhere in the
program.

In the field of automated program repair (APR) there has
been more work devoted to finding more efficient mutation
operators. In particular, templates have been used, that have
been either based on human-evolved patches [9], [10] or
abstracted from fix operations at the abstract syntax tree

level [11]. More fine-grained operators have also been tried,
for example, at the experession level [7], or custom ones [12].

Much less work has been devoted to operators for improve-
ment of non-functional properties [13]. The only excpetion
being work on exchanging Java Collections [5], [14] and tun-
ing of parameters embedded in code (so-called deep parameter
tuning [15]).

Nevertheless, both within the GI and APR literature delete
seems to be one of the most successful operators. This suggests
that in real-world code there are often sections of redundant
code, particularly when limiting runs to specific distribu-
tions of input data or use-cases. A related field, approximate
computing [16], attempts to find trade-offs between accuracy
and resource consumption, underpinned by the idea that not
every line or statement needs executed every time. This has
led to approaches such as loop perforation [17] (skipping
some loop iterations). This background motivates finding other
approaches to create shortcuts in code: new ways to change
control flow while retaining functionality with respect to a
software oracle (the original working program) or a test
suite that captures the intended behaviour. Edits that insert
a return, continue or break statement represent another
way to skip sections of the code.

A recent study [18] explored in more depth the concept of
neutral program variants; i.e. implementations of a program
that are equivalent with respect to the test suite. They suggest
that where there are many neutral variants, there is a greater
chance of finding functional versions of the program that offer
some kind of improvement over the original (such as decreased
run time). They found that edits that add return statements
at random locations rarely produced neutral variants, but edits
adding if statements produced a high number of neutral
variants (perhaps to be expected as the condition means they
do not fire as often). This leads us to consider whether
edits that insert break statements within if statements will
represent a sweet spot: more likely to produce neutral variants
and more likely to offer some kind of improvement.

Thus, the goal of this paper is to propose and test new
edits for GI of Java code that add early break, continue
or return statements, within and without surrounding if

statements. These edits are tested on three popular open source
projects to determine how brittle the code is with respect to
these edits, and whether they can realise any improvements to
the code in terms of run time.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

The edits are implemented and tested in the Gin frame-
work [19], [20]. Gin is a lightweight toolkit for experimenta-
tion in GI for Java projects. It provides utilities for: parsing
and manipulating Java source code as lines of text or as an
abstract syntax tree (using JavaParser); modifying, compiling
and running test suites of target Java projects implemented
using either Gradle or Maven build tools; profiling of a target
project to identify hotspots; and sampling the space of possible
edits with respect to a given project. The edits proposed in this
paper will be made publicly available via the Gin project on
GitHub at https://github.com/gintool/gin.

II. OPERATORS

A. Basic approach

There are six edit operators. Each is created against a target
class C and a target method M within C. For each, a block
statement s and an insertion point p within s are selected
uniformly at random from all block statements in M. One of
the six statements from the list below is then inserted at p.
The six statements available are:

1) B: break;
2) C: continue;
3) R: return;
4) Bif : if (a)break;
5) Cif : if (a)continue;
6) Rif : if (a)return;

In the above, a can take one of two forms. An in-scope
primitive variable v is chosen at random following the pro-
cedure noted below. If v is of type boolean then a is one
of either v or !v (chosen at random). Otherwise, if v is of
any other primitive type (i.e. a number or character) then a
takes the form v # 0, where, # is one of the binary operators
<, <=, ==, >=, > (again chosen at random).

For simplicity, no attempt is made to detect a variable for
the inserted return statements, or a label for break/continue.
Neither is an attempt made to target R and Rif at only
void methods, or break / continue at blocks where these
are applicable. Of course, this will result in more failed
compilations, but edits where this is the case can quickly be
discarded. (The more problematic case is edits that compile
but cause the tests to fail, as this requires the time cost of
running the test suite).

B. Detecting local variables

Gin makes use of JavaParser1 to construct an Abstract
Syntax Tree (AST) representing the target source code. We
adopt the following approach to find in-scope variables for
a given target insertion point, a statement node s in the
AST. (The inserted statement will be immediately before the
insertion point). From s, we walk recursively back up the
JavaParser AST, looking for any variable, field or parameter
declarations, until we reach the containing class of s. The
procedure is replicated in Figure 1.

1http://www.javaparser.org

{Input: Insertion point s}
n← s
V ← ∅
while n.hasParent() do

p← p.getParent()
for all c← p.getChildNodes() do

if c == n then
break

else
if c.isV ariableDeclarationExpr() or
c.isParameter() or c.isF ieldDeclaration()
then

if c.isPrimitiveType() then
V ← c

end if
end if

end if
end for
n← p

end while
return V

Fig. 1: Algorithm to find a list of in-scope variables V at
insertion point represented by AST statement node s

III. EXPERIMENTS

In our experiments, we applied the edits to three publicly
available projects from GitHub:

• jCodec (0.2.3)2 (135k LoC)
• spark (2.7.2)3 (15k LoC)
• spatial4j (0.7)4 (14k LoC)

Gin retrieves the unit tests specified by the Maven build
script for the target project. In this case, we have run Gin’s
profiler, a wrapper for the hprof tool5, to determine the
hot methods and the unit tests that make calls to them (this
is achieved by sampling the call stack as the unit tests are
running; so it not just limited to direct calls from the unit
tests). Gin compiles the updated code, runs each unit test, and
for each test, retrieves the test result (pass with time taken or
fail with failure reason).

Gin’s profiler tool was applied to the test suite for the test
applications. The full profiler output (list of target methods,
tests calling them, and count of the number of times the
profiler detected them on the call stack) is available at the URL
provided at the end of the paper. The total number of target
methods found for each project were: jCodec: 477; spark: 56;
spatial4j: 77.

We also report the neutral variant rates (NVRs) as defined
in Equation 1.

2https://github.com/jcodec/jcodec
3https://github.com/perwendel/spark
4https://github.com/locationtech/spatial4j
5https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

https://github.com/gintool/gin
http://www.javaparser.org
https://github.com/jcodec/jcodec
https://github.com/perwendel/spark
https://github.com/locationtech/spatial4j
https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

NV R =
#ProgramV ariantsPassingAllTests

#ProgramV ariantsThatCompile
(1)

Our experiments followed three stages, outlined below.

A. Enumeration

We begin with an enumeration: for every possible insertion
point in the target methods identified by the profile, we
apply each of the three new edits B (insert break;), C(insert
continue;) and R (insert return;). The resulting three
variants of the code are then compiled, and if this is successful,
the unit tests that exercise the respective target methods are
called. We report the number of edits generated for each
project, as well as the fraction of edits that compiled, and
the fraction of those that then also passed the tests.

The other three proposed new edits, Bif , Cif and Rif , were
omitted from this stage because the possible conditions (choice
of variable, and choice of comparison) meant the search space
was excessively large for an exhaustive exploration.

B. Random Sampling

For each of the 6 edit types, 10 000 instances of the edit
were sampled uniformly at random, over the space of all target
methods identified by the profiler. Again, these were compiled
and run on the corresponding unit tests, and we report the
number of edits generated for each project, as well as the
fraction of edits that compiled, and the fraction of those that
then also passed the tests.

C. Local Search

As a proof-of-concept, once the sampling was completed,
we were able to identify target methods with a relatively high
neutral variant rate. Such regions were termed plastic in [18];
parts of the program where changes are less likely to cause
test failures and so are more amenable to editing.

We rank-ordered the target methods according to the results
from the profiler (i.e., most often called during testing, and
thus potentially fruitful areas to achieve speed up). From
this list, we omitted any target methods where no neutral
variants were generated during the sampling process (i.e. those
methods where edits tended to break something). From the
resulting list, we then took the top 5 methods and applied a
simple hill-climbing algorithm.

The hill-climber starts with an empty patch. At each itera-
tion it chooses at random to either remove an edit chosen at
random from the patch, or add an edit to the patch, sampled
at random from the potential insertion points and the 6 edit
types. The resulting patch is then evaluated by compiling,
then running it 10 times on the relevant unit tests. If the
modified code fails to compile, or the average run time does
not represent an improvement, it is discarded. Otherwise, the
patch is retained. The procedure repeats until 1000 patches
have been evaluated.

A warm-up run of 10 repeats of the test suite for the target
program was carried out before the local search runs as an

TABLE I: Results of enumeration experiments. Each type of
edit was applied to all possible insertion points in the target
methods; count gives the total number of edits applied.

Project Edit Count #Compile CR% #Passing NVR%

jCodec
B 6604 555 8.4 209 37.7
C 6604 555 8.4 527 95.0
R 6604 1045 15.8 678 64.9

spark
B 694 29 4.2 25 86.2
C 694 29 4.2 28 96.6
R 694 64 9.2 57 89.1

spatial4j
B 723 19 2.6 10 52.6
C 723 19 2.6 16 84.2
R 723 44 6.1 40 90.9

attempt to reduce uncertainty in the run times due to memory
caching.

IV. RESULTS: ENUMERATION

The results of the enumeration experiment are given in
Table I and summarised in Figures 2 and 3. The compilation
rates for the 3 simpler edits (B, C and R) are low across all
projects, never exceeding 16%. R is consistently higher than
the other two; given that a return can appear anywhere within
a void method’s body whereas break and continue have
a narrower range of possible locations, this seems reasonable.
The low compilation rates can also be partly attributed to Java
failing to compile where ‘unreachable code’ is detected, such
as after a return statement.

There is no surprise that compilation rates for B and C
are the same: the only situation where break is allowed, and
continue is not, is in a switch statement (and none of the
target methods contain switches).

Of the edits that compiled successfully, a large fraction
passed the unit tests (in fact, the majority for all except B in
jCodec). This is similar to the neutral variant rates in previous
work [18], where for the three traditional operators (including
delete) NVRs were between 15.7% and 30%, while for the
three proposed operators in the work (i.e., loop flip, add
method invocation and swap subtype), the rates were

between 58% and 73%.
These results show that there is some promise in edits

that insert break, continue and return statements; where
compilable code results from their insertion, it seems likely to
still pass the tests.

V. RESULTS: SAMPLING

The results for the sampling experiment are given in Ta-
ble II. As there are 10 000 edits of each type, there is some
oversampling of the space (especially for the three simpler
edits where the full space is less than this number). The
number of unique edits among the 10 000 of each type is given
in the table. The figures for #Compile and #Passing, and the
corresponding percentages, are with respect to the full 10 000.
Note that the figures for break and continue edits are not
quite equal here (compared to the enumeration results) due to
random sampling variation.

0

5

10

15

20

Break

Continue

Return

Edit Type

%

(a) jCodec

0

5

10

15

20

Break

Continue

Return

Edit Type

%

(b) spark

0

5

10

15

20

Break

Continue

Return

Edit Type

%

(c) spatial4j

Fig. 2: Enumeration: % of edits that compiled

0

25

50

75

100

Break

Continue

Return

Edit Type

%

(a) jCodec

0

25

50

75

100

Break

Continue

Return

Edit Type

%

(b) spark

0

25

50

75

100

Break

Continue

Return

Edit Type

%

(c) spatial4j

Fig. 3: Enumeration:% of edits that produce neutral variants;
i.e., those that compiled that then passed all unit tests

0

20

40

60

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(a) jCodec

0

20

40

60

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(b) spark

0

20

40

60

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(c) spatial4j

Fig. 4: % of 10 000 edits of each type that compiled

0

25

50

75

100

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(a) jCodec

0

25

50

75

100

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(b) spark

0

25

50

75

100

Break

BreakW
ithIf

Continue

ContinueW
ithIf

Return

ReturnW
ithIf

Edit Type

%

(c) spatial4j

Fig. 5: Neutral Variant Rate: % of edits that compiled that
passed all unit tests

TABLE II: Results of sampling experiments. 10 000 of each
edit type was applied to each project, distributed uniformly at
random over all target methods. #Unique shows the number
of unique edits of each type; the other counts and percentages
are with respect to the full 10 000 edits including duplicates.

Project Edit #Unique #Compile CR #Passing NVR

jCodec

B 3830 816 8.2 363 44.5
C 3845 863 8.6 839 97.2
R 3911 1827 18.3 1352 74.0
Bif 8364 2516 25.2 1528 60.7
Cif 8325 2430 24.3 1760 72.4
Rif 8380 5582 55.8 3668 65.7

spark

B 656 486 4.9 413 85.0
C 663 470 4.7 460 97.9
R 665 1526 15.3 1461 95.7
Bif 2141 810 8.1 632 78.0
Cif 2126 750 7.5 623 83.1
Rif 2175 2573 25.7 2238 87.0

spatial4j

B 645 152 1.5 93 61.2
C 635 130 1.3 121 93.1
R 642 431 4.3 408 94.7
Bif 3595 318 3.2 217 68.2
Cif 3715 335 3.4 263 78.5
Rif 3669 1343 13.4 963 71.7

These results show that the main obstacle still seems to be
passing compilation; if an edit results in code that compiles,
it will also often pass all unit tests. The compilation rates are
higher for Bif , Cif and Rif edits than for their equivalents
without the if: typically around a third more of the edits
compile. As noted earlier, this is because Java will fail to
compile where ‘unreachable code’ exists; the presence of the
if allows following code to be reached conditionally. The
higher compilation rates then underpin higher numbers of the
if edits passing the unit tests. Despite the higher numbers
of edits passing the tests, the NVR (percentage of compiling
edits that pass tests) actually decreases slightly for the if

edits in most cases. However, NVR remains high for all
edits on all projects: 46.7% for C on jCodec and over 60%
for all other edits and projects. These high figures reflect
those seen in [18] for other insertion types (including if
statements) but that work found much lower rates for insertion
of returns. A possible explanation here is that we are only
adding void return statements, which simply skip some
part of execution. In [18], the experiments considered insertion
of return statements with a type; returning an incorrect value
being a possible cause of test failure.

The key points to draw from these results are as follows.
(1) Edits that insert break, continue and return statements
have higher compilation rates when embedding the statement
in an if. (2) All six edits have a high Neutral Variant Rate
(>46.7%), offering a potentially ripe source of performance
improving edits.

VI. RESULTS: LOCAL SEARCH

Our final experiment is simply intended to show the po-
tential of these kinds of edits. We conducted a single run
of a hill-climber on each of the 5 target methods (the 5

methods ranked highest by the profiler for which more than
zero neutral variants were found during the sampling runs).
Here we focused on jCodec only as it had the highest numbers
of edits both compiling and passing the tests.

The methods targeted were those with IDs 1, 3, 4, 5, and 6
in the data sets provided via the URL at the end of the paper.
Specifically these are:

1) org.jcodec.scale.BaseResampler.resample

(Picture,Picture)

3) org.jcodec.codecs.h264.decode.

CoeffTransformer.idct4x4(basicstyleint

[])

4) org.jcodec.codecs.h264.decode.

MBlockDecoderBase.predictChromaInter

(Frame[][],MvList,basicstyleint,

basicstyleint,basicstyleint,Picture,

PartPred[])

5) org.jcodec.codecs.h264.decode.deblock

.DeblockingFilter.filterBlockEdgeVert

(Picture,basicstyleint,basicstyleint

,basicstyleint,basicstyleint,

basicstyleint,basicstyleint,

basicstyleint)

6) org.jcodec.codecs.h264.decode.

BlockInterpolator.getBlockChroma

(basicstylebyte[],basicstyleint

,basicstyleint,basicstylebyte

[],basicstyleint,basicstyleint

,basicstyleint,basicstyleint,

basicstyleint,basicstyleint)

No improving edit was found in 1000 iterations of the local
search for target methods 1 and 5.

For method 3, speedup of 3.58% (final run time 64.5s for
10 repeats of the tests). This was a continue at the end of
a for loop and did not in practice do anything. For method
4, speedup of 3.88% (final run time 62.1s for 10 repeats of
the tests). This was also a continue, embedded within an
existing if statement, but at the end of that statement, which
in turn was at the end of a loop so not in practice having any
effect. For method 6, speedup of 4.05% (final run time 62.8s
for 10 repeats of the tests). The resulting patch consisted of
two edits, highlighted in Figure 6. The first of these does have
the effect of skipping loop iterations, although further analysis
is needed to understand its full impact. With a relatively small
improvement of run time it is possible this is still the effect
of random noise.

In practice these edits are only making small improvements
to the code run time; but this proof of concept run shows that
even a small scale run is able to find an edit that still passes
the tests for the class and is worth further investigation.

VII. RELATED WORK

Genetic improvement has proven to be a successful tech-
nique in finding test-suite adequate patches that lead to bug
fixes and various efficiency improvements [21]. Those patches
usually fall in the three types: copy, delete or replace, applied

1 private int invert(int startOff, int level, int prefix, IntArrayList values, IntArrayList
valueSizes) {

2 int tableEnd = startOff + 256;
3 values.fill(startOff, tableEnd, -1);
4 valueSizes.fill(startOff, tableEnd, 0);
5 int prefLen = level << 3;
6 for (int i = 0; i < codeSizes.length; i++) {
7 if ((codeSizes[i] <= prefLen) || (level > 0 && (codes[i] >>> (32 - prefLen)) != prefix

))
8 continue;
9 int pref = codes[i] >>> (32 - prefLen - 8);

10 int code = pref & 0xff;
11 int len = codeSizes[i] - prefLen;
12 if (len <= 8)
13 if (len == 0)
14 continue;
15 for (int k = 0; k < (1 << (8 - len)); k++) {
16 values.set(startOff + code + k, i);
17 valueSizes.set(startOff + code + k, len);
18 }
19 if (code <= 0)
20 continue;
21 } else {
22 if (values.get(startOff + code) == -1) {
23 values.set(startOff + code, tableEnd);
24 tableEnd = invert(tableEnd, level + 1, pref, values, valueSizes);
25 }
26 }
27 }
28 return tableEnd;
29 }

Fig. 6: Best patch found for target method 6.

to either source code, assembly or even binary code. The
choice of these three types has its origins in Genetic Pro-
gramming, the first search technique applied in GI. However,
a question arises whether more effective mutation operators
exist. Several researchers have looked into this issue by
proposing tuning parameters embedded in code [7], [15], or
replacement of Java Collections [5], [14]. In related, automated
program repair (APR) field, more targeted mutations have
been proposed, for example, borrowing from human-evolved
patches [9], [11], or programming language specific ones [12].

In the GI work to-date the most effective operator type has
been deletion. This has been observed in other fields. For ex-
ample, loop perforation has been used to achieve quick speed-
ups [17] (up to 3-fold), while producing up to 10% decrease in
output quality. This idea of approximation by weighing non-
functional properties of software against functional ones has
also been explored in work on reducing energy consumption
using genetic improvement [4]. For instance, 33% energy
reduction was achieved with loss of less than 4% of accuracy,
for one of the applications for the application test set used.

It is now well-established that software is not fragile [22],
[23]. In fact, there exist a high amount of program variants that
are neutral with regards to the given test suite. This observation
led to automatic exploration of these plateaus in the program
search space in the hope of finding software that improves

upon non-functional properties. The question is how to find
such improvements efficiently. Given the success of the delete
operator we propose here six new edits.

The closest to our work is the work by Harrand et
al. [18]. They investigate the search space of program variants
achieved with the traditional mutation operators. Based on
these observations they propose three new operators: add
method invocation, swap subtype and loop flip .

These achieve, accordingly, 66.29%, 58.26%, and 73% neutral
variant rates. They have, however, not investigated the impact
of these on non-functional properties, such as run time.

VIII. CONCLUSIONS

We have proposed six new edit types for Genetic Im-
provement of Java software, based on the insertion of
break, continue and return statements. 10 000 randomly-
generated instances of each of these edits were applied to three
open-source applications taken from GitHub.

There are several key findings: (1) compilation rates for
the inserted statements without surrounding if statements
are low (1.5–18.3%). (2) Edits that insert break, continue
and return statements have higher compilation rates when
embedding the statement in an if (3.2–55.8%). (3) All six
edits have a high Neutral Variant Rate (>46.7%), offering a
potentially ripe source of performance improving edits. We

note here that all these results are with respect to the existing
test suites for each project.

Furthermore, a preliminary experiment based on local
search showed how these edits might be used in practice.

Several directions naturally follow these findings for future
research. An obvious extension to the edits themselves would
be to have non-zero return values for the if conditions. This is,
however, non-trivial: it cannot simply be a uniform sampling
in the range of the variable’s type as in many cases this is
likely to be outside the likely values the variable will take. A
related question here is how to choose a suitable distribution
from which to sample. The R and Rif edits could also check
the return type of methods and add a return variable to improve
compilation rates (though as per [18] this may actually reduce
the NVR). More interesting is some kind of static analysis
of the code to better inform the creation of the edits: limiting
insertions to valid locations (though this is possibly more effort
than just trying to compile them). In this context it would also
be interesting to find the trade-off between only generating
valid insertions and just testing by compilation (somewhat akin
to the issues of handling infeasible solutions in combinatorial
optimisation).

ACKNOWLEDGMENTS

Funders will be acknowledged here.

DATA ACCESS STATEMENT

A URL to the data sets will be provided here.

REFERENCES

[1] J. Petke, B. Alexander, E. T. Barr, A. E. I. Brownlee, M. Wagner,
and D. R. White, “A survey of genetic improvement search spaces,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, 2019, pp. 1715–1721.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 54–72, 2012.

[3] W. B. Langdon and M. Harman, “Optimizing existing software with
genetic programming,” IEEE Trans. Evolutionary Computation, vol. 19,
no. 1, pp. 118–135, 2015.

[4] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 1327–1334. [Online]. Available: https://doi.org/10.1145/
2739480.2754752

[5] M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr, “Darwinian data
structure selection,” in ESEC/SIGSOFT FSE. ACM, 2018, pp. 118–128.

[6] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDA DNA analysis software with genetic programming,” in Proc. of
the GECCO, GECCO. ACM, 2015, pp. 1063–1070.

[7] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirs-
dottir, “Fixing bugs in your sleep: how genetic improvement became
an overnight success,” in GECCO, Companion Material Proc. ACM,
2017, pp. 1513–1520.

[8] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014,
pp. 306–317.

[9] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE. IEEE Computer Society,
2013, pp. 802–811.

[10] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” EMSE,
vol. 20, no. 1, pp. 176–205, 2015.

[11] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 727–739.

[12] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on Software
Engineering, 2018.

[13] J. Petke, “New operators for non-functional genetic improvement,” in
Proc GECCO Companion. ACM, 2017, pp. 1541–1542.

[14] A. E. I. Brownlee, N. Burles, and J. Swan, “Search-based energy
optimization of some ubiquitous algorithms,” IEEE Trans. Emerging
Topics in Comput. Intellig., vol. 1, no. 3, pp. 188–201, 2017.

[15] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep parameter
optimisation,” in GECCO. ACM, 2015, pp. 1375–1382.

[16] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[17] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard, “Using code perforation to improve performance, reduce energy
consumption, and respond to failures,” 2009.

[18] N. Harrand, S. Allier, M. Rodriguez-Cancio, M. Monperrus, and
B. Baudry, “A journey among java neutral program variants,” Genetic
Programming and Evolvable Machines, vol. 20, no. 4, pp. 531–580,
2019.

[19] D. R. White, “GI in no time,” in Genetic and Evolutionary Computation
Conference, Berlin, Germany, July 15-19, 2017, Companion Material
Proceedings, P. A. N. Bosman, Ed. ACM, 2017, pp. 1549–1550.
[Online]. Available: http://doi.acm.org/10.1145/3067695.3082515

[20] A. E. I. Brownlee, J. Petke, B. Alexander, E. Barr, M. Wagner, and
D. White, “Gin: Genetic Improvement Research Made Easy,” in Proc. of
the Genetic and Evolutionary Computation COnference, Prague, Czech
Republic, 2019, pp. 985–993.

[21] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and
J. R. Woodward, “Genetic improvement of software: A comprehensive
survey,” IEEE Trans. Evolutionary Computation, vol. 22, no. 3, pp. 415–
432, 2018.

[22] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” Genetic Programming and Evolvable Machines,
vol. 15, no. 3, pp. 281–312, 2014.

[23] W. B. Langdon and J. Petke, “Software is not fragile,” in First Complex
Systems Digital Campus World E-Conference 2015. Springer, 2017,
pp. 203–211.

https://doi.org/10.1145/2739480.2754752
https://doi.org/10.1145/2739480.2754752
http://doi.acm.org/10.1145/3067695.3082515

	Introduction
	Operators
	Basic approach
	Detecting local variables

	Experiments
	Enumeration
	Random Sampling
	Local Search

	Results: Enumeration
	Results: Sampling
	Results: Local Search
	Related Work
	Conclusions
	References

