Accurate compound-specific 14C dating of archaeological pottery vessels

1Organic Geochemistry unit, School of chemistry, University of Bristol, Cantock’s Close Bristol BS8 1TS, UK
2Bristol Radiocarbon Accelerator Mass Spectrometer, 43 Woodland Road, University of Bristol, Bristol BS8 1UU, UK
4Biological & Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
5Academy of Fine Arts in Gdańsk, Faculty of Architecture and Design, ul. Targ Węglowy 6, Gdańsk, Poland
6University of Burgundy/UMR 6298 ARTEHIS, Bâtiment Sciences Gabriel, 6 Boulevard Gabriel, 21000 Dijon, France
7University of Strasbourg UMR 7044/INRAP, 10 rue Altkirch, 67100 Strasbourg, France
8Dipartimento di Scienze dell’Antichità, Sapienza, Università di Roma, Via dei Volsci, 122 – 00185 Roma, Italy
9GAES, University of the Witwatersrand, Johannesburg, South Africa
10School of Archaeology, University College Dublin, Belfield, D04F6X4, Ireland
11Cotswold Archaeology, Building 11, Keble Enterprise Park, Kemble, Cirencester GL7 6BQ, UK
12LVR-State Service for Archaeological Heritage, Endenicher Str. 133, 53115 Bonn, Germany
13Department of Archaeology, University of Exeter, Laver Building, North Park Road, Exeter, Devon, EX4 4QE, UK
14Université Paris 1 Panthéon-Sorbonne, UMR 8215 TRAJECTOIRES, 21 allée de l’université, 92023 Nanterre, France
15University of Strasbourg, UMR7044, Misha, 5 allé du général Rouvillois, 67083 Strasbourg, France
16Institute of Archaeology, Adam Mickiewicz University, 61-614 Poznan, Poland
17Somerset County Museum, Taunton Castle, Castle Green, Taunton, TA1 1AA, UK
18Archaeological Research Leiden, Einsteinweg 2, 2333 CC Leiden, The Netherlands
Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation, accurate dating of pottery by the radiocarbon method has proven extremely challenging due to the limited survival of organic temper and unreliability of visible residues. We report here a new method of dating directly archaeological pottery based on accelerator mass spectrometry (AMS) analysis of 14C in absorbed food residues: palmitic ($C_{16:0}$) and stearic ($C_{18:0}$) fatty acids purified by preparative gas chromatography (pcGC). We present the first accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates and inclusion in site and regional chronologies containing suites of radiocarbon dates on other materials. Critically, the compound-specific dates from each of the $C_{16:0}$ and $C_{18:0}$ fatty acids in pottery vessels provide an internal quality control of the results and, are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (i) the period of use of pottery; (ii) the antiquity of organic residues including when specific foodstuffs were exploited; (iii) sites chronologies in the absence of traditionally datable materials and (iv) direct verification of pottery typochronologies. As exemplars, the method was applied to the dating of dairy and carcass product exploitation in Neolithic vessels, from Britain, Anatolia, central and western Europe, and Saharan Africa.
for past human activity over the last 50,000 years17, most commonly using samples of charred plant remains and bone17. Radiocarbon dates can be used alongside relative sequences, such as those derived from stratigraphy or the typological analysis or seriation of artefact-types, to build chronological models. Applying Bayes’ theorem allows radiocarbon dating to provide calendar age estimates with uncertainties as low as a few decades18.

The invention of pottery in the late Pleistocene was likely a significant driver for developments in food processing19,20. Pottery vessels can often be placed in robust relative chronological sequences using typology and seriation, although obtaining precise and accurate radiocarbon dates from pottery is extremely challenging2,3,21. All sources of carbon associated with pottery vessels have been considered for dating4,5, including organic temper, which occasionally survives firing, and surficial food crusts, although these are rare and prone to contamination due to their exposed nature22. In contrast, the lipidic components of food residues absorbed into, and protected by, the clay matrix during cooking occur very commonly8, often in high concentrations (mg per g clay fabric). These offer an untapped resource for radiocarbon dating.

The most common absorbed residues correspond to degraded animal fats characterised by their high abundances of $C_{16:0}$ and $C_{18:0}$ fatty acids7,8. More than 20 years ago we recognised the possibility of using preparative capillary gas chromatography (pcGC) to isolate chemically pure fatty acids from such residues for compound-specific radiocarbon analysis (CSRA)21,23,24. Although initial attempts to date pottery vessels were promising, the accuracy and precision demanded by archaeology could not be achieved due to unidentified technical difficulties, leading to highly variable results21,23.

We have brought together the latest technologies for radiocarbon measurement, including automated graphitisation and MICADAS compact AMS, in conjunction with high-field 700 MHz NMR, to undertake systematic investigations of the pcGC protocol5,6. Rigorous
assessment of contamination in compounds purified by pcGC was undertaken for the first time, leading to our invention of a solventless pcGC trap and implementation of cleaning procedures to avoid between run carryover. These advances reduce exogenous contamination of fatty acids previously associated with the pcGC to below concentrations that would significantly affect measured radiocarbon ages. For archaeological animal fats we demonstrated that two fatty acids isolated from the same matrix giving the same radiocarbon age (i.e. statistically consistent at the 95% significance level), provides an internal quality control for archaeological dating. In this work we aim to extend this method to archaeological pot lipids. We selected pottery rich in animal fats from our database of lipid residues built up over the last three decades. Pottery vessels from chronologically well-characterised settings and different burial environments were analysed and the compatibility of pot lipid dates with these existing chronologies was evaluated by statistical comparison of posterior density estimates for the key parameters and the use of indices of agreement with inclusion in these known frameworks (Fig. 1, extended data (ED) Table 1, Supplementary information (SI) 1).

We initially focused on Neolithic pottery from the Sweet Track, an impressive elevated wooden trackway discovered in a wetland area of the Somerset Levels (UK; SI 2). This site is critical because its construction has been precisely dated by dendrochronology to the winter/early spring of 3807/6 BC (Fig. 2a) and it was used and maintained for approximately ten years. We had previously dated lipids from pots found alongside the trackway and likely contemporaneous to its construction and use, but the measured dates were a century later than the trackway’s construction. Re-analysis of the two vessels (Fig. 2b) using our new approach produced radiocarbon ages of 5110 ± 25 BP (SW1) and 5092 ± 26 BP (SW2), which are statistically indistinguishable (T’=9.0, T’(5%)=9.5, v=4) from the measurements on tree rings included in IntCal13 calibration curve for the relevant decade (Fig. 2c). The calibrated dates
of these ages are clearly compatible with the tree-ring dates for the construction of the trackway.

Extending our approach to Anatolia, the Neolithic tell of Çatalhöyük East was a locus for the emergence and development of pottery production. A 21 m-deep stratigraphic sequence provides strong archaeological prior information for a Bayesian chronological model covering the upper parts of the mound (TP Area). The sequence of houses, middens, and burial structures has been combined with 50 radiocarbon dates revealing a Neolithic sequence occupied from the mid-64th to the mid-60th centuries cal BC. Our compound-specific radiocarbon ages on adipose lipids from four pottery vessels from four different contexts (TP.M17: 7382 ± 31 BP; TP.N10: 7348 ± 25 BP; TP.O23: 7340 ± 27 BP, and TP.P13: 7364 ± 25 BP) were incorporated into the Bayesian chronological model for this part of the site (SI 3, ED Figs. 1 & 2). The revised model for the Neolithic deposits in the TP Area shows posterior distributions for the key parameters almost identical to those from the original model. Their median values vary by an average of 4 years and a maximum of 10 years, confirming the compatibility of the radiocarbon ages on fatty acids with the site stratigraphy. Based on sensitivity analyses (SI 3) this well-constrained model is at least as sensitive as measurements on paired materials to detect inaccuracies. In this case, the CSRA dates not only provide direct dating for the importance of ruminant carcass products (Fig. 1c) to the inhabitants of Çatalhöyük at this time (derived from $\delta^{13}C$ values of preserved fats), but also provide direct dating evidence for the climatic changes associated with the global 8.2 kyr event (derived from compound-specific deuterium isotope analyses on the same fats).

The next exemplar tests the accuracy of our new dating approach using a classic pottery seriation study relating to Neolithic ceramics from Lower Alsace (France) that spans the second quarter of the fifth millennium cal BC (SI 4). The regional correspondence analysis clearly
separates the Hinkelstein, Grossgartach, Planig-Friedberg, and Rössen Middle Neolithic ceramic groups. We focused on vessels from three pits, all of which can be assigned to the Grossgartach phase (Fig. 3a,b). The sequence of ceramic phases was combined with the existing assemblage of 95 radiocarbon dates, largely on articulated bones, along with four CSRA on fatty acids (ROS-C-4596: 5804 ± 25 BP; ROS-C-4600: 5904 ± 28 BP; ROS-C-4644: 5931 ± 26 BP, and ROS-C-4657: 5912 ± 28 BP) from the Grossgartach sherds in a model using Bayesian statistics. The phase boundaries in this revised model are very similar to those produced by the original analysis12, as median values differ by an average of 6 years and a maximum of 15 years (Fig. 3c). The sensitivity analyses (SI 4) demonstrate the model to be particularly sensitive to small biases, and likely more sensitive than measurements on paired materials. The CSRAs are clearly compatible with the attribution of these pottery vessels to the Grossgartach ceramic phase based on their decorative motifs, and with the other radiocarbon dates for this group.

We then explored the introduction of a new food product, i.e. milk, into Neolithic Europe by undertaking radiocarbon dating of animal fat residues, including dairy fats, recovered from early farming settlements of the *Linearbandkeramik* (LBK) pottery (Fig. 1). These communities settled in Central Europe from the early 54th century BC13. Animal fats in twelve potsherds from the earliest LBK contexts at six sites, in Poland, France, Germany and the Netherlands, produced radiocarbon dates that were modelled and shown to be compatible with the currency of LBK ceramics in Northern and Western Europe (SI 5, ED Figs. 3 & 4)12,13. Sensitivity analyses (SI 5, ED Fig. 4) demonstrate this model to be more sensitive to older biases as we focused on early settlements, illustrating the direct dating of a new food commodity. The radiocarbon dates on the earliest dairying residues suggest that the practice began in 5385–5225 cal BC (95% probability; start LBK lipid; ED Fig. 3), and probably arrived with the earliest farmers in these areas. Thus, the linking of fatty acid structures with
compound-specific carbon isotope values and CSRA provides a powerful means of directly
dating prehistoric foodways and their introduction.

Our investigations then moved to pottery from the Sahara Desert to provide a test of the
methodology for a region where depositional conditions are very different from the temperate
climes of Northern Europe. The Takarkori rock shelter, located in the hyper-arid area of the
Acacus Mountains, SW Libya, demonstrates evidence of animal exploitation based on rock art
and archaeological finds14 (ED Figs 5 & 6). Our previous work revealed abundant carcass and
dairy fat residues in fragments of the pottery vessels28. Stratigraphy and radiocarbon dating of
a range of materials (bone collagen, charred plant remains, dung, skin, and enamel bioapatite)
placed deposits associated with Middle Pastoral pottery in the sixth-fifth millennia cal
BC14,28,29. The fatty acids from five potsherds, containing dairy fat (ED Fig. 6b), produced
uncalibrated radiocarbon ages of 5993 ± 28 BP (TAK443), 5979 ± 28 BP (TAK120), 5493 ±
28 BP (TAK420), 5348 ± 24 BP (TAK21) and 5085 ± 24 BP (TAK1572). The CSRA dates
were proven entirely compatible with the currency of Middle Pastoral Neolithic ceramics (SI
6, ED Fig. 6d), and the direct radiocarbon dating of dairy residues confirms that dairying in
North Africa began as early as the end of the 6th millennium cal BC14,28,29. While, the model
sensitivity is weak based on the small number of reference dates it includes (SI 6, ED Fig. 7),
it demonstrates the possibility of dating potsherds from extremely arid burial conditions. In
addition, direct dating of pottery lipids represents a major contribution to ascertain the correct
cultural attribution of materials found in loose sediments (organic sands), which are typical of
desert environments and frequently found in highly disturbed sequences14.

Finally, archaeological excavations of several pits by Museum of London Archaeology in
advance of building works at Principal Place, London (PPL11) revealed the largest assemblage
of Neolithic pottery recovered so far from the City of London or its immediate environs.
Critically, the only finds other than pottery recovered from this deposit (lithics, bones and charred plant remains) were compromised by later disturbance and truncation. The assemblage comprised Neolithic Plain and Decorated Bowls, consisting of thin-walled medium-sized open/neutral bowls, together with several smaller open bowls/cups. Similar material has been found elsewhere in the Thames Valley and beyond. Lipid residue analyses revealed high concentrations of degraded animal fats in several sherds, which were shown by compound-specific δ^{13}C values to derive from dairy and carcass fats (Fig. 1c). Radiocarbon measurements of fatty acids from four plain sherds yielded uncalibrated ages of 4911 ± 27 BP (PPL012), 4742 ± 22 BP (PPL015), 4652 ± 26 BP (PPL020) and 4733 ± 22 BP (PPL021). A new statistical model confirms that the pottery dates fit well within the currency of Plain Bowl in southern Britain (SI 7, ED Fig. 8). The sensitivity analyses (SI 7, ED Fig. 9) are weaker in this case, but demonstrates the value of dating absorbed lipid residues in situations where no other datable material exists. Our new ability to undertake accurate radiocarbon dating of compound-specific fatty acids from pottery was invaluable in affording a, previously impossible, temporal insight into some of the earliest traces of human activity in what is now the City of London.

In summary, the radiocarbon determinations of lipid residues from Neolithic pottery vessels presented above, modelled against site chronologies, unequivocally establish CSRA of fatty acids as a robust new tool for archaeological dating. Significantly, our method and findings bring pottery vessels within the range of other archaeological materials routinely dated by radiocarbon. The importance of this advance to the archaeological community cannot be overstated. Pottery typology is the most widely used dating technique in the discipline, and so the opportunity to anchor different kinds of pottery securely to the calendrical timescale will be of utmost practical significance. Critically, pottery often survives in circumstances where other organic materials often do not, and so archaeological questions relating to chronology that are currently intractable will come within the scope of our technologies.
References

Cotton, J. et al. Early Neolithic pits and pottery at Principal Place, Shoreditch, Hackney. In prep.
Methods

Lipid extractions and isolation

Potsherds were selected based on the presence of terrestrial animal fats (dairy and ruminant carcass fats) in the lipid residue in order to avoid any possible reservoir effect caused by aquatic products processing in pots. A piece of 1 to 10 g of the potsherd was sampled, according to the lipid concentration. The sherds were extracted in a glass culture tube using H₂SO₄/MeOH (4
The supernatants were centrifuged (2500 rpm, 10 min) and combined into new culture tubes containing double-distilled water (5 mL). The lipids were extracted with n-hexane (4 x 5 mL), transferred into 3.5 mL vials and blown down to dryness at room temperature under a gentle nitrogen stream. Then ~180 µL of n-hexane was added to obtain a concentration of fatty acid methyl esters (FAMEs) at 5 µg of C,µL⁻¹ before transfer to an autosampler vial for isolation by pcGC.

The pcGC consisted of a Hewlett Packard 5890 series II gas chromatograph coupled to a Gerstel Preparative Fraction Collector by a heated transfer line. The pcGC was equipped with a column with a 100% poly(dimethyl siloxane) stationary phase (Rxi-1ms, 30 m x 0.53 mm i.d., 1.5 µm film thickness, Restek,). Helium was used as the carrier gas at a constant pressure of 10 psi. The GC temperature programme started with an isothermal hold at 50 °C for 2 min, increased to 200 °C at 40 °C.min⁻¹, then to 270 °C at 10 °C.min⁻¹ and finally increased to 300 °C at 20 °C.min⁻¹ and held for 8.75 min. The C₁₆:₀ and C₁₈:₀ FAMEs were injected (1 µL per run), separated and trapped 40 times per trapping sequence. One percent of the GC column effluent flows to the flame ionization detector (FID), whilst the remaining 99% passes via a transfer line into the fraction collector, both heated to 300 °C. Compounds were isolated based on their retention times. The stationary phase degradation of the pcGC column and other sources of exogenous carbonaceous contamination were monitored on a Brucker Avance III HD 700 MHz NMR instrument following our recently published procedure.

Radiocarbon determinations and statistical analysis

PCGC isolated compounds were transferred into Al capsules then combusted and graphitised in a Vario Microcube Elemental Analyser linked to an Automated Graphitisation System (AGE 3, IonPlus). All the radiocarbon measurements were performed by the Bristol Accelerator Mass Spectrometer (BRAMS) facility at the University of Bristol. Data reduction was performed
using the software BATS31 (v4.07). Radiocarbon dates obtained for FAMEs were corrected for
the presence of added methyl C using a mass balance approach5,6,21 and reported as the
conventional radiocarbon ages32 (SI 1).

Two contemporaneous compounds (C$_{16:0}$ and C$_{18:0}$ FAs) were dated and every pair of
statistically indistinguishable measurements (at the 95% significance level)33 were combined
as a weighted average prior to Bayesian chronological modelling using OxCal v4.2 and
v4.318,34 and the currently internationally agreed radiocarbon calibration curve for the northern
hemisphere, IntCal1326. The compatibility of the radiocarbon dates on absorbed fatty residues
with existing sites/regional chronologies was assessed by including the lipid radiocarbon dates
into existing statistical frameworks in a position defined by archaeological information (e.g.
stratigraphy, seriation). Their compatibility with the existing chronologies were achieved by:
(i) comparison of posterior density estimates for key modelled parameters with equivalent date
estimate or known age by dendrochronology, (ii) using the individual and model agreement
indices18,34 in models containing FA dates, and (iii) comparing posterior density estimates for
key parameters from models which includes the FA dates to one that does not include them (SI
1). The sensitivity of existing chronological models to the addition of the new radiocarbon
measurements was evaluated as above, after deliberately biasing the radiocarbon dates on
pottery vessels to varying degrees while assessing the effect on posterior density estimates for
the key parameters and indices of agreements (SI 1-7).

Additional references

976–979 (2010).

33 Ward, G K, and Wilson, S R. Procedures for comparing and combining radiocarbon age
Data availability statement

All data generated during this study are included in the main article, extended data and supplementary information.

Code availability statement

The codes used in OxCal for statistical modelling are provided in the supplementary information.

Extended data

Extended Data Table 1: Summary of radiocarbon dates of lipids preserved in pottery vessels. Vessel descriptions, lipid concentrations and conventional radiocarbon ages (as defined by Stuiver and Polach32 and calculated according to Wacker \textit{et al.}31) of C\textsubscript{16:0} and C\textsubscript{18:0} fatty acids (which passed the internal quality control) extracted from pottery vessels.

Extended Data Figure 1. Schematic diagram showing the stratigraphic information of the Neolithic occupation of the TP area at Çatalhöyük (Turkey) included in the chronological model (defined in ED Fig. 1). Contexts containing potsherds dated in this study are highlighted in green.

Extended Data Figure 2. Probability distributions of dates from Neolithic deposits in the TP Area at Çatalhöyük, Turkey (including the results on absorbed fatty acids in pottery sherds listed in ED Table 1). Each distribution represents the relative probability that an event occurs at a particular time. For each date, two distributions are plotted: one in outline, which is the result of a simple radiocarbon calibration, and a solid one, based on the chronological model used. The distributions in green correspond to the potsherds, in black to the pre-existing chronology. Distributions other than those relating to particular samples correspond to aspects of the model. For example, the distribution \textit{‘end East Mound occupation’} is the estimated date when Neolithic occupation of the East Mound ended at Çatalhöyük. Measurements followed by a question mark and shown in outline have been excluded from the model for reasons described by Marciniak \textit{et al.}11 (table 1) and are simple calibrated dates (Stuiver and Reimer35). The large square brackets down the left-hand side, along with the OxCal keywords, define the overall model exactly.
Extended Data Figure 3. Probability distributions of radiocarbon dates from absorbed fatty acids in LBK ceramics (listed in ED Table 1, black: dairy, blue: ruminant, red: non-ruminant). Format as ED Fig. 2.

Extended Data Figure 4. Sensitivity analyses of radiocarbon dates on LBK ceramics. Key parameters for the start of the use of LBK ceramics (blue distribution), derived from the models defined in Figures ED 3, Denaire et al.12 (fig 8), and Jakucs et al.13 (Model 1, figs 18–19; Model 2, figs 20–1; Model 3, figs 22–3) compared to the start of LBK lipids presented in ED Fig. 4 (red distributions) then deliberately biased by 1, 2, 3, 4 and 8 σ to younger (orange distributions) and older (pink distributions) values. Some distributions may have been truncated.

Extended Data Figure 5. The Tadrart Acacus Mountains in SW Libya. (a) The Wadi Takarkori area (dashed rectangle), (b) Schematic plan of the excavated areas (c). All sampled sherds come from the Main Sector.

Extended Data Figure 6: Site stratigraphy, pictures and radiocarbon dates of Middle Pastoral pottery vessels from Takarkori (Libya) modelled using Bayesian statistics. (a) Stratigraphic context of sampled potsherds from Takarkori East-West profile of the southern wall of the TK-NS (see ED Fig. 5), key: i) aeolian sand; ii) sand rich in organic matter; iii) lenses of undecomposed plant remains; iv) ash; v) charcoal; vi) slurry deposit; vii) eroded sand from the wall; viii) bedrock. (b) The five potsherds analysed showing typical Middle Pastoral decorative patterns. (c) Example of temporally and spatially wide deposit of organic sands (detail of Layer 25-Takarkori-Main Sector). (d) Statistical model of the Middle Pastoral period showing the comparison of pot lipid dates (in green) with previous radiocarbon measurements. Format is as ED Fig. 2.

Extended Data Figure 7. Sensitivity analyses of radiocarbon dates on vessels from Takarkory rockshelter, Libya. Probability distributions for the beginning and end Middle Pastoral period ceramics from Takarkori rockshelter, Libya (no pot lipid dates) compared with those of the model shown in the ED Fig. 6d and deliberately biased by 1, 2, 4, 8, 20 and 40 σ. Format as ED Fig. 4.

Extended Data Figure 8. Probability distributions of dates associated with the use of early Neolithic Plain Bowl pottery in southern Britain. Prior distributions have been taken from the models described in the text. Format as ED Fig. 2.

Extended Data Figure 9. Sensitivity analyses of radiocarbon dates on vessels from Principal Place, London. Probability distributions of the start and end of early Neolithic Plain Bowl pottery in southern Britain compared with those of the model shown in ED Fig. 8 and deliberately biased by 2, 4, 8 and 16 σ. Format as ED Fig. 4.

Supplementary information is linked to the online version of the paper at www.nature.com/nature
Acknowledgements

We thank the European Research Council for funding an advanced grant (NeoMilk, FP7-IDEAS-ERC/324202) and a proof of concept grant (LipDat, H2020 ERC-2018-PoC/812917) to RPE, financing a PhD to ECa and postdoctoral contract to MRS and JS, and a postdoctoral contract to ECa, respectively. We acknowledge the BRAMS facility for the radiocarbon measurements, establishment of which was jointly funded by the NERC, BBSRC and University of Bristol. We thank P. Monaghan for his help with the radiocarbon sample preparation. We thank the Polish National Science Centre (decision DEC-2012/06/M/H3/00286) for financing the work in the upper levels at Çatalhöyük and the Department of Antiquities in Tripoli, Libya for permits and Sapienza University of Rome and Italian Ministry of Foreign Affairs for funding the fieldwork in Libya. We thank MOLA (Museum of London Archaeology) for excavating and providing potsherds from Principal Place (PPL11), London EC2/E1. We acknowledge B. Schnitzler from the Palais Rohan for accessing the material from Rosheim, A. Mulot from the Achéologie Alsace (Centre of conservation and study) for accessing the material from Ensisheim, R.W. Schmitz from the LVR-Landes Museum Bonn for accessing the material from Königshoven 14 and R. Brunning from the South West Heritage Trust for sharing excavations pictures of the Sweet Track.

Author Contributions

RPE conceived the project. ECa, RPE and ABay wrote the paper. ECa, TDJK and RPE developed the method for dating lipids. ECa, JD and TG performed the preparation of pottery vessels for radiocarbon analysis. ECa and TDJK generated the radiocarbon measurements and performed data analysis. ABay undertook the statistical modelling of the radiocarbon dates.
MZB advised on the stratigraphic sequence of the TP Area of Çatalhöyük East. AM performed the stratigraphic analysis of the TP Area of Çatalhöyük East and chronological analysis of the LBK from the Polish lowlands and MK helped the selection and provided the pottery vessels from these sites. CJ and PL excavated the Alsatian sites. ADe and PL performed the correspondence analysis of the Alsace region. SDL advised on the stratigraphic sequence and pottery analysis of Takarkori and RR studied the pottery assemblage. ECa, MRS and JS sampled the LBK sites. MRS coordinated and processed the analyses of sherds from the LBK culture and from Çatalhöyük East. ABar advised on the project design. SM provided pottery vessels from the Sweet Track. ECl analysed the material and advised sampling for Königshoven 14. MI excavated and provided vessels from Cuiry-lès-Chaudardes. IVW excavated and advised sampling from the Netherlands and PVDV analysed the material. ADA excavated the site of Principal Place, London EC2/E1 as project manager and JC studied the pottery material.

Author Information Reprints and permissions information are available at www.nature.com/reprints. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to r.p.evershed@bristol.ac.uk.
© Somerset Levels Project

(a) (b)

(c)

OxCal v4.2.4 Bronk Ramsey (2013); r:1 IntCal13 atmospheric curve (Reimer et al. 2013)

R_Date IntCal13: QL-11528 [A:102]
R_Date IntCal13: GrN-9024 [A:99]
R_Date IntCal13: UB-1198 [A:29]
R_Date BRAMS-1521 (SW2) [A:102]
R_Date BRAMS-1520 (SW1) [A:74]
Combine Sweet Track (3807/6 BC) [n=5 Acomb= 50.9% (An= 31.6%)]

Modelled date (cal BC)
<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>Pottsherd #</th>
<th>Description</th>
<th>C(^2) (ug/g)</th>
<th>Laboratory#</th>
<th>C(^14) age</th>
<th>C(^12) age</th>
<th>Combined age</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet Track</td>
<td>Somerset levels, England</td>
<td>SW1</td>
<td>Carinated bowl, refitted sherd</td>
<td>13,806</td>
<td>BRAMS-1520</td>
<td>5.105 ± 33</td>
<td>5.114 ± 32</td>
<td>5.110 ± 25</td>
<td>9, 10, 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SW2</td>
<td>Carinated bowl, refitted sherd</td>
<td>4,900</td>
<td>BRAMS-1021</td>
<td>5.089 ± 38</td>
<td>5.094 ± 32</td>
<td>5.092 ± 26</td>
<td>11, 27</td>
</tr>
<tr>
<td>Catalhöyük East</td>
<td>Turkey</td>
<td>TP.M17</td>
<td>Holocene jar, single sherd</td>
<td>393</td>
<td>BRAMS-1654</td>
<td>7.318 ± 42</td>
<td>7.416 ± 39</td>
<td>7.382 ± 31</td>
<td>12, 13</td>
</tr>
<tr>
<td>TP Area</td>
<td></td>
<td>TP.N10</td>
<td>Holocene jar, refitted sherd</td>
<td>575</td>
<td>BRAMS-1699</td>
<td>7.318 ± 29</td>
<td>7.378 ± 30</td>
<td>7.348 ± 25</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP.P23</td>
<td>Holocene jar, refitted sherd</td>
<td>1,390</td>
<td>BRAMS-1046</td>
<td>7.290 ± 36</td>
<td>7.375 ± 32</td>
<td>7.340 ± 27</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TP.P13</td>
<td>Holocene jar, single sherd</td>
<td>362</td>
<td>BRAMS-1703</td>
<td>7.528 ± 36</td>
<td>7.904 ± 29</td>
<td>7.364 ± 25</td>
<td>12, 13</td>
</tr>
<tr>
<td>Rocheim</td>
<td>Lower Alsace, France</td>
<td>ROS.C-4596</td>
<td>Coarse kumpf, single sherd</td>
<td>973</td>
<td>BRAMS-1526</td>
<td>5.801 ± 30</td>
<td>5.798 ± 30</td>
<td>5.804 ± 25</td>
<td>12, 13</td>
</tr>
<tr>
<td>Sandgrube</td>
<td></td>
<td>ROS.C-4600</td>
<td>Coarse kumpf, refitted sherd</td>
<td>4,163</td>
<td>BRAMS-1027</td>
<td>5.897 ± 36</td>
<td>5.909 ± 35</td>
<td>5.904 ± 28</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROS.C-4644</td>
<td>Fine kumpf, single sherd</td>
<td>6,064</td>
<td>BRAMS-1525</td>
<td>5.937 ± 33</td>
<td>5.926 ± 30</td>
<td>5.931 ± 26</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROS.C-4657</td>
<td>Coarse kumpf, single sherd</td>
<td>1,914</td>
<td>BRAMS-1524</td>
<td>5.885 ± 37</td>
<td>5.934 ± 34</td>
<td>5.912 ± 28</td>
<td>12, 13</td>
</tr>
<tr>
<td>Ensisheim</td>
<td>Upper Alsace, France</td>
<td>ENG.C-5913</td>
<td>Coarse kumpf, single sherd</td>
<td>1,177</td>
<td>BRAMS-1915</td>
<td>6.345 ± 31</td>
<td>6.903 ± 31</td>
<td>6.324 ± 26</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG.C-5934</td>
<td>Coarse kumpf, single sherd</td>
<td>1,645</td>
<td>BRAMS-1958</td>
<td>6.282 ± 30</td>
<td>6.258 ± 30</td>
<td>6.270 ± 25</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENG.C-5940</td>
<td>Coarse kumpf, single sherd</td>
<td>2,082</td>
<td>BRAMS-2031</td>
<td>6.162 ± 33</td>
<td>6.239 ± 30</td>
<td>6.206 ± 26</td>
<td>12, 13</td>
</tr>
<tr>
<td>Cuiry-Mus-Chaudardes</td>
<td>Alzne, France</td>
<td>CUI-C-5708</td>
<td>Coarse kumpf, single sherd</td>
<td>881</td>
<td>BRAMS-1917</td>
<td>6.252 ± 34</td>
<td>6.218 ± 36</td>
<td>6.236 ± 27</td>
<td>12, 13</td>
</tr>
<tr>
<td>Königshoven 14</td>
<td>Rhineland, Germany</td>
<td>KON.C-5594</td>
<td>Coarse kumpf, single sherd</td>
<td>531</td>
<td>BRAMS-2029</td>
<td>6.253 ± 29</td>
<td>6.298 ± 29</td>
<td>6.276 ± 24</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KON.C-5598</td>
<td>Coarse kumpf, single sherd</td>
<td>1,023</td>
<td>BRAMS-2026</td>
<td>6.106 ± 34</td>
<td>6.139 ± 34</td>
<td>6.123 ± 27</td>
<td>12, 13</td>
</tr>
<tr>
<td>Karwowo 1</td>
<td>Pomerania, Poland</td>
<td>KAR.C-3636</td>
<td>Coarse kumpf, single sherd</td>
<td>3,316</td>
<td>BRAMS-2028</td>
<td>6.176 ± 30</td>
<td>6.230 ± 30</td>
<td>6.204 ± 25</td>
<td>12, 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KAR.C-3677</td>
<td>Coarse kumpf, single sherd</td>
<td>1,900</td>
<td>BRAMS-2025</td>
<td>6.255 ± 30</td>
<td>6.214 ± 32</td>
<td>6.236 ± 26</td>
<td>12, 13</td>
</tr>
<tr>
<td>Ludwinowo 7</td>
<td>Kuyavia, Poland</td>
<td>LDW.C-2267</td>
<td>Coarse kumpf, single sherd</td>
<td>323</td>
<td>BRAMS-2024</td>
<td>6.173 ± 36</td>
<td>6.179 ± 30</td>
<td>6.177 ± 26</td>
<td>12, 13</td>
</tr>
<tr>
<td>Takorkert</td>
<td>Acacus mountains, Libya</td>
<td>TAX 21</td>
<td>Decorated, single sherd</td>
<td>9,503</td>
<td>BRAMS-1522</td>
<td>5.962 ± 33</td>
<td>5.331 ± 32</td>
<td>5.348 ± 24</td>
<td>14, 28, 29</td>
</tr>
<tr>
<td>Rockshelter</td>
<td>Acacus mountains, Libya</td>
<td>TAX1572</td>
<td>Decorated, single sherd</td>
<td>3,558</td>
<td>BRAMS-1523</td>
<td>5.099 ± 38</td>
<td>5.071 ± 32</td>
<td>5.085 ± 24</td>
<td>14, 28, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAX 120</td>
<td>Decorated, single sherd</td>
<td>5,593</td>
<td>BRAMS-2608</td>
<td>6.008 ± 35</td>
<td>5.949 ± 33</td>
<td>5.979 ± 28</td>
<td>14, 28, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAX 420</td>
<td>Decorated, single sherd</td>
<td>1,139</td>
<td>BRAMS-2609</td>
<td>5.487 ± 34</td>
<td>5.498 ± 35</td>
<td>5.493 ± 28</td>
<td>14, 28, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAX 443</td>
<td>Decorated, single sherd</td>
<td>1,7317</td>
<td>BRAMS-2610</td>
<td>6.021 ± 35</td>
<td>5.962 ± 35</td>
<td>5.992 ± 28</td>
<td>14, 28, 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PPLD15 (<1845>)</td>
<td>Plain bowl, refitted sherd</td>
<td>1,999</td>
<td>BRAMS-2479</td>
<td>4.708 ± 33</td>
<td>4.771 ± 30</td>
<td>4.742 ± 22</td>
<td>15, 30</td>
</tr>
</tbody>
</table>
Sequence Takarkori (Middle Pastoral) [A:102]

Boundary start Takarkori MP

Phase Middle Pastoral

Phase layer 41

R_Date BRAMS-2610 (TAK443) [A:101]
R_Date BRAMS-2609 (TAK420) [A:100]
R_Date UGAMS-2852 [A:105]
R_Date LTL-367A [A:102]
R_Date BRAMS-2608 (TAK120) [A:101]
R_Date BRAMS-1522 (TAK21) [A:100]
R_Date UGAMS-1841 [A:100]
R_Date LTL-362A [A:101]
R_Date BRAMS-1523 (TAK1572) [A:98]

After unidentified charcoal

R_Date LTL-907A [A:106]
R_Date GX-30324 [A:96]
R_Date UGAMS-8706 [A:100]
R_Date UGAMS-8709 [A:100]
R_Date GX-31077 [A:100]
R_Date UGAMS-10149 [A:100]
R_Date BRAMS-1523 (TAK1572) [A:98]

Boundary end Takarkori MP

Modelled date (cal BC)

OxCal v4.2.4 Bronk Ramsey (2013); r:1 IntCal13 atmospheric curve (Reimer et al. 2013)
SI guides

Accurate compound-specific 14C dating of archaeological pottery vessels

Emmanuelle Casanova¹, Timothy D.J. Knowles¹,², Alex Bayliss³,⁴, Julie Dunne¹, Marek Z. Barański⁵, Anthony Denaire⁶, Philippe Lefranc⁷, Savino di Lernia⁸,⁹, Mélanie Roffet-Salque¹, Jessica Smyth¹,¹⁰, Alistair Barclay¹¹, Toby Gillard¹, Erich Claßen¹², Bryony Coles¹³, Michael Ilett¹⁴, Christian Jeunesse¹⁵, Marta Krueger¹⁶, Arkadiusz Marciniak¹⁶, Steve Minniti¹⁷, Rocco Rotunno⁸, Pieter van de Velde¹⁸, Ivo van Wijk¹⁹, MOLA²⁰ and Richard P. Evershed¹,²

¹Organic Geochemistry unit, School of chemistry, University of Bristol, Cantock’s Close Bristol BS8 1TS, UK
²Bristol Radiocarbon Accelerator Mass Spectrometer, 43 Woodland Road, University of Bristol, Bristol BS8 1UU, UK
⁴Biological & Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
⁵Academy of Fine Arts in Gdańsk, Faculty of Architecture and Design, ul. Targ Węglowy 6, Gdańsk, Poland
⁶University of Burgundy/UMR 6298 ARTEHIS, Bâtiment Sciences Gabriel, 6 Boulevard Gabriel, 21000 Dijon, France
⁷University of Strasbourg UMR 7044/INRAP, 10 rue Altkirch, 67100 Strasbourg, France
⁸Dipartimento di Scienze dell’Antichità, Sapienza, Università di Roma, Via dei Volsci, 122 – 00185 Roma, Italy
⁹GAES, University of the Witwatersrand, Johannesburg, South Africa
¹⁰School of Archaeology, University College Dublin, Belfield, D04F6X4, Ireland
¹¹Cotswold Archaeology, Building 11, Keble Enterprise Park, Kemble, Cirencester GL7 6BQ, UK
¹²LVR-State Service for Archaeological Heritage, Endenicher Str. 133, 53115 Bonn, Germany
¹³Department of Archaeology, University of Exeter, Laver Building, North Park Road, Exeter, Devon, 27 EX4 4QE, UK
¹⁴Université Paris 1 Panthéon-Sorbonne, UMR 8215 TRAJECTOIRES, 21 allée de l’université, 92023 Nanterre, France
¹⁵University of Strasbourg, UMR7044, Misha, 5 allé du général Rouvillois, 67083 Strasbourg, France
¹⁶Institute of Archaeology, Adam Mickiewicz University, 61-614 Poznan, Poland
¹⁷Somerset County Museum, Taunton Castle, Castle Green, Taunton, TA1 1AA, UK
¹⁸Archaeological Research Leiden, Einsteinweg 2, 2333 CC Leiden, The Netherlands
¹⁹Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
²⁰MOLA (Museum of London Archaeology), 46 Eagle Wharf Road, London N1 7ED
List of supplementary materials:

Comparison of radiocarbon dates of absorbed lipids with other chronological information (pdf)
This file contains the details on the methods employed (SI 1) as well as the discussion of the results for every case study presented in the paper (SI 2-7) and conclusions of the analyses (SI 8).

Sorted Table (text document)
This file contains the matrix of the correspondence analysis based on decorative motifs of main and secondary motifs during the Middle Neolithic in Alsace (SI 4).

Sweet_Track_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels associated with the Sweet Track, Somerset levels, UK (SI 2).

TP_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels from the TP area at Çatalhöyük East, Turkey (SI 3).

Alsace_Middle_Neolithic_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels from the Alsatian Middle Neolithic, France (SI 4).

LBK_lipids_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels from the LBK sites in Central Europe (SI 5).

Takarkori_Middle_Pastoral_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels from the Middle Pastoral period at Takarkori, Libya (SI 6).

Plain_Bowl_OxCal_Model (OXCAL file)
This file is the OxCal code used for evaluation of the accurate dating of pottery vessels from Principal Place, London, UK (SI 7).
Comparison of radiocarbon dates of absorbed lipids with other chronological information

SI 1. Methodological information

In this paper we evaluated the compatibility of the first radiocarbon dates measured on archaeological pot lipid residues, obtained using the methods presented by Casanova et al.5,6, with pre-existing chronological information. In order to test the accuracy of the reported radiocarbon ages on absorbed fatty residues, we carefully selected samples from sites that already had robust and precise chronologies from a variety of sources. It is extremely difficult to obtain datable pottery that is of known age or paired with other organic material that is certainly contemporaneous. Chronologies produced by combining scientific dating with archaeological prior information can, however, produce robust and precise chronologies for the deposits from which pottery has been dated. The accuracy of the 14C dates on absorbed fatty acids can therefore be assessed by comparison with the date estimated for the parent context from the chronological model.

This has been done in three ways:

1) by comparing posterior density estimates for key parameters from a model with equivalent archaeological date estimates, or the age known from dendrochronology (inaccuracies in 14C measurements would be identified when the posterior density for key parameters deviate significantly from the equivalent archaeological date estimates),
2) using the individual and model indices of agreement (Bronk Ramsey34, p429; Bronk Ramsey18, p357) when the measurements on absorbed fatty acids are included in the relevant chronological model (inaccuracies in 14C measurements would be identified when the indices of agreement fall below the critical value of 60),
3) by comparing posterior density estimates for key parameters from a model including the 14C dates on absorbed fatty acids with the equivalent parameters from the model that does not include the new data (inaccuracies in 14C measurements would be identified when the posterior density for key parameters deviate significantly from the equivalent parameters in the existing model).

As Bayesian chronological models are context specific, the power of these tests will vary (based on the amount of prior chronological information and nature of the Bayesian model), but in cases where the prior information is extremely informative (for example, tree-ring wiggle-matching), they can be very sensitive to inaccuracies in the data (cf Bayliss et al.36, tables 5-6 and fig 8). We illustrate the sensitivity of each case study using simulations. All modelling has been undertaken using the radiocarbon ages reported for the combined measurements on the C16:0 and C18:0 fractions using OxCal v4.2 and v4.318 and the currently internationally agreed radiocarbon calibration curve for the northern hemisphere, IntCal1326. These compatibility assessments within pre-existing chronological frameworks provide the most rigorous compatibility tests of pot lipid dates.

The construction of the Sweet Track, Somerset, UK has been dated by dendrochronology30. The other sites have Bayesian chronological models that incorporate series of radiocarbon dates on traditional sample types with a variety of prior archaeological information: stratigraphy (Çatalhöyük East, Turkey), seriation of closed ceramic assemblages by correspondence analysis (the Middle Neolithic sequence in Lower Alsace, France/Germany), and cultural phases (Linearbandkeramik in Northern and Western Europe, the Middle Pastoral Neolithic at Takarkori in south-west Libya, and plain Bowl pottery in Southern Britain).
These sites were previously subject to extensive organic residue analysis (ORA), which allowed us to select the most suitable pottery vessels for compound-specific radiocarbon analyses (CSRA). All sherds sampled for CSRA had previously been sampled for ORA. The number of analyses undertaken was:

1) Sweet Track: 13 potsherds for ORA, 2 for CSRA;
2) Çatalhöyük East: 87 potsherds for ORA, 15 for CSRA;
3) Middle Neolithic sequence in Lower Alsace: 86 potsherds for ORA, 8 for CSRA;
4) Linearbandkeramik in Northern and Western Europe: over 3000 potsherds for ORA, 22 for CSRA;
5) Takarkori: 81 potsherds for ORA, 5 for CSRA;
6) Principal Place London: 31 potsherds for ORA, 5 for CSRA.

These numbers illustrate the proportion of sherds that would be suitable for dating to answer a particular research question currently (e.g. at Takarkori we focussed on dairy residues only).

The potsherds were carefully selected to contain lipid residues that had been identified as fats from terrestrial animals (ruminant carcass fats and ruminant dairy fats\(^{29,30}\)) in order to avoid any radiocarbon reservoir effects arising from the processing of aquatic products from marine or freshwater environments. The terrestrial animal fats are dominated by \(C_{16:0}\) and \(C_{18:0}\) fatty acids, compounds which also occur in nature from other sources (e.g. vegetation or soil bacteria). For this reason, we excluded potsherds with lipid profiles indicating additional compounds (e.g. \(n\)-alkanes) which could suggest that the fatty acids derived partly from a source other than terrestrial animal fats (see manuscript Fig. 1b). We targeted potsherds with lipid concentrations that allowed the extraction of a minimum of 200 \(\mu\)g of both fatty acids when 1–10g of sherd was sampled. The available size of sherds, but also inhomogeneity in lipid distribution within the vessel wall, affected the extraction yield during the second sampling for radiocarbon analyses (e.g. Çatalhöyük East, Turkey).

The \(C_{16:0}\) and \(C_{18:0}\) fatty acids (FAs) extracted from the pottery sherds derive from animal fats absorbed by the vessel during its period of use. Both compounds should therefore give radiocarbon ages that are identical within error\(^4\). The contribution of the methyl group of fossil origin added during the simultaneous extraction and derivatization of the FAs into fatty acid methyl esters (FAMEs) was corrected by mass balance\(^6,21\). We consider that the corrected measurements on the two FAs extracted from the same pot are compatible when they are not statistically significantly different at the 5% significance level (according to Ward and Wilson\(^39\)).

Where the radiocarbon measurements on the individual FAs from a potsherd are outside these limits, the results are thought not to provide a reliable date for the sherd as one or both of the FA samples may have been contaminated by exogenous carbon during processing. As we have no way to estimate which of the radiocarbon results reflects the true age of vessel use, in such cases neither measurement has been included in the statistical modelling. Samples where the \(C_{16:0}\) and \(C_{18:0}\) FAs were isolated together in the same trap (to obtain sufficient C for dating) were also excluded from the modelling exercise.

The radiocarbon measurements on the \(C_{16:0}\) and \(C_{18:0}\) FAs that were not statistically significantly different at the 5% significance level were combined for the statistical modelling. As these were extracted from the same vessel during the same pGC run, any additional uncertainties introduced as a result of sample preparation procedures are not entirely statistically independent. Therefore, the errors for the radiocarbon ages reported for the combined fractions were calculated using the following equation:
\[
\sigma_f = \sqrt{\sigma_{wm}^2 + \sigma_{ss}^2}
\]

Where \(\sigma_f\) is the final overall uncertainty associated with the combined measurements of the FAs, \(\sigma_{wm}\) is the combined (reduced) uncertainty from the weighted mean of measurements using only the AMS uncertainty (equivalent to \(\sigma_{\text{Rmol,bl,f}}\) in Wacker et al\(^3\)), and \(\sigma_{ss}\) is the sample scatter factor to account for additional uncertainties associated with sample preparation (equivalent to \(\sigma_{\text{ex}}\) in Wacker et al\(^3\)). A value of 0.0025 was used in this study which was determined by calculating the value required to obtain a right-tailed P value of close to 0.5 from a \(\chi^2\) test of over 150 pot lipid dates (normalised such that the weighted mean of the C\(_{16:0}\) and C\(_{18:0}\) FA dates was 1 after removal of outliers outside the 1.5 IQR range). A \(\sigma_{ss}\) value of 0.0025 yielded a right-tailed P value of 0.585.

Readers wishing to utilise radiocarbon measurements reported in this paper should use the corrected and combined radiocarbon results e.g. BRAMS-1520 (5110 ± 25 BP) is the conventional radiocarbon age for pot SW1 (or SWD1299) from the Sweet Track.

SI 2. Sweet Track, Somerset, UK

The Sweet Track is an elevated wooden trackway, c. 2.1km in length, which crossed the Somerset Levels in south-west England between the Polden Hills and Westhay Island\(^3\). Dendrochronology has determined that it was constructed between the winter of 3807/6 BC and the spring of 3806 BC, with evidence of repair between 3804 and 3800 BC\(^1\). It has been suggested that the track may only have been used for about a decade, before it became unusable as a result of flooding in the winter and summer reed growth\(^3\) (Coles 1999\(^3\), p164).

These precise dates for the construction and use of the Sweet Track can be applied to the artefacts (e.g. pottery, flints and tools) recovered adjacent to the track, although we do not know that they are precisely contemporary. The pottery vessels may include lipids accumulated over the use life of the vessels, the duration of which is unknown, and we do not know when within the use life of the trackway the pottery vessels were deposited. But this association, which is probably within a few years, represents the best archaeological situation available. The pottery assemblage consisted entirely of fine wares of the early Neolithic Bowl tradition. Thirteen potsherds (SW1–SW13) from nine vessels were sampled for organic residue analysis (Berstan et al\(^2\)) , Table 1), most of which were recovered from near the southern end of the trackway\(^9,40\).

Two of these sherds, SW1 (vessel SWD 1299) and SW2 (vessel SWC 124), were analysed as part of this project (Table s1). Each sherd produced statistically consistent radiocarbon measurements on the C\(_{16:0}\) and C\(_{18:0}\) fatty acids (Table s1; \(T'=0.0, T'(5%)=3.8, \nu=1\) for both\(^3\)). The combined results on the lipids are statistically indistinguishable from those included in IntCal13 for the relevant decade (UB-1198, 5020±23 BP; GrN-9024, 5058±18 BP; QL-11528, 5083±17 BP with total errors estimated using the multipliers suggested by Reimer et al\(^4\) (table 1); \(T'=9.0, T'(5%)=9.5, \nu=4\)), and also with the interpolated value for 5755 cal BP (3806 BC) from IntCal13 (\(T'=4.1, T'(5%)=6.0, \nu=2\)).

But these are not replicate measurements on the same material, so we combine the dates on the decadal and bi-decadal blocks of wood included in IntCal13 with the measurements on the lipids (see manuscript Fig. 2c). Although the dates are in agreement with the interpretation of these samples as contemporaneous (Acomb: 50.9; An: 31.6; n: 5), in this model UB-1198 has poor individual agreement (A: 29), probably because of the bi-decadal bandwidth of this sample. It is
clear however, that the combined results on the lipids are compatible with the
dendrochronological date on the timbers of the trackway (see manuscript Fig. 2c).
Table s1. Lipid concentration, stable isotope ratios (measured by gas chromatography-combustion-stable isotope ratio mass spectrometry17), conventional radiocarbon ages (as defined by Stuiver and Polach32 and calculated according to Wacker \textit{et al.}33) and statistical consistency (χ^2 test, n=2 independent 14C ages) on lipids extracted from pottery vessels associated with the Sweet Track.

| Pot# | Description | Lipid Ca (µg/g) | Area16:0/18:0 | δ^{13}C16:0 (%) | δ^{13}C18:0 (%) | Δ^{13}C (%) | Assignment | Compound dated | Laboratory # | Conventional radiocarbon age (BP) | Statistical consistency |
|------|--|-------------------------------|----------------|-----------------|-----------------|-----------------|----------------|-----------------|----------------|---------------------|------------------------|---------------------|
| SW1 | Complete refitted profile of a carinated bowl (SWD1299, 130/1986/2453) | 13806 | 0.9 | -30.1 | -32.8 | -2.7 | Ruminant adipose fats | C\textsubscript{16:0} | BRAMS-1520.1.1 | 5,105 ± 33 | T* = 0.0, T5% = 3.8, v = 1 |
| | | | | | | | C\textsubscript{18:0} | BRAMS-1520.1.2 | BRAMS-1520 | 5,114 ± 32 | |
| | | | | | | | Combined | BRAMS-1520 | BRAMS-1520 | 5,110 ± 25 | |
| SW2 | Complete refitted profile of a carinated bowl (SWC124, 130/1986/2452) | 4900 | 0.9 | -28.8 | -33.6 | -4.8 | Dairy fats | C\textsubscript{16:0} | BRAMS-1521.1.1 | 5,089 ± 38 | T* = 0.0, T5% = 3.8, v = 1 |
| | | | | | | | C\textsubscript{18:0} | BRAMS-1521.1.2 | BRAMS-1521 | 5,094 ± 32 | |
| | | | | | | | Combined | BRAMS-1521 | BRAMS-1521 | 5,092 ± 23 | |

* $^{16:0}$ and $^{18:0}$ conventional radiocarbon age statistically identical at the 5% significant level33
SI 3. Çatalhöyük East, Turkey

Marcinak et al.11 present a Bayesian chronological model for late Neolithic deposits in the TP Area of the east mound at Çatalhöyük, Turkey. Fifty of the 56 radiocarbon measurements from this area of the site are incorporated in this model with the recorded stratigraphic sequence in this part of the mound (Marcinak et al., figs 2–3 and table 1).

As part of this study, radiocarbon measurements were obtained on C\textsubscript{16:0} and C\textsubscript{18:0} fatty acids extracted from 15 pottery sherds from this sequence (Table s2). Four of the dated sherds come from units that have already produced radiocarbon dates, and the rest come from units that can be placed within the stratigraphic sequence of dated deposits (ED Fig. 1).

The measurements on only four sherds meet the quality assurance criteria employed in this study. For the remaining potsherds, one failed the internal criteria, one had combined C\textsubscript{16:0} and C\textsubscript{18:0} in the same trap (thus there was no possible quality criterion) and the nine remaining had a small amount of extracted C (\(<100 \mu g\)) for at least one of the targets could not. For this study 200 µg blanks were prepared, and so these small targets could not be reliably blank corrected using them. They were measured and reported in Table s2, however, to assess whether the 100 µg cut-off was appropriate. This issue likely came from the small sherd sizes available for sampling and potential inhomogeneous lipid distribution within them.

When the four dates which passed the quality control are included the model for the Neolithic deposits in the TP Area (cf. Marcinak et al., fig 2), the model has poor overall agreement (Amodel: 53; model not shown). Two dates have poor individual agreement: BRAMS-1703 (TP.P13) (A: 16) and UCLAMS-96506 (A: 21). The stratigraphic position of this sherd is clearly forcing the posterior distribution of BRAMS-1703 (TP.P13) in this model to be much later than the radiocarbon date itself would suggest. Since the two dates on samples of refitting sherds have good individual agreement in this model (BRAMS-1699 (TP.N10), A: 115; BRAMS-1546 (TP.O23), A: 140), it seems likely that TP.P13 is reworked in the midden from which it was recovered.

When this interpretation is included in a revised model for the Neolithic deposits in the TP Area, with TP.P13 included as a \textit{terminus post quem} for unit 13522, the model has good overall agreement (Amodel: 69; ED Fig. 2) and all four dates on absorbed residues have good individual agreement (BRAMS-1699 (TP.N10), A: 115; BRAMS-1703 (TP.P13), A: 112; BRAMS-1546 (TP.O23), A: 141; and BRAMS-1654 (TP.M17), A: 83).

BRAMS-1546 is on a residue from three refitting sherds and was found in the same midden deposit as an articulating sheep left humerus and radius that has also been dated (Poz-40796, 7310 ± 50 BP). These measurements are again statistically consistent at the 5% significance level (T'\(=0.0\), T'(5%)\(=3.8\), \(v=1\)), although again there are archaeological uncertainties about the duration of midden accumulation and the time width of the sampled material (although both are likely to amount to a few decades at most).

We have investigated how far the reported results on the absorbed lipids would have to change before the indices of agreement in the model shown in ED Fig. 2 would identify them as inaccurate, by deliberately biasing each measurement to varying degrees (e.g. a 1 sigma bias younger for BRAMS-1654 = 7351 ± 31 BP). The results are summarised in Table s3. For BRAMS-1546 we also report the statistical consistency of the deliberately biased measurement with Poz-40796 (T'(5%)\(=3.8\), \(v=1\) for all).
Table 2. Lipid concentration, stable isotope ratios (measured by gas chromatography-combustion-stable isotope ratio mass spectrometry[5], conventional radiocarbon ages (as defined by Stuiver and Polach[32] and calculated according to Wacker et al.[35]) and statistical consistency (\(\chi^2\) test, n=2 independent \(1^4\)C ages on the C\textsubscript{16:0} and C\textsubscript{18:0} FAs) on lipids extracted from pottery vessels from Çatalhöyük East, TA area.

<table>
<thead>
<tr>
<th>Pot#</th>
<th>Description</th>
<th>Lipid C\textsubscript{o} (µg/g)</th>
<th>AreaC\textsubscript{16:0}/AreaC\textsubscript{18:0}</th>
<th>(\delta^{13})C\textsubscript{16:0} (‰)</th>
<th>(\delta^{13})C\textsubscript{18:0} (‰)</th>
<th>(\Delta^{13})C (‰)</th>
<th>Assignment</th>
<th>Compound dated</th>
<th>Laboratory #</th>
<th>Conventional radiocarbon age (BP)</th>
<th>Statistical consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP.M12</td>
<td>Single sherd (S1) of a bowl from midden 17670l in Sp.420, level M</td>
<td>115</td>
<td>0.3</td>
<td>-28.4</td>
<td>-28.8</td>
<td>-0.4</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1698.1.1</td>
<td>7.154 ± 35</td>
<td></td>
</tr>
<tr>
<td>TP.M17</td>
<td>Single sherd (S5) of a holemouth/deep jar from midden 17670 in Sp.420, level M</td>
<td>393</td>
<td>0.2</td>
<td>-24.1</td>
<td>-24.5</td>
<td>-0.4</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1654.1.1</td>
<td>7.338 ± 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1654.1.2</td>
<td>7.416 ± 39</td>
<td></td>
</tr>
<tr>
<td>TP.M24</td>
<td>Single sherd (S8) of a bowl from midden 17617 in Sp.420, level M</td>
<td>992</td>
<td>0.4</td>
<td>-25.9</td>
<td>-26.5</td>
<td>-0.6</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1657.1.1</td>
<td>7.234 ± 46</td>
<td></td>
</tr>
<tr>
<td>TP.N02</td>
<td>Two refitting sherds (S3) of a bowl from cluster 17690 in B.103, level N</td>
<td>362</td>
<td>0.5</td>
<td>-25.2</td>
<td>-26.6</td>
<td>-1.3</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1658.1.1</td>
<td>6.963 ± 47</td>
<td></td>
</tr>
<tr>
<td>TP.N10</td>
<td>Two refitting sherds (S2) of a holemouth/deep jar from cluster 17809 in B.103, level N</td>
<td>575</td>
<td>0.5</td>
<td>-25.3</td>
<td>-27.0</td>
<td>-1.7</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1699.1.1</td>
<td>7.318 ± 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1699.1.2</td>
<td>7.337 ± 26</td>
<td></td>
</tr>
<tr>
<td>TP.O09</td>
<td>Two refitting sherds (S3) of a bowl from fill 17630 of pit F.6015 in B.72, level O</td>
<td>310</td>
<td>0.3</td>
<td>-25.3</td>
<td>-26.3</td>
<td>-1.0</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1656.1.1</td>
<td>7.099 ± 66</td>
<td></td>
</tr>
<tr>
<td>TP.O15</td>
<td>Single sherd (S12) of a holemouth/deep jar from layer 15939 in Sp.327, level O</td>
<td>327</td>
<td>0.3</td>
<td>-24.3</td>
<td>-25.5</td>
<td>-1.2</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1655.1.1</td>
<td>7.354 ± 51</td>
<td></td>
</tr>
<tr>
<td>TP.O23</td>
<td>Three refitting sherds (S30) of a holemouth/deep jar from fill 17630 of pit F.6017 in B.72, level O</td>
<td>1390</td>
<td>0.3</td>
<td>-25.2</td>
<td>-27.0</td>
<td>-1.8</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1546.1.1</td>
<td>7.290 ± 36</td>
<td></td>
</tr>
<tr>
<td>TP.P07</td>
<td>Single sherd (S40) of a holemouth/deep jar from infill 13522 in B.73, level P</td>
<td>640</td>
<td>0.7</td>
<td>-25.0</td>
<td>-27.8</td>
<td>-2.8</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1701.1.2</td>
<td>7.230 ± 35</td>
<td></td>
</tr>
<tr>
<td>TP.P13</td>
<td>Single sherd (S23) of a holemouth/deep jar from infill 13522 in B.73, level P</td>
<td>362</td>
<td>0.6</td>
<td>-22.3</td>
<td>-24.3</td>
<td>-2.1</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1703.1.1</td>
<td>7.328 ± 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1703.1.2</td>
<td>7.394 ± 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1703</td>
<td>7.364 ± 25</td>
<td></td>
</tr>
<tr>
<td>TP.P14</td>
<td>Single sherd (S5) of a holemouth/deep jar from infill 13522 in B.73, level P</td>
<td>715</td>
<td>0.4</td>
<td>-22.6</td>
<td>-25.9</td>
<td>-3.3</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1591.1.1</td>
<td>7.021 ± 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1591.1.2</td>
<td>7.271 ± 32</td>
<td></td>
</tr>
<tr>
<td>TP.Q05</td>
<td>Single sherd (S13) of a holemouth/deep jar from midden 7841 in Sp.414, level Q</td>
<td>915</td>
<td>0.8</td>
<td>-27.7</td>
<td>-26.7</td>
<td>-2.0</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1545.1.1</td>
<td>6.717 ± 55</td>
<td></td>
</tr>
<tr>
<td>TP.Q06</td>
<td>Single sherd (S2) of a holemouth/deep jar from midden 7841 in Sp.414, level Q</td>
<td>331</td>
<td>0.3</td>
<td>-25.5</td>
<td>-27.4</td>
<td>-1.9</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1702.1.2</td>
<td>7.223 ± 32</td>
<td></td>
</tr>
<tr>
<td>TP.Q07</td>
<td>Single sherd (S6) of a holemouth/deep jar from midden 7841 in Sp.414, level Q</td>
<td>471</td>
<td>0.5</td>
<td>-24.3</td>
<td>-25.8</td>
<td>-1.5</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1700.1.2</td>
<td>7.072 ± 36</td>
<td></td>
</tr>
<tr>
<td>TP.R09</td>
<td>Single sherd (S1) of a holemouth/deep jar from midden 7867 in Sp.412, level Q</td>
<td>989</td>
<td>0.3</td>
<td>-25.2</td>
<td>-26.5</td>
<td>-1.3</td>
<td>Ruminant adipose fats C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>Combined</td>
<td>BRAMS-1592.1.1</td>
<td>7.012 ± 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRAMS-1592.1.2</td>
<td>7.299 ± 38</td>
<td></td>
</tr>
</tbody>
</table>

* C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically identical at the 5% significant level[33]
X C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically different at the 5% significant level[33]
◊ refers to compound that generated target with a mass of C below 100 µg. For this study 200 µg blanks were prepared, and so these small targets cannot be reliably blank-corrected using them. They were measured, however, to assess whether the 100 µg cut-off was appropriate.
On this basis we consider that this model is likely to have identified inaccuracies in the lipid dates at least as effectively as measurements on paired materials. It appears to be particularly sensitive to younger bias in BRAMS-1654.

Table s3. Agreement indices and χ^2 test (n=2 independent 14C ages) for the combined lipid measurements deliberately biased as described in the text for Çatalhöyük East, TP area (form of model illustrated in ED Fig. 2); orange denotes poor agreement/statistically inconsistent at more than the 5% significance level.

<table>
<thead>
<tr>
<th></th>
<th>A / T'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRAMS-1699</td>
</tr>
<tr>
<td>1 sigma bias younger</td>
<td>56</td>
</tr>
<tr>
<td>1 sigma bias older</td>
<td>71</td>
</tr>
<tr>
<td>2 sigma bias younger</td>
<td>40</td>
</tr>
<tr>
<td>2 sigma bias older</td>
<td>68</td>
</tr>
<tr>
<td>3 sigma bias younger</td>
<td>26</td>
</tr>
<tr>
<td>3 sigma bias older</td>
<td>63</td>
</tr>
<tr>
<td>4 sigma bias younger</td>
<td>15</td>
</tr>
<tr>
<td>4 sigma bias older</td>
<td>53</td>
</tr>
</tbody>
</table>

SI 4. Middle Neolithic ceramic sequence, Lower Alsace, France/Germany

Denaire et al.12 (fig 10 and electronic supplementary material matrix 2) present a seriation of the presence of 208 decorative motifs in 190 assemblages of Middle Neolithic pottery from pits and graves in Lower Alsace. The correspondence analysis was partitioned into four phases, which are interpreted as showing a temporal sequence which can be equated with the classically defined Hinkelstein, Grossgartach, Planig-Friedberg, and Rössen typological stages. The model incorporates this sequence, and the successive Bischheim and Bruebach-Oberbergen typological stages and, finally, two of the three phases of Bischheim Occidental du Rhin Supérieur (BORS) pottery identified by a second correspondence analysis (Denaire et al.12, fig 13 and electronic supplementary material matrix 3) that produced datable material.

A total of ninety-five radiocarbon measurements are available from 84 samples from this sequence, along with two tree-ring dates from wells at Dambach. In order to ensure that the dated sample was the same age as the closed ceramic context from which it was recovered, samples of articulated human or animal bone ($n=55$), articulating animal bone ($n=4$), animal bone with refitting unfused epiphyses ($n=6$), paired bones judged to be from the same animal ($n=2$), and visible residues on pottery sherds ($n=3$) were targeted for dating. Measurements on seven disarticulated animal bones, three samples of cereal grain, and four samples of unidentified charcoal were inherited from previous work. Replicate measurements from two laboratories were obtained on nine samples, six of which were statistically consistent at the 5% significance level, with one other consistent at 1% significance level, and two divergent at more than this level of significance (Denaire et al.12, table 2). These dates were combined with the sequence of ceramic phases derived from the correspondence analyses and typological study in the Bayesian statistical model presented in Denaire et al.12 (figs 15 and 16).

Radiocarbon measurements have been obtained on $C_{16:0}$ and $C_{18:0}$ fatty acids extracted from eight pottery sherds from four features containing diagnostic assemblages of Middle Neolithic pottery from Lower Alsace (Table s4). The results on four sherds pass the quality assurance criteria used in this study, coming from three pits. Two of these features have been included in a revised correspondence analysis (manuscript Fig. 3a,b and supplementary text document “Sorted table”), although pit 50 at Rosheim-Sandgrube can only be assigned to the Grossgartach phase on typological grounds as it is a large pit complex (19m x 11m) that is clearly not a closed assemblage.
Table s4: Lipid concentration, stable isotope ratios (measured by gas chromatography-combustion-stable isotope ratio mass spectrometry15) conventional radiocarbon ages (as defined by Stuiver and Polach12 and calculated according to Wacker \textit{et al.}13) and statistical consistency (χ^2 test, n=2 independent 13C ages on the C\textsubscript{16:0} and C\textsubscript{18:0} FAs) on lipids extracted from pottery vessels of the Grossgartach and Rössen ceramic phases.

<table>
<thead>
<tr>
<th>Pot#</th>
<th>Description</th>
<th>Lipid C\textsubscript{18:0} (µg/g)</th>
<th>Area\textsubscript{C16:0}/Area\textsubscript{C18:0}</th>
<th>δ^{13}C\textsubscript{16:0} (‰)</th>
<th>δ^{13}C\textsubscript{18:0} (‰)</th>
<th>Δ^{13}C (‰)</th>
<th>Assignment</th>
<th>Compound dated</th>
<th>Laboratory #</th>
<th>Conventional radiocarbon Age (BP) (mean ± 1SD)</th>
<th>Statistical consistency (χ^2 test, n=2 independent 13C ages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROS-C-4644</td>
<td>Single sherd of a fine kumpf from pit 50, square H4, Rosheim “Sandgrube”, Grossgartach</td>
<td>6064</td>
<td>0.4</td>
<td>-26.5</td>
<td>-28.9</td>
<td>-2.4</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}</td>
<td>BRAMS-1525.1, 1.1</td>
<td>5,937 ± 33</td>
<td>T=0.0, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>ROS-C-4648</td>
<td>Five refitted sherds of a coarse kumpf from pit 50, square J7, Rosheim “Sangrube”, Grossgartach</td>
<td>1001</td>
<td>0.7</td>
<td>-27.0</td>
<td>-24.6</td>
<td>2.4</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}</td>
<td>BRAMS-1544.1.1</td>
<td>5,815 ± 39</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4649</td>
<td>Single sherd of a coarse kumpf from pit 50, square K8, Rosheim “Sandgrube”, Grossgartach</td>
<td>2596</td>
<td>1.1</td>
<td>-26.1</td>
<td>-28.6</td>
<td>-2.5</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1528.1.1, 1.2</td>
<td>5,679 ± 35</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4657</td>
<td>Single sherd of a coarse kumpf from pit 50, Rosheim “Sandgrube”, Grossgartach</td>
<td>1914</td>
<td>0.6</td>
<td>-26.8</td>
<td>-28.7</td>
<td>-0.8</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1524.1, 2.1, 2.2</td>
<td>5,892 ± 32</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4596</td>
<td>Single sherds of a coarse kumpf from pit 122, Rosheim “Laser”, Grossgartach</td>
<td>973</td>
<td>1.2</td>
<td>-26.9</td>
<td>-29.6</td>
<td>-2.6</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1526.1, 1.2</td>
<td>5,810 ± 30</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4600</td>
<td>Two refitted sherds of a coarse kumpf from pit 63, square 23 Rosheim “Mittelweg”, Grossgartach</td>
<td>4163</td>
<td>0.7</td>
<td>-27.1</td>
<td>-29.4</td>
<td>-2.3</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1527.3, 1.1</td>
<td>5,897 ± 36</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4622</td>
<td>Single sherds of a coarse kumpf from pit 200, square 25, Rosheim “Mittelweg”, Rössen</td>
<td>1183</td>
<td>0.7</td>
<td>-27.8</td>
<td>-32.6</td>
<td>-4.8</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1529.1.1</td>
<td>5,809 ± 32</td>
<td></td>
</tr>
<tr>
<td>ROS-C-4629</td>
<td>Two refitted sherds of a coarse kumpf from pit 200, square 6, Rosheim “Mittelweg”, Rössen</td>
<td>2032</td>
<td>0.3</td>
<td>-28.9</td>
<td>-32.2</td>
<td>-3.2</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0}/C\textsubscript{18:0}</td>
<td>BRAMS-1533.1.1</td>
<td>5,763 ± 35</td>
<td></td>
</tr>
</tbody>
</table>

* C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically identical at the 5% significant level13 X C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically different at the 5% significant level13

◊ refers to compound that generated target with a mass of C below 100 µg. For this study 200 µg blanks were prepared, and so these small targets cannot be reliably blank-corrected using them. They were measured, however, to assess whether the 100 µg cut-off was appropriate.
Fig. 3c of the manuscript shows the first part of a chronological model which combines the available radiocarbon dates with the revised seriation illustrated in Fig. 3b (main manuscript). This part of the model is equivalent to that defined by Denaire et al.12 (fig 15), the second part of the model is identical to that shown in Denaire et al.12 (fig 16). The revised model has good overall agreement (A_{model}: 100). Three of the dates on absorbed lipids have good individual agreement in this model (BRAMS-1527 (Ros.MW63), A: 98; BRAMS-1526 (Ros.L122), A: 112; and BRAMS-1524 (Ros.S50), A: 90), although the fourth has slightly poor individual agreement (BRAMS-1525 (Ros.S50), A: 46). It is possible that this single sherd is residual, although it could simply be a statistical outlier.

We have again investigated how far the reported results on the absorbed lipids would have to change before the indices of agreement in the model illustrated in manuscript Fig. 3c would identify them as inaccurate, by deliberately biasing each measurement to varying degrees. The results are summarised in Table s5.

On this basis we consider that it is likely that this model would identify any substantive inaccuracies in the new measurements, and that it is likely to be more sensitive to small biases than paired measurements on associated materials.

Table s5. Agreement indices for the combined lipid measurements deliberately biased as described in the text for the Middle Neolithic in Alsace (form of model illustrated in manuscript Fig. 3c); orange denotes poor agreement.

<table>
<thead>
<tr>
<th></th>
<th>Amodel</th>
<th>BRAMS-1524</th>
<th>BRAMS-1525</th>
<th>BRAMS-1526</th>
<th>BRAMS-1527</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sigma bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>younger</td>
<td>107</td>
<td>96</td>
<td>90</td>
<td>102</td>
<td>99</td>
</tr>
<tr>
<td>older</td>
<td>72</td>
<td>34</td>
<td>10</td>
<td>122</td>
<td>50</td>
</tr>
<tr>
<td>2 sigma bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>younger</td>
<td>103</td>
<td>115</td>
<td>88</td>
<td>73</td>
<td>126</td>
</tr>
<tr>
<td>older</td>
<td>40</td>
<td>6</td>
<td>113</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3 sigma bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>younger</td>
<td>94</td>
<td>135</td>
<td>119</td>
<td>31</td>
<td>130</td>
</tr>
<tr>
<td>older</td>
<td>30</td>
<td>4</td>
<td>1</td>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>4 sigma bias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>younger</td>
<td>77</td>
<td>112</td>
<td>136</td>
<td>6</td>
<td>108</td>
</tr>
<tr>
<td>older</td>
<td>23</td>
<td>6</td>
<td>2</td>
<td>107</td>
<td>10</td>
</tr>
</tbody>
</table>

SI 5. Linearbandkeramik pottery in NW Europe

Radiocarbon measurements have been made on absorbed C_{16:0} and C_{18:0} fatty acids from 22 sherds of Linearbandkeramik (LBK) pottery (Meier-Arendt42, Table s6). These come from sixteen features from nine sites which lay across the northern and western parts of the LBK oecumene. Twelve sherds produced results that pass the quality assurance criteria used in this study.

A model which simply incorporates the information that all these samples date to within the period of use of LBK ceramics is shown in ED Fig. 3. It has good overall agreement (A_{model}: 88). It suggests that LBK pottery began to be used in 5385–5225 cal BC (95% probability; start LBK lipid; ED Fig. 3), probably in 5350–5300 cal BC (38% probability) or 5285–5235 cal BC (30% probability), and that its use ended in 5210–5010 cal BC (95% probability; end LBK lipid; ED Fig. 3), probably in 5205–5100 cal BC (68% probability).

Formal chronological models are currently available for only some aspects of LBK pottery. Jakucs <i>et al.</i>13 present three alternative models for the appearance of Formative and earliest (älteste) LBK ceramics in the western part of its distribution. The sherds sampled for absorbed lipids come from the Western and Eastern areas defined by Jakucs <i>et al.</i>13 for their Model 3, and all belong to the period when LBK pottery occurred over wide areas of NW Europe. No sherds have been dated that are assigned to the Formative typological phase. We therefore compare the
parameter *start LBK lipid* (ED Fig. 3) with the estimated dates for the start of the earliest *(älteste)* LBK ceramics in the Western area *(start earliest west: ED Fig. 4)* and Eastern area *(start earliest east: ED Fig. 4)* from Jakucs *et al.*13 (Model 3). The dates on absorbed fatty acids have clearly provided comparable results, although the sherds sampled for fatty acids have not been restricted to those that can be allocated by typology to the earliest phase of LBK pottery, and so it is not unexpected that the estimated start date for the period when the lipids accumulated is generally a few decades later than the date estimates for the appearance of the first LBK ceramics in these regions. For the lipid analysis and dating, the samples have been taken from the earliest LBK ceramics (with dairy residues) on the sites sampled, whereas Jakucs *et al.*13 confine their modelling to the earliest *(älteste)* typological phase of LBK pottery. The two models are not estimating the start of exactly the same period of past activity.

This is illustrated further by comparison with the estimated dates for the first LBK ceramics in Lower Alsace, where pottery of the earliest *(älteste)* typological phase does not occur, that have been derived from a model which combines the available radiocarbon dates with the seriation by correspondence analysis of the associated ceramic assemblages (Denaire *et al.*12, figs 5, 8, and electronic supplementary material matrix 1). This model allows for a gradual appearance of LBK ceramics in Lower Alsace (using a flexible trapezium distribution13), so two parameters are relevant: *start LBK IIb*, which estimates the date when the very first LBK pottery appeared in Alsace, and *end start LBK IIb*, which estimates the date when the tradition became fully established. These date estimates are again, clearly comparable with the date estimate for the first LBK pottery calculated only from the radiocarbon dates on fatty acids absorbed in sherds (ED Fig. 4).

These formal chronological models are so far available only for the LBK sequence in Lower Alsace12, and for the first appearance of this pottery type in some areas of Northern Europe13. For this reason, currently it is not possible to compare the dates on the absorbed fatty acids with the dating of this pottery in the Paris Basin, in the Lower Rhineland, or in north-western Poland.

For this model we have investigated how far the reported results on the absorbed lipids would have to change before the key parameters discussed above differ substantively. Again, we have deliberately biased each measurement on absorbed lipids by varying degrees. In this case we examine the overlap of key parameters (ED Fig. 4). This application is, unsurprisingly, more sensitive to an older bias in the measurements, with the median of *start LBK lipid* (ED Fig. 4) falling earlier than the medians of the other comparable parameters considered here when ages are biased by 2σ. In contrast the median of this parameter does not fall after all the medians of the comparable parameters until ages are biased by 4σ (ED Fig. 4).
Table s6. Lipid concentration, stable isotope ratios (measured by gas chromatography-combustion-stable isotope ratio mass spectrometry7), conventional radiocarbon ages (as defined by Stuiver and Polach12 and calculated according to Wacker et al.13) and statistical consistency (\(\chi^2\) test, \(n=2\) independent \(^{14}\)C ages on the C\textsubscript{16:0} and C\textsubscript{18:0} FAs) on lipids extracted from LBK pottery sherds. The assigned phases are from classic scheme LBK chronology (Meier-Arendt6), Ensisheim “Ratfeld” (ENS, Alsace, France), Cuiry-lès-Chaudardes “Les Fontinettes” (CUI, Aisne, France), Königshoven 14 (KON, Rhineland, Germany), Gelen-Janskaperveld (GEI, Graethede, The Netherlands), Maastricht-Klinkers (MAK, Heeswater, The Netherlands), Karwovo 1 (KAR, West Pomerania, Poland) and Ludwinowo ? (LDW, Kuyavia, Poland).

<table>
<thead>
<tr>
<th>Pot#</th>
<th>Description</th>
<th>Lipid C\textsubscript{o} (ug/g)</th>
<th>AreaC\textsubscript{cho}</th>
<th>AreaC\textsubscript{cho}/</th>
<th>(\delta^{13})C\textsubscript{choe} (%)</th>
<th>(\delta^{13})C\textsubscript{cho} (%)</th>
<th>Assignment</th>
<th>Compound dated</th>
<th>Laboratory #</th>
<th>Conventional radiocarbon Age (BP)</th>
<th>Statistical consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENS-C-5913 Single sherd (1106-TRC-9-4) of a coarse kumpf from pit 9, early LBK, ENS</td>
<td>1177</td>
<td>0.6</td>
<td>-27.3</td>
<td>-30.9</td>
<td>-3.6</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1915.1</td>
<td>6,348 ± 31</td>
<td>T=1.0, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>ENS-C-5915 Single sherd (1106-TRC-9-11) of a coarse kumpf from pit 9, early LBK, ENS</td>
<td>771</td>
<td>0.8</td>
<td>-26.4</td>
<td>-29.6</td>
<td>-3.2</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1916.1</td>
<td>6,314 ± 33</td>
<td>T=2.3, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>ENS-C-5934 Single sherd (1106-TRC-28-12) of a coarse kumpf from pit 29, early LBK, ENS</td>
<td>1647</td>
<td>1.0</td>
<td>-26.2</td>
<td>-29.7</td>
<td>-3.5</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1958.1</td>
<td>6,258 ± 30</td>
<td>T=0.3, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>ENS-C-5940 Single sherd (1106-TRC-28-25) of a coarse kumpf from pit 29, early LBK, ENS</td>
<td>2082</td>
<td>0.6</td>
<td>-28.7</td>
<td>-30.9</td>
<td>-2.2</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2031.1</td>
<td>6,239 ± 33</td>
<td>T=3.0, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>CUI-C-5708 Single sherd (158, 3847) of a coarse bowl from loam pit 25, final LBK, CUI</td>
<td>881</td>
<td>1.1</td>
<td>-26.6</td>
<td>-32.5</td>
<td>-5.9</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1917.1</td>
<td>6,252 ± 34</td>
<td>T=0.5, T(5%)=3.8, v=1</td>
</tr>
<tr>
<td>CUI-C-5776 Single sherd (1119, 26888) of a coarse bowl from loam pit 378, final LBK, CUI</td>
<td>3531</td>
<td>0.6</td>
<td>-30.2</td>
<td>-33.6</td>
<td>-3.4</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2020.1</td>
<td>6,142 ± 32</td>
<td></td>
</tr>
<tr>
<td>CUI-C-5801 Single sherd (1247, 29295) of a coarse bowl from loam pit 386, final LBK, CUI</td>
<td>9886</td>
<td>0.8</td>
<td>-28.2</td>
<td>-33.3</td>
<td>-5.0</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2021.1</td>
<td>6,134 ± 30</td>
<td></td>
</tr>
<tr>
<td>CUI-C-5735 Three reftiled sherds (529, 13823) of a coarse bowl from loam pit 241, final LBK, CUI</td>
<td>3417</td>
<td>1.0</td>
<td>-29.1</td>
<td>-33.9</td>
<td>-4.8</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1918.1</td>
<td>6,138 ± 37</td>
<td></td>
</tr>
<tr>
<td>KON-C-5594 Single sherd (77,162, 522-2) of a coarse kumpf from pit complex 522, late LBK, KON</td>
<td>531</td>
<td>0.6</td>
<td>-32.0</td>
<td>-34.4</td>
<td>-2.4</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2029.1</td>
<td>6,253 ± 29</td>
<td></td>
</tr>
<tr>
<td>KON-C-5598 Single sherd (77,162, 522-2) of a coarse kumpf from pit complex 522, late LBK, KON</td>
<td>1023</td>
<td>0.8</td>
<td>-31.0</td>
<td>-35.1</td>
<td>-4.1</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2026.1</td>
<td>6,106 ± 34</td>
<td></td>
</tr>
<tr>
<td>KON-C-5617 Single sherd of a coarse kumpf from pit 522, late LBK, KON</td>
<td>679</td>
<td>0.4</td>
<td>-28.5</td>
<td>-31.9</td>
<td>-3.4</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2023.1</td>
<td>6,078 ± 39</td>
<td></td>
</tr>
<tr>
<td>GEL-C-3271 Single sherd of a fine kumpf (box 21) from pit 49015, early LBK, GEL</td>
<td>1260</td>
<td>0.5</td>
<td>-30.4</td>
<td>-33.5</td>
<td>-3.2</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2027.1</td>
<td>6,500 ± 33</td>
<td></td>
</tr>
<tr>
<td>GEL-C-3276 Single sherd of a coarse kumpf (box 45) from loam pit 49015, early LBK, GEL</td>
<td>339</td>
<td>0.8</td>
<td>-31.8</td>
<td>-35.2</td>
<td>-3.4</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1923.1</td>
<td>6,142 ± 33</td>
<td></td>
</tr>
<tr>
<td>GEL-C-3298 Single sherd of a coarse kumpf (box 41) from pit 53010.04, early LBK, GEL</td>
<td>577</td>
<td>0.5</td>
<td>-29.0</td>
<td>-31.8</td>
<td>-2.8</td>
<td>Ruminant adipose fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2032.1</td>
<td>6,188 ± 31</td>
<td></td>
</tr>
<tr>
<td>GEL-C-3299 Single sherd of a coarse kumpf (box 41) from pit 53010.05, early LBK, GEL</td>
<td>2743</td>
<td>0.4</td>
<td>-30.0</td>
<td>-33.1</td>
<td>-3.1</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1924.1</td>
<td>6,304 ± 32</td>
<td></td>
</tr>
<tr>
<td>MAK-C-3094 Single sherd (501) of a fine kumpf from pit 207, final LBK, MAK</td>
<td>7672</td>
<td>0.4</td>
<td>-27.8</td>
<td>-27.5</td>
<td>0.4</td>
<td>Non-ruminant adipose fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2022.1</td>
<td>6,002 ± 30</td>
<td></td>
</tr>
<tr>
<td>MAK-C-3099 Single sherd (501) of a coarse bowl from pit 207, final LBK, MAK</td>
<td>494</td>
<td>0.6</td>
<td>-29.0</td>
<td>-32.4</td>
<td>-3.4</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-1922.1</td>
<td>6,300 ± 37</td>
<td></td>
</tr>
<tr>
<td>KAR-C-3636 Single sherd of a coarse kumpf from pit 47, trench 2A, LBK, KAR</td>
<td>3316</td>
<td>0.9</td>
<td>-26.0</td>
<td>-26.9</td>
<td>-0.9</td>
<td>Non-ruminant adipose fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2028.1</td>
<td>6,176 ± 30</td>
<td></td>
</tr>
<tr>
<td>KAR-C-3677 Two reftiled sherds of a coarse kumpf from pit 43, LBK, KAR</td>
<td>1900</td>
<td>1.3</td>
<td>-26.4</td>
<td>-30.7</td>
<td>-4.3</td>
<td>Dairy fats</td>
<td>C\textsubscript{16:0} \textsubscript{oo}</td>
<td>Combined</td>
<td>BRAMS-2025.1</td>
<td>6,214 ± 32</td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2\) test, \(n=2\) independent \(^{14}\)C ages on the C\textsubscript{16:0} and C\textsubscript{18:0} FAs.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>C16:0</th>
<th>C18:0</th>
<th>Dairy Fats</th>
<th>δC</th>
<th>BRAMS-1920.1.1</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOP-C-2949</td>
<td>Full profile of a fine kumpf (242), pit 25B, LBK, KOP</td>
<td>548</td>
<td>2.4</td>
<td>-25.5</td>
<td>-29.4</td>
<td>-3.9</td>
<td>Dairy fats</td>
</tr>
<tr>
<td>LDW-C-2267</td>
<td>Single sherd (A/484) of a coarse kumpf from pit A49, middle LBK, LDW</td>
<td>323</td>
<td>0.5</td>
<td>-26.6</td>
<td>-29.2</td>
<td>-2.6</td>
<td>Non-ruminant adipose fats</td>
</tr>
<tr>
<td>LDW-C-2272</td>
<td>Single sherd (A/26) of a coarse vessel from loam pit A49, middle LBK, LDW</td>
<td>1628</td>
<td>0.2</td>
<td>-25.7</td>
<td>-29.7</td>
<td>-4.0</td>
<td>Dairy fats</td>
</tr>
</tbody>
</table>

C16:0 and C18:0 conventional radiocarbon age statistically identical at the 5% significant level[^33^]

X C16:0 and C18:0 conventional radiocarbon age statistically different at the 5% significant level[^33^]

◊ refers to compound that generated target with a mass of C below 100 µg. For this study 200 µg blanks were prepared, and so these small targets cannot be reliably blank-corrected using them. They were measured, however, to assess whether the 100 µg cut-off was appropriate.
SI 6. Middle Pastoral Neolithic occupation at Takarkori rockshelter, Libya

The Takarkori rock shelter is an early to middle Holocene site in the Tadrart Acacus Mountains, SW Libya (ED Fig. 5).

The archaeological deposit is the result of repeated occupation of the most protected part of the shelter, a roughly rectangular surface c. 26 x 15 m (~400 m²) of a settled area that must have reached over 2000 m². The stratigraphy is highly disturbed by recent Tuareg occupation and by sin-depositional and ancient post-depositional phenomena, including the repeated use of the internal area of the shelter as burial site. A basic distinction between archaeological layers, can be made between those mainly represented by ‘matrix’ and those that are ‘fixture’ (sensu Biagetti and di Lernia 2013), whose depositional histories differ strongly. Given the high rate of disturbance and the ‘matrix’ nature of the dominant type of layer called “organic sands” – incoherent loose sediments made of quartz grains and abundant organic material (e.g., plant remains, charcoal, bones) – the stratigraphic control of the archaeological features has been confirmed by a series of radiocarbon dates. In particular, a series of samples have been dated associated with the Middle Pastoral occupation at Takarkori (Table s7).

The sherds analysed for this study all come from organic sands and show typical Middle Pastoral decoration (ED Fig. 6b); most usually APS (Alternate Pivoting Stamp) in the ‘return’ technique variant (TAK120, TAK443, and TAK1572), the APS impression with triangular dots (TAK420) and a sherd with rocker plain edge impression resulting in the fishnet pattern (TAK21). All the specimens are medium/thin walled (4 to 7 mm maximum thickness) with a general convex profile, probably deriving from simple globular/rounded bowls. Typologically the decorations outlined are all compatible with the chronological horizon of the long Middle Pastoral, and analogous specimens (for instance to TAK21 (rocker–plain–fishnet pattern)) all come from layers of the same chrono-cultural attribution. Decorations in the “return” technique are particularly diagnostic of this cultural period, as attested not only in the pottery assemblage from Tarkarkori, but also from other sites with similar ceramics (e.g., from the Uan Muhuggiag shelter assemblage, see Barich).

Absorbed C₁₆₆₀ and C₁₈₈₀ fatty acids have been dated from five single decorated sherds of Middle Pastoral period type, all producing results that pass the quality assurance criteria adopted in this study (Table s8).

A model which incorporates these dates with those from other materials associated with the Middle Pastoral Neolithic at Takarkori has good overall agreement (Amodel: 102; ED Fig. 6d), and all five dates on absorbed fatty acids have good individual agreement (BR-AMS-2610 (TAK443), A: 101; BR-AMS-2609 (TAK420), A:100; BR-AMS-2608 (TAK120), A: 101; BR-AMS-1522 (TAK21), A: 100; and BR-AMS-1523 (TAK1572), A:98). It suggests that the Middle Pastoral period began there in 5290–4875 cal BC (95% probability; start Takarkori MP; ED Fig. 6d), probably in 5105–4925 cal BC (68% probability). This cultural period ended at Takarkori in 3930–3545 cal BC (95% probability; end Takarkori MP; ED Fig. 6d), probably in 3865–3705 cal BC (68% probability). The Middle Pastoral period on the site lasted for well over 1000 years (1025–1645 years (95% probability; use Takarkori MP; distribution not shown), probably for 1115–1385 years (68% probability)).
| Pot# | Description | Lipid C\(^\circ\) (µg/g) | AreaC\(^\circ\)/AreaC\(^{13}\) | \(\delta^{13}C_{\text{lipid}}\) (‰) | \(\delta^{13}C_{\text{Bone}}\) (‰) | \(\Delta^{13}C\) (‰) | Assignment | Compound dated | Laboratory # | Conventional radiocarbon age (BP) | Statistical consistency |
|------|-------------|-----------------|------------------|-----------------|-----------------|-----------------|-------------|--------------|-------------|-----------------|-----------------|-----------------|-------------|
| TAK21 | Single sherd with plain edge fishnet decoration (21) from layer 25, square T23, Middle Pastoral Neolithic | 5830 | 1.6 | -14.7 | -20.5 | -5.8 | Dairy fats | C\(^{13}\)O | BRAMS-1522.1.1 | 5,362 ± 33 | * |
| TAK21 | | | | | | | | C\(^{13}\)O Combined | BRAMS-1522.1.2 | 5,331 ± 32 | 5,348 ± 24 |
| TAK21 | | | | | | | | BRAMS-1523.1.1 | 5,099 ± 38 | * |
| TAK1572 | Single sherd with APS return decorations (1572) from layer 245, square S33, Middle Pastoral Neolithic | 3149 | 1.2 | -23.7 | -28.2 | -4.5 | Dairy fats | C\(^{13}\)O | BRAMS-1523.1.2 | 5,071 ± 32 | 5,085 ± 24 |
| TAK1572 | | | | | | | | BRAMS-1523.1.3 | 5,071 ± 32 | * |
| TAK1572 | | | | | | | | BRAMS-1525 | 5,071 ± 32 | * |
| TAK120 | Refitted sherds with APS return decorations (120) from layer 25, square U27, Middle Pastoral Neolithic | 5593 | 1.5 | -15.2 | -18.7 | -3.5 | Dairy fats | C\(^{13}\)O | BRAMS-2608.1.1 | 6,008 ± 35 | * |
| TAK120 | | | | | | | | C\(^{13}\)O Combined | BRAMS-2608.2.2 | 5,949 ± 35 | 5,979 ± 28 |
| TAK120 | | | | | | | | BRAMS-2608 | 5,949 ± 35 | * |
| TAK420 | Single sherd with APS-triangles decoration (420) from layer 41, square T25, Middle Pastoral Neolithic | 1119 | 0.6 | -18.3 | -21.5 | -3.2 | Dairy fats | C\(^{13}\)O | BRAMS-2609.1.1 | 5,487 ± 34 | * |
| TAK420 | | | | | | | | C\(^{13}\)O Combined | BRAMS-2609.2.2 | 5,498 ± 35 | 5,493 ± 28 |
| TAK420 | | | | | | | | BRAMS-2609 | 5,498 ± 35 | * |
| TAK443 | Single sherd with APS return decorations (443) from layer 41, square T29, Middle Pastoral Neolithic | 17217 | 1.4 | -16.9 | -23.7 | -6.8 | Dairy fats | C\(^{13}\)O | BRAMS-2610.1.1 | 6,021 ± 35 | * |
| TAK443 | | | | | | | | C\(^{13}\)O Combined | BRAMS-2610.1.2 | 5,962 ± 35 | 5,993 ± 28 |
| TAK443 | | | | | | | | BRAMS-2610 | 5,962 ± 35 | * |

* \(C_{16:0}\) and \(C_{18:0}\) conventional radiocarbon ages statistically identical at the 5% significant level.

APS: Alternate Pivoting Stamp
Sherd TAK1572, dates to the first quarter of the fourth millennium cal BC (3960–3890 cal BC (42% probability; BRAMS-1523 (TAK1572) or 3880–3800 cal BC (53% probability), probably to 3955–3925 cal BC (23% probability) or 3875–3815 cal BC (45% probability); ED Fig. 6d), and so falls almost at the end of the Middle Pastoral Neolithic occupation at Takarkori. This demonstrates the long duration of the “return” technique and exemplifies the utility of dating pottery directly using absorbed fatty acids. It also supports the need for more refined typological definitions to be obtained for such long lasting but culturally diagnostic types.

The compatibility of the dates on absorbed lipids with the dates on other samples types (Table s7) is illustrated in ED Fig. 7. The posterior density estimates for the start and end of Middle Pastoral ceramics at Takarkori clearly overlap, although the new dates refine the pre-existing model. We have again investigated how far the reported results on the absorbed lipids would have to change before these key parameters change substantively by deliberately biasing each measurement on absorbed residues to varying degrees. In this case we examine the overlap of key parameters (ED Fig. 7). As a test of accuracy, this case study is weak, as the number of dates in the model is very small given the duration of archaeological phase under consideration. The median value of start Takarkori MP only becomes earlier than those of the model calculated with the quoted errors (and without the lipid dates) when the lipid results are biased to older ages by 4σ. Similarly, end Takarkori MP only become later than the equivalent parameters when the lipid measurements are biased to younger ages by 4σ. This disparity is clearly visible on ED Fig. 7. This example does, however, demonstrate the feasibility of dating absorbed lipids in extremely arid and hot environments.

SI 7. Principal Place, Worship Street, London, UK

Excavations by Museum of London Archaeology at Principal Place, Worship Street, London Borough of Hackney (site code: PPL11) recovered four small, shallow, bowl-shaped pits [5371], [5375], [5377], and [5422]. A total of 298 sherds (weighing 6.1kg) of early Neolithic Plain Bowl and Decorated Bowl was recovered from these features, along with a further 50 sherds (weighing 325g) redeposited in a late Roman cremation burial [5373]. At least 28 separate vessels are represented. Ceramic analysis indicates that there are direct sherd linkages between pottery recovered from pits [5371] and [5377].

Absorbed C₁₆:0 and C₁₈:0 fatty acids have been dated from five sherds of Plain Bowl and one sherd from a plain cup, of which four vessels have provided results that pass the quality assurance criteria adopted in this study (Table s9). Two of these sherds (PPL012 and PPL015) come from pit [5375]. The combined results on these two sherds are not statistically consistent (T' = 23.6, T'(5%) = 3.8, v = 1⁸). The other two sherds (PPL020 and PPL021) come from pit [5422]. The combined results on these two sherds are also not statistically consistent (T' = 5.6, T'(5%) = 3.8, v = 1⁸). In pit [5422] the later date comes from the group of refitting sherds (PPL020), which suggests that at least some of the single sherds dated are reworked in the deposit from which they were recovered.

Whether the dated samples were reworked in the context from which they were recovered or not, all are on typologically distinctive vessels in the Plain Bowl tradition. The accuracy of the results on the absorbed fatty acids can therefore be assessed in relation to the currency of this type of ceramic in Southern Britain. A chronological model for this pottery is presented by Whittle et al.¹⁵ (fig. 14.90), based upon the typological assessment of the ceramic assemblages presented in Whittle et al.¹⁵ (table 14. 8).
Table s9: Lipid concentration, stable isotope ratios (measured by gas chromatography-combustion-stable isotope ratio mass spectrometry33), conventional radiocarbon ages (as defined by Stuiver and Polach32 and calculated according to Wacker \textit{et al.}31) and statistical consistency (χ^2 test, n=2 independent 14C ages on the C\textsubscript{16:0} and C\textsubscript{18:0} FAs) on lipids extracted from pottery vessels from Principal Place (PPL11), London.

<table>
<thead>
<tr>
<th>Pot#</th>
<th>Description</th>
<th>Lipid Ca (µg/g)</th>
<th>AreaC\textsubscript{16:0}/AreaC\textsubscript{18:0}</th>
<th>δ^{13}C\textsubscript{16:0} (%)</th>
<th>δ^{13}C\textsubscript{18:0} (%)</th>
<th>Δ^{13}C (‰)</th>
<th>Assignment</th>
<th>Compound dated</th>
<th>Laboratory #</th>
<th>Conventional radiocarbon Age (BP)</th>
<th>Statistical consistency χ^2 test, n=2 independent 14C ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL005</td>
<td>Single sherd of a plain bowl <P3> from pit 5370</td>
<td>4101</td>
<td>0.2</td>
<td>-28.9</td>
<td>-31.2</td>
<td>-5.0</td>
<td>Ruminant adipose fat</td>
<td>C\textsubscript{16:0}</td>
<td>C\textsubscript{18:0}</td>
<td>BRAMS-2477.1.1, BRAMS-2478.1.1</td>
<td>4,624 ± 34</td>
</tr>
<tr>
<td>PPL010</td>
<td>Two refitting rim sherds of a plain bowl <P11> from pit 5376</td>
<td>5127</td>
<td>0.3</td>
<td>-27.8</td>
<td>-28.1</td>
<td>-0.3</td>
<td>Non ruminant/ruminant adipose fat</td>
<td>C\textsubscript{16:0}</td>
<td>C\textsubscript{18:0}</td>
<td>BRAMS-2616.1.1, BRAMS-2617.1.1</td>
<td>4,716 ± 37</td>
</tr>
<tr>
<td>PPL012</td>
<td>Single sherd of a plain bowl <P6> from pit 5374</td>
<td>713</td>
<td>0.6</td>
<td>-28.8</td>
<td>-31.1</td>
<td>-2.2</td>
<td>Ruminant adipose fat</td>
<td>C\textsubscript{16:0}</td>
<td>C\textsubscript{18:0}</td>
<td>BRAMS-2618.1.1, BRAMS-2619.1.1</td>
<td>4,911 ± 27</td>
</tr>
<tr>
<td>PPL015</td>
<td>Single sherd of a plain bowl (1845) from pit 5374</td>
<td>1999</td>
<td>0.3</td>
<td>+29.5</td>
<td>-31.4</td>
<td>-1.9</td>
<td>Ruminant adipose fat</td>
<td>Combined</td>
<td>BRAMS-2479</td>
<td>4,708 ± 33</td>
<td>*</td>
</tr>
<tr>
<td>PPL020</td>
<td>Multiple refitting sherds of a plain bowl <P12> from pit 5421</td>
<td>3660</td>
<td>0.6</td>
<td>-30.0</td>
<td>-34.6</td>
<td>-4.6</td>
<td>Dairy fats</td>
<td>Combined</td>
<td>BRAMS-2483</td>
<td>4,652 ± 26</td>
<td>*</td>
</tr>
<tr>
<td>PPL021</td>
<td>Single sherd of a plain cup <P13> from pit 5421</td>
<td>2985</td>
<td>0.2</td>
<td>-30.1</td>
<td>-32.9</td>
<td>-2.8</td>
<td>Ruminant adipose fat</td>
<td>C\textsubscript{16:0}</td>
<td>C\textsubscript{18:0}</td>
<td>BRAMS-2485.1.1, BRAMS-2486.1.1</td>
<td>4,732 ± 32</td>
</tr>
</tbody>
</table>

* C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically identical at the 5% significant level33

X C\textsubscript{16:0} and C\textsubscript{18:0} conventional radiocarbon age statistically different at the 5% significant level33
ED Fig. 8 illustrates an updated version of this model, adding the results on the absorbed lipid samples from Principal Place. The prior distributions for Fir Tree Field Shaft (Whittle et al.15, fig. 4.21), Etton Woodgate (Whittle et al.15, fig. 6.36), Burn Ground (Whittle et al.15, fig. 9.25), Parc le Breos Cwm (Whittle et al.15, fig. 11.13), Hazleton48, and Ascott-under-Wychwood49 have been recalculated by re-programming the models in OxCal v4.2 (and re-calculating them using IntCal1326. New dating programmes have been undertaken for Wor Barrow and the Coneybury Anomaly since the previous analysis, so for these sites the radiocarbon dates available in 2011 have been replaced by appropriate key parameters from the chronological models for those sites (Allen et al.50, fig 12a for Wor Barrow, and Barclay et al.51, fig 5 for the Coneybury Anomaly).

The recalculated model has good overall agreement (Amode106; ED Fig. 8), and all four dates on absorbed lipids have good individual agreement (BRAMS-2618 (PPL012), A: 105; BRAMS-2479 (PPL015), A: 107; BRAMS-2483 (PPL020), A: 92; and BRAMS-2485 (PPL021), A: 107).

The compatibility of the dates on absorbed lipids with the dates on other samples types (Table s9) is illustrated in ED Fig. 9. The posterior density estimates for the start and end of Plain Bowl ceramics in Southern Britain from the models including, or not including, the dates on absorbed lipids clearly overlap, although in this case the lipid dates do little to refine the pre-existing model. We have again investigated how far the reported results on the absorbed lipids would have to change before these key parameters change substantively by deliberately biasing each measurement on absorbed residues to varying degrees. In this case we examine the overlap of key parameters (ED Fig. 9) with visible disparity only when the lipid measurements are biased by 8σ. Clearly, as a test of accuracy, this case study is very weak, but it does demonstrate the utility of dating absorbed lipids residues in situations where no other datable material has been recovered.

SI 8. Conclusions

This study has considered the accuracy of 116 measurements on C16:0 and C18:0 fatty acids from 58 pottery vessels (Table s10). We have reported all the data generated for each case study, showing both the samples that were reliably dated and the ones which were not reliably dated to highlight the current limits of the method presented in this paper.

<table>
<thead>
<tr>
<th>Site</th>
<th>Consistent groups</th>
<th>Inconsistent groups</th>
<th>Insufficient data</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somerset Levels</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Çatalhöyük East</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Alsace Middle Neolithic</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>LBK in NW Europe</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Takarkori</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Principal Place London</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Statistically consistent replicate measurements were obtained on the C16:0 fatty acids and the C18:0 fatty acids separately from 31 vessels (Tables s1, 2, 4, 6, 8 and 9). The combined measurement on both fractions for each of these vessels has been compared to the other chronological information available for these archaeological sites using formal statistical methods. In all cases the results are compatible with the comparative information, although in four cases single sherds are likely to have been redeposited in the context from which they were recovered. This highlights the need to sample refitting groups of sherds wherever possible.
Statistically inconsistent results were obtained on the C\textsubscript{16:0} fatty acids and the C\textsubscript{18:0} fatty acids separately from eight vessels. We believe that this issue either arises from contamination after isolation (e.g. dust capture in the glass wool, graphite from the ferrule falling in the traps) or that one of the FA dates is simply a statistical outlier. Replicate radiocarbon measurements from the same vessel would probably resolve most of these issues, if they did not, then the disparity would probably be sample related (e.g. multiple source of C for the FAs; one having a reservoir effect).

Radiocarbon results could only be obtained from either the C\textsubscript{16:0} fatty acids, or the C\textsubscript{18:0} fatty acids, or both compounds combined from 18 vessels. We have no technical data to assess the accuracy of these individual measurements. In cases where one fatty acid produced less than 100 μg C, we considered the blank corrections to be unreliable due to differing sample and blank sizes (200 μg C blanks were analysed alongside samples in this study), and so there is effectively no second measurement by which the accuracy of the first may be assessed.

One vessel failed to produce sufficient fatty acid C (C\textsubscript{16:0} and C\textsubscript{18:0}) for radiocarbon measurement.

We therefore highlight lipid concentration and size of sherds of being an important parameter for the success of the CSRA method. When size was not an issue 80% of the vessels that produced measurements on both fatty acids with amounts >100 μg C, successfully passed our internal criteria.

The compatibility assessments of \(^{14}\text{C}\) measurements on pot lipids within existing chronologies revealed that the data generated is equivalent to more traditional dating methods in all of our case studies which supports the suitability of the methods presented in Casanova \textit{et al.}6 for the radiocarbon dating of archaeological pot lipids.

References

Options()
{
 Resolution=1;
 kIterations=20000;
};
Plot()
{
 R_Combine("Sweet Track (3807/6 BC)"
 {
 R_Date("SW1: combined", 5110, 25);
 R_Date("SW2: combined", 5092, 26);
 R_Date("IntCal13: UB-1198", 5020, 23);
 R_Date("IntCal13: GrN-9024", 5058, 18);
 R_Date("IntCal13: QL-11528", 5083, 17);
 });
};
Options()
{
 Resolution=1;
 ConvergenceData=TRUE;
 kIterations=20000;
};
Phase()
{
 Sequence("TP Neolithic")
 {
 Boundary("start TP Neolithic");
 Phase("TP Neolithic")
 {
 Sequence("TP spine")
 {
 Phase("B.81")
 {
 R_Date("UCIAMS-96505", 7430, 25);
 }
 Date("end B.81/start Sp.420");
 Sequence("Sp.420")
 {
 R_Date("Poz-40795", 7380, 60)
 {
 }
 R_Date("TP.M17", 7382, 31)
 {
 color="red";
 }
 }
 Date("end Sp.420/start B.74");
 After("B.74")
 {
 R_Date("Poz-19000", 7539, 47)
 {
 }
 R_Date("Poz-24010", 7790, 50)
 {
 }
 R_Date("Poz-24011", 7090, 70)
 {
 Outlier();
 }
 }
 Date("end B.74/start B.72");
 Phase("B.72")
 {
 After("F.2867")
 }
 }
 }
 }

{
 R_Date("Poz-24012", 7270, 50)
 {
 };
};
Sequence(""")
 {
 Phase("F.2888")
 {
 R_Date("Poz-40782", 7360, 50);
 R_Date("UCIAMS-96506", 7350, 25);
 };
 Phase()
 {
 Phase("17630")
 {
 R_Date("Poz-40796", 7310, 50)
 {
 };
 R_Date("TP.O23", 7340, 27)
 {
 color="red";
 };
 };
 Sequence()
 {
 Phase()
 {
 Phase("F.3182")
 {
 R_Date("Poz-40784", 7450, 50);
 R_Date("UCIAMS-96508", 7405, 25);
 };
 After("F.3141; unidentified charcoal")
 {
 R_Date("Poz-24009", 7700, 50)
 {
 };
 };
 };
 Phase("F.1940")
 {
 R_Date("Poz-40785", 7410, 50);
 R_Date("Poz-19007", 7440, 50);
 R_Date("UCIAMS-96509", 7430, 30);
 };
 };
};
}
Phase("Sp.327")
{
 R_Date("Poz-40793", 7250, 50)

 R_Date("Poz-40794", 7250, 50)

 Date("end Sp.327/start B.73")
 Sequence("B.73")
 {
 After("residual")
 {
 R_Date("TP.P13", 7364, 25)
 {
 color="red";
 }
 }
 }
 Phase(""")
 {
 Phase("F.2854")
 {
 R_Date("UCIAMS-96507", 7310, 35);
 After("residual")
 {
 R_Date("Poz-40783", 7460, 50)
 {

 }
 }

 R_Date("UCIAMS-96510", 7335, 25);
 }
 }
 Date("end B.73/start B.62")
 After("B.62")
 {
 R_Date("Poz-19006", 7280, 50)
 {
 }
 R_Date("UCIAMS-96511", 7445, 30)
 {
 }
 R_Date("Poz-19005", 7460, 50)
 {
}
Date("end B.62/start B.61")
Sequence("B.61.1")
{
 After("F.3132; unidentified charcoal")
 {
 R_Date("Poz-13573", 7620, 50)
 {
 }
 R_Date("Poz-19004", 7450, 50)
 {
 }
 }
 After("unidentified charcoal")
 {
 R_Date("Poz-19001", 7430, 50)
 {
 }
 }
 Phase("F.1938")
 {
 R_Date("UCIAMS-96512", 7295, 25);
 After("residual")
 {
 R_Date("Poz-40789", 7450, 50)
 {
 }
 }
 }
}
Sequence("B.61.3")
{
 After("F.3135; unidentified charcoal")
 {
 R_Date("Poz-13571", 7390, 40)
 {
 }
 R_Date("Poz-19002", 7460, 70)
 {
 }
 }
 Phase()
 {
 After("F.1916; unidentified charcoal")
 {
 R_Date("Poz-13696", 7530, 50)
 {
 }
 }
 }
}
Phase("F.1918")
{
 R_Date("Poz-40790", 7290, 50);
 R_Date("UCIAMS-96513", 7300, 25);
 R_Date("Poz-40792", 7270, 50);
 R_Date("UCIAMS-96514", 7335, 30);
}
Date("end B.61/start Sp.248");
Phase("Sp.248")
{
 R_Date("Poz-13700", 7150, 50);
 Phase("articulated")
 {
 R_Date("UCIAMS-113462", 7025, 20);
 R_Date("UCIAMS-113461", 7175, 20);
 };
 After("disarticulated")
 {
 R_Date("Poz-13659", 7090, 50)
 {
 };
 R_Date("Poz-19104", 6990, 40)
 {
 };
 R_Date("Poz-19075", 7180, 40)
 {
 };
 };
Date("end Sp.248");
};
Sequence("TP 2nd string")
{
 Phase("B.103")
 {
 R_Date("TP.N10", 7348, 25)
 {
 color="red";
 };
 };
 Phase("Sp.439")
 {
 R_Date("UCIAMS-113459", 7265, 25)
 };
}
After("Sp.431")
{
 R_Date("Poz-18999", 7183, 55)
 {
 }

 After("Sp.414")
 {
 R_Date("Poz-7451", 7190, 40)
 {
 }
 R_Date("Poz-7452", 7360, 50)
 {
 }
 }
 Phase("Sp.412")
 {
 R_Date("UCIAMS-113460", 7130, 20);
 }
 Date("end Sp.412/start B.33");
 Phase("B33")
 {
 R_Combine("7878")
 {
 R_Date("Poz-7449", 7100, 50);
 R_Date("UCIAMS-113463", 7145, 20);
 }
 After("unidentified charcoal")
 {
 R_Date("Poz-7450", 7210, 50)
 {
 }
 }
 }
 Date("end B.33");
}
Boundary("end East Mound occupation");
Phase("Sp. 410")
{
 R_Date("Poz-40788", 6870, 50);
 R_Date("Poz-40786", 6720, 40);
}
}
Phase("summary")
{
 Date("=end B.81/start Sp.420");
 Date("=end Sp.420/start B.74");
 Date("=end B.74/start B.72");
 Date("=end B.72/start Sp.327");
 Date("=end Sp.327/start B.73");
 Date("=end B.73/start B.62");
 Date("=end B.62/start B.61");
 Date("=end B.61/start Sp.248");
 Date("=end Sp.248");
 Date("=end Sp.412/start B.33");
 Date("=end B.33");
 Date("=end East Mound occupation");
};
Page();
Phase("durations")
{
 Difference("use B.74", "end B.74/start B.72", "end Sp.420/start B.74");
 Difference("use B.72", "end B.72/start Sp.327", "end B.74/start B.72");
 Difference("use Sp.327", "end Sp.327/start B.73", "end B.72/start Sp.327");
 Difference("use B.73", "end B.73/start B.62", "end Sp.327/start B.73");
 Difference("use B.62", "end B.62/start B.61", "end B.73/start B.62");
 Difference("use B.61", "end B.61/start Sp.248", "end B.62/start B.61");
 Difference("use Sp.248", "end Sp.248", "end B.61/start Sp.248");
 Difference("use B.33", "end B.33", "end Sp.412/start B.33");
 Difference("gap B.33/Sp.248", "end Sp.248", "end B.33");
 Difference("gap B.81/Sp.248", "end Sp.248", "end B.81/start Sp.420");
 Difference("gap fire continuity", "Poz-40792", "Poz-40784");
};
Order()
{
 Date("=end B.33");
 Date("=end Sp.248");
};
Options()
{
 Resolution=1;
 kIterations=20000;
};

Phase()
{
 Sequence("Alsace Middle Neolithic")
 {
 Boundary("start of HK")
 {
 Transition("duration start HK");
 Start("start start HK");
 End("end start HK");
 };
 Phase("Hinkelstein")
 {
 R_Date("Poz-33546 (Erst.2)", 5880, 40);
 R_Date("Poz-34074 (Entz.7056)", 5940, 35);
 R_Date("SUERC-60027 (Aldingen 2)", 5827, 29);
 R_Date("SUERC-60026 (Aldingen 7)", 5904, 29);
 Span("span HK");
 };
 Boundary("end HK/start GG");
 Phase("Grossgartach 2-5")
 {
 R_Date("OxA-27810 (Ling.42)", 5870, 32);
 R_Date("SUERC-46273 (Erst.7)", 5795, 31);
 R_Date("SUERC-46274 (Ros.85)", 5822, 31);
 R_Date("Poz-34077 (Entz.7105)", 5870, 40);
 R_Date("Poz-34091 (Entz.7112)", 5770, 40);
 R_Date("Poz-34073 (Entz.7043)", 5870, 40);
 R_Date("Poz-34083 (Entz.7126)", 5750, 40);
 R_Date("Poz-34081 (Entz.7121)", 5790, 50);
 };
 Phase("KV.656")
 {
 R_Date("OxA-27811", 5848, 31);
 R_Date("SUERC-46517", 5786, 34);
 };
 R_Combine("Ros.45")
 {
 R_Date("OxA-27814", 5833, 29);
 R_Date("SUERC-46277", 5813, 31);
 };
 R_Combine("Ros.76")
 {
 R_Date("SUERC-46275", 5750, 28);
 R_Date("OxA-27812", 5865, 31);
Phase("Grossgartach unknown")
{
 Phase("Rosheim-Sandgrube, pit 50")
 {
 R_Date("ROSC4644", 5931, 26)
 }
 R_Date("ROSC4657", 5912, 28)
 {
 }
};
Span("span GG");
);
Boundary("end GG/start P-F");
Phase("Planig-Friedberg")
{
R_Combine("Ros.5")
{
 R_Date("OxA-27821", 5800, 31);
 R_Date("SUERC-46441", 5800, 30);
};
R_Date("SUERC-46442 (Ros.42)", 5762, 33);
R_Date("OxA-30277 (Ober.4008)", 5809, 33);
R_Date("SUERC-52378 (Ober.4015)", 5743, 30);
R_Date("OxA-30278 (Ober.4022)", 5744, 33);
R_Date("Poz-50940 (Gue.39)", 5730, 50);
Span("span P-F");
);
Boundary("end P-F/start RS");
Phase("Rossen")
{
 R_Date("SUERC-46443 (Ros.36)", 5753, 33);
 R_Combine("Ros.50")
 {
 R_Date("OxA-27973", 5803, 32);
 R_Date("OxA-27972", 5772, 35);
 R_Date("SUERC-46444", 5735, 32);
 };
 R_Combine("Ros.55")
 {
 R_Date("OxA-27822", 5804, 30);
 R_Date("SUERC-46445", 5731, 30);
 };
 R_Date("SUERC-52377 (Ober.4106)", 5697, 32);
 Combine("Entz.Tdc.17")
 {
 R_Date("GrA-45953", 5665, 40);
 R_Date("GrA-45797", 5660, 40);
 };
 Phase("Meist.116")
 {
 R_Date("SUERC-46450", 5649, 32);
 R_Combine("TOTL_RL_028")
 {
 R_Date("OxA-27823", 5749, 29);
 R_Date("SUERC-46446", 5686, 30);
 };
 After("possibly residual")
 {
 R_Date("Poz-32444", 5750, 70);
 R_Date("Poz-32445", 5690, 40);
 R_Date("Poz-32446", 5780, 50);
 };
 };
};
After("Meist.113 (possibly residual)"")
{
 R_Date("Poz-33544", 5680, 50);
 Span("span RS");
};
Boundary("end RS/start BI");
Phase("Bischheim & Brubach-Oberbergen")
{
 Phase("Bischheim (North Alsace)"")
 {
 R_Combine("Schwin.10")
 {
 R_Date("OxA-30279", 5530, 32);
 R_Date("SUERC-52370", 5487, 32);
 };
 R_Date("SUERC-52371 (Schwin.552)", 5395, 29);
 Phase("Schwin.875")
 {
 R_Date("SUERC-52375", 5392, 32);
 R_Combine("TOTL_RL_80")
 {
 R_Date("OxA-30280", 5350, 32);
 R_Date("SUERC-52376", 5489, 31);
 R_Date("UBA-27378", 5307, 53);
 };
 };
 Sequence("Lower Alsace")
 {
 Phase("Bischheim")
 {
 R_Date("SUERC-52397 (Entz.Tdc.722)", 5649, 30);
 Sequence("Ober.Schul.142")
 {
 After("Meist.113 (possibly old wood)"")
 {
 R_Date("Poz-45620", 5610, 40);
 };
 R_Date("Poz-45612", 5600, 40);
 R_Date("Poz-45609", 5610, 40);
 };
 date("end BI (Lower Alsace)/start B-O");
 Phase("Bruebach-Oberbergen")
 {
 R_Date("OxA-30019 (Duntz.3175)", 5430, 31);
 Phase("Duntz.3176")
 };
 };
}
{
 R_Date("OxA-30053", 5536, 31);
 R_Date("OxA-30020", 5426, 33);
};
R_Date("SUERC-52398 (Vend.107)", 5524, 32);
R_Date("SUERC-55323 (KV.509)", 5415, 31);
After("Ober.Schul.27")
{
 R_Date("Poz-45610", 5550, 40);
 R_Date("Poz-45614", 5630, 40);
 R_Date("Poz-45618", 5630, 35);
};
After("Ober.Schul.121")
{
 R_Date("Poz-45611", 5640, 40);
 R_Date("Poz-45615", 5660, 40);
 R_Date("Poz-45762", 5640, 40);
};
After("Ober.Schul.167")
{
 R_Date("Poz-45616", 5590, 40);
 R_Date("Poz-45621", 5610, 50);
};
Span("span B-O");
}
};
Boundary("end B-O/start BORS I");
Phase("BORS I")
{
 R_Date("OxA-30281 (Bisch.RdS.10)", 5338, 32);
 Phase("Bisch.RdS.12")
 {
 R_Date("SUERC-52399", 5277, 28);
 R_Combine("TOTL_RL_089")
 {
 R_Date("OxA-30282", 5273, 34);
 R_Date("SUERC-52400", 5391, 32);
 };
 };
 R_Date("SUERC-55321 (Bisch.RdS.31", 5274, 33);
 R_Date("SUERC-55322 (Bisch.RdS.38", 5361, 31);
 C_Date("Dambach 404", -4128, 5);
 C_Date("Dambach 556", -4147, 0.1);
 Span("span BORS I");
};
Boundary("end BORS I/start BORS II");
Phase("BORS II")
{
Phase("Geisp.14")
{
 R_Date("UBA-27377", 5208, 52);
 R_Date("Poz-46043", 5260, 40);
};
Span("span BORS II");
};
Boundary("end of BORS")
{
 Transition("duration end BORS II");
 Start("start end BORS II");
 End("end end BORS II");
};
};
Difference("span BI (Lower Alsace)", "end BI (Lower Alsace)/start B-O", "end RS/start BI");
};
Options()
{
 Resolution=1;
 kIteraton=20000;
};
Plot()
{
 Sequence("LBK lipids")
 {
 Boundary("start LBK lipid");
 Phase("LBK lipids")
 {
 Phase("France")
 {
 Phase("Cuiry-les-Chaudardes")
 {
 R_Date("CUI-C-5708", 6236, 27);
 R_Date("CUI-C-5801", 6136, 25);
 };
 }
 Phase("Ensisheim")
 {
 R_Date("ENS-C-5913", 6324, 26);
 R_Date("ENS-C-5915", 6348, 26);
 R_Date("ENS-C-5934", 6270, 25);
 R_Date("ENS-C-5940", 6206, 26)
 {
 color="blue";
 };
 }
 }
 }
 Phase("The Netherlands")
 {
 Phase("Geleen-Janskamperveld")
 {
 R_Date("GEL-C-3298", 6224, 25)
 {
 color="blue";
 };
 };
 }
 Phase("Germany")
 {
 Phase("Konigshoven 14")
 {
 R_Date("KON-C-5594", 6276, 24)
 {
 color="blue";
 };
 };
 }
R_Date("KON-C-5598", 6123, 27);
};

Phase("Poland")
{
 Phase("Karwowo 1")
 {
 R_Date("KAR-C-3636", 6204, 25)
 {
 color="red";
 }
 R_Date("KAR-C-3677", 6236, 26);
 }
 Phase("Ludwinowo 7")
 {
 R_Date("LDW-C-2267", 6177, 26)
 {
 color="blue";
 }
 }
 Boundary("end LBK lipid");
};
Page();
Order("invoke priors")
{
 Prior("start earliest east","/Model_3_start_earliest_east.prior");
 Prior("start earliest west","/Model_3_start_earliest_west.prior");
 Prior("end formative","/Model_3_end_formative.prior");
 Prior("start formative","/Model_3_start_formative.prior");
 Prior("Model_2_formative_earliest","/Model_2_formative_earliest.prior");
 Prior("start earliest south east","/Model_3_start_earliest_south_east.prior");
 Prior("Model_2_start_formative","/Model_2_start_formative.prior");
 Prior("Model_1_start_LBK","/Model_1_start_LBK.prior");
 Prior("end start LBK IIb","/end_start_LBK_IIb.prior");
 Prior("start start LBK IIb","/start_start_LBK_IIb.prior");
};
Page();
Phase("earliest LBK")
{
 Phase("formative and earliest LBK in central Europe")
 {
 Phase("Model 1")
 {
 Date("=Model_1_start_LBK");
 }
 Phase("Model 2")
 {
Phase("Model 3")
{
 Date("=start formative");
 Date("=end formative");
 Date("=start earliest south east");
 Date("=start earliest east");
 Date("=start earliest west");
};

Phase("start LBK in Lower Alsace")
{
 Date("=start start LBK IIb");
 Date("=end start LBK IIb");
};

Phase("LBK lipids")
{
 Date("=start LBK lipid");
 Date("=end LBK lipid");
};

Options()
{
Resolution=1;
iterations=20000;
};
Plot()
{
Sequence("Takarkori (Middle Pastoral)"
{
Boundary("start Takarkori MP");
Phase("Middle Pastoral")
{
Phase("layer 41")
{
R_Date("BRAMS-2610 (TAK443)", 5993, 28);
R_Date("BRAMS-2609 (TAK420)", 5493, 28);
};
Phase("layer 25")
{
R_Date("UGAMS-2852", 5980, 70);
R_Date("LTL-367A", 5980, 50);
R_Date("BRAMS-2608 (TAK120)", 5979, 28);
R_Date("BRAMS-1522 (TAK21)", 5348, 24);
R_Date("UGAMS-1841", 5340, 50);
R_Date("LTL-362A", 5070, 35);
};
After("unidentified charcoal")
{
R_Date("LTL-907A", 5064, 55);
};
R_Date("GX-30324", 6090, 60);
R_Date("UGAMS-8706", 5660, 25);
R_Date("UGAMS-8709", 5610, 30);
R_Date("GX-31077", 5600, 70);
R_Date("UGAMS-10149", 5170, 25);
R_Date("BRAMS-1523 (TAK1572)", 5085, 24);
};
Boundary("end Takarkori MP");
Span("duration Takarkori MP");
};
}
Options()
{
 Resolution=1;
 kIterations=20000;
};

Plot()
{
 Sequence("plain Bowl")
 {
 Boundary("start plain Bowl");
 Phase("plain Bowl in S Britain")
 {
 Phase("Wor barrow")
 {
 Prior("start_wor_barrow","/start_wor_barrow.prior");
 Prior("end_wor_barrow","/end_wor_barrow.prior");
 }
 Phase("Staines Road Farm")
 {
 Prior("OxA_4057","/OxA_4057.prior");
 Prior("OxA_4058","/OxA_4058.prior");
 }
 Before("TAQ Parc le Breos Cwm")
 {
 Prior("end_Parc_le_Breos_Cwm","/end_Parc_le_Breos_Cwm.prior");
 }
 After("TAQ Padholme Road, Fengate")
 {
 R_Date("GaK-4197", 4527, 50);
 }
 Phase("Hazleton")
 {
 Prior("construction_finished_Hazleton","/construction_finished_Hazleton.prior");
 Prior("end_Hazleton","/end_Hazleton.prior");
 }
 Phase("Gatehampton Farm")
 {
 After("TPQ")
 {
 R_Date("GrA-31358", 4890, 40);
 }
 Before("TAQ")
 {
 R_Date("BM-2835", 4360, 45);
 }
 }
 After("TPQ Gorhambury")
 }
 }
}
R_Date("HAR-3484", 4810, 80);
};
Phase("Fir Tree Field shaft")
{
 Prior("OxA_8009", "/OxA_8009.prior");
};
Phase("Eynesbury")
{
 R_Date("NZA-14576", 4743, 60);
};
Phase("Etton Woodgate")
{
 Prior("start_Woodgate", "/start_Woodgate.prior");
 Prior("end_Woodgate", "/end_Woodgate.prior");
};
Phase("Coygan Camp")
{
 R_Date("NPL-132", 5000, 95);
};
Phase("Coneybury anomaly")
{
 Prior("Start_Coneybury_Anomaly", "/Start_Coneybury_Anomaly.prior");
 Prior("End_Coneybury_Anomaly", "/End_Coneybury_Anomaly.prior");
};
Phase("Cherhill")
{
 R_Date("BM-493", 4715, 90);
};
Before("TAQ Burn Ground")
{
 Prior("end_Burn_Ground", "/end_Burn_Ground.prior");
};
After("TPQ Broom Heath")
{
 R_Date("BM-756", 4523, 67);
 R_Date("BM-757", 4579, 65);
};
Phase("Ascott-under-Wychwood")
{
 Prior("primary_construction_Ascott", "/primary_construction_Ascott.prior");
 Prior("end_Ascott", "/end_Ascott.prior");
};
Sequence("London: PPL11")
{
 Boundary("start PPL11");
 Phase("Principal Place")
 {
 Phase("pit [5375]")
 }
}
{
 R_Date("PPL012", 4911, 27);
 R_Date("PPL015", 4742, 22);
};
Phase("pit [5422]")
{
 R_Date("PPL020", 4652, 26);
 R_Date("PPL021", 4733, 22);
};
);
Boundary("end London PPL11");
};
);
Boundary("end plain Bowl");
};
}
<table>
<thead>
<tr>
<th></th>
<th>S001a05</th>
<th>M092</th>
<th>S001a2b</th>
<th>S003a2c</th>
<th>SA02</th>
<th>S072a38</th>
<th>I001a2c</th>
<th>M095</th>
<th>M068</th>
<th>M094</th>
<th>I009a7a</th>
<th>M093</th>
<th>ES02a04</th>
<th>SA21</th>
<th>S003a9a</th>
<th>M063</th>
</tr>
</thead>
<tbody>
<tr>
<td>H02</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H100</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H03</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G35lb</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G31t33</td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td></td>
</tr>
<tr>
<td>G76d</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G88a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G14st11</td>
<td></td>
</tr>
<tr>
<td>G37t48</td>
<td></td>
</tr>
<tr>
<td>Oberschaef310</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G101t52</td>
<td></td>
</tr>
<tr>
<td>G100t7126</td>
<td></td>
</tr>
<tr>
<td>G48f1912</td>
<td></td>
</tr>
<tr>
<td>G46t085</td>
<td></td>
</tr>
<tr>
<td>G02</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G46MA77</td>
<td></td>
</tr>
<tr>
<td>G43st508</td>
<td></td>
</tr>
<tr>
<td>G16t07</td>
<td></td>
</tr>
<tr>
<td>G46SGE</td>
<td></td>
</tr>
<tr>
<td>G35I</td>
<td></td>
</tr>
<tr>
<td>G35b13</td>
<td></td>
</tr>
<tr>
<td>G100t7112</td>
<td></td>
</tr>
<tr>
<td>G08A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G100t7043</td>
<td></td>
</tr>
<tr>
<td>G100t7121</td>
<td></td>
</tr>
<tr>
<td>G35bIV</td>
<td></td>
</tr>
<tr>
<td>G31t42</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>G46G50C</td>
<td></td>
</tr>
<tr>
<td>G31t13</td>
<td></td>
</tr>
<tr>
<td>G46Hstah</td>
<td></td>
</tr>
<tr>
<td>G46SG50F</td>
<td></td>
</tr>
<tr>
<td>G46t112</td>
<td></td>
</tr>
<tr>
<td>G46MA63</td>
<td></td>
</tr>
<tr>
<td>G46t084</td>
<td></td>
</tr>
<tr>
<td>G32st12</td>
<td></td>
</tr>
<tr>
<td>G46t003</td>
<td></td>
</tr>
<tr>
<td>G46pt02</td>
<td></td>
</tr>
<tr>
<td>G31t44</td>
<td></td>
</tr>
<tr>
<td>G56st54A</td>
<td></td>
</tr>
<tr>
<td>G12ptIV</td>
<td></td>
</tr>
<tr>
<td>G46t025</td>
<td></td>
</tr>
<tr>
<td>G46t039</td>
<td></td>
</tr>
<tr>
<td>G46t058</td>
<td></td>
</tr>
<tr>
<td>G46t105</td>
<td></td>
</tr>
<tr>
<td>G55A</td>
<td></td>
</tr>
<tr>
<td>G100t7117</td>
<td></td>
</tr>
<tr>
<td>G46t044</td>
<td></td>
</tr>
<tr>
<td>G46t076</td>
<td></td>
</tr>
<tr>
<td>G100t7007</td>
<td></td>
</tr>
<tr>
<td>G32st24</td>
<td></td>
</tr>
<tr>
<td>G100t7119</td>
<td></td>
</tr>
<tr>
<td>G46t102</td>
<td></td>
</tr>
<tr>
<td>G18ptIII</td>
<td></td>
</tr>
<tr>
<td>G31t05</td>
<td></td>
</tr>
<tr>
<td>G46t089</td>
<td></td>
</tr>
<tr>
<td>G46t068</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>G46L122</td>
<td></td>
</tr>
<tr>
<td>G31t37</td>
<td></td>
</tr>
<tr>
<td>G46pt04</td>
<td></td>
</tr>
<tr>
<td>G46t082</td>
<td></td>
</tr>
<tr>
<td>G46t063</td>
<td></td>
</tr>
<tr>
<td>G46t071</td>
<td></td>
</tr>
<tr>
<td>G46t043</td>
<td></td>
</tr>
<tr>
<td>G37ptl</td>
<td></td>
</tr>
<tr>
<td>G46t202</td>
<td></td>
</tr>
<tr>
<td>G17</td>
<td></td>
</tr>
<tr>
<td>G28</td>
<td></td>
</tr>
<tr>
<td>G46t111</td>
<td></td>
</tr>
<tr>
<td>G46t28</td>
<td></td>
</tr>
<tr>
<td>G100t7179</td>
<td></td>
</tr>
<tr>
<td>G100t7049</td>
<td></td>
</tr>
<tr>
<td>G16t01</td>
<td></td>
</tr>
<tr>
<td>G46t096</td>
<td></td>
</tr>
<tr>
<td>G16t19</td>
<td></td>
</tr>
<tr>
<td>Ober422</td>
<td></td>
</tr>
<tr>
<td>G46R303</td>
<td></td>
</tr>
<tr>
<td>G74</td>
<td></td>
</tr>
<tr>
<td>G65st55</td>
<td></td>
</tr>
<tr>
<td>Ober4008</td>
<td></td>
</tr>
<tr>
<td>G46t042</td>
<td></td>
</tr>
<tr>
<td>G101t35</td>
<td></td>
</tr>
<tr>
<td>G81C</td>
<td></td>
</tr>
<tr>
<td>G101t39</td>
<td></td>
</tr>
<tr>
<td>Ober4015</td>
<td></td>
</tr>
<tr>
<td>G81D</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>G46t005</td>
<td></td>
</tr>
<tr>
<td>R08</td>
<td></td>
</tr>
<tr>
<td>R05</td>
<td></td>
</tr>
<tr>
<td>R15MB300</td>
<td></td>
</tr>
<tr>
<td>R100st114</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td></td>
</tr>
<tr>
<td>R15t55</td>
<td></td>
</tr>
<tr>
<td>R15L4</td>
<td></td>
</tr>
<tr>
<td>R100st116</td>
<td></td>
</tr>
<tr>
<td>R16</td>
<td></td>
</tr>
<tr>
<td>R03</td>
<td></td>
</tr>
<tr>
<td>R100st113</td>
<td></td>
</tr>
<tr>
<td>R15L59</td>
<td></td>
</tr>
<tr>
<td>R15t36</td>
<td></td>
</tr>
<tr>
<td>R04</td>
<td></td>
</tr>
<tr>
<td>R15MB200</td>
<td></td>
</tr>
<tr>
<td>R100st200</td>
<td></td>
</tr>
<tr>
<td>I105a57</td>
<td>EM35</td>
<td>EM31</td>
<td>M098</td>
<td>M072d</td>
<td>SA05</td>
<td>M091</td>
<td>SB25</td>
<td>S009a03</td>
<td>M052</td>
<td>EM29a55</td>
<td>M103</td>
<td>S006a01</td>
<td>SA26</td>
<td>SB09</td>
<td>SA25</td>
<td>I009a10</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M037a30</td>
<td>I003a2b</td>
<td>I002a03</td>
<td>SB32</td>
<td>S011a03</td>
<td>EI02</td>
<td>I001a2a</td>
<td>M105</td>
<td>I002a04</td>
<td>EM03a07</td>
<td>S007a9a</td>
<td>F037a14</td>
<td>SB40</td>
<td>SA32</td>
<td>EM16a2c</td>
<td>SA40</td>
<td>EM06</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>