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Abstract 21 

A bacterial infectivity challenge model of Edwardsiella ictaluri in striped catfish was 22 

developed. All experiments were conducted using a bacterial isolate of Edwardsiella 23 

ictaluri that had been recovered during a natural outbreak of Bacillary Necrosis of 24 

Pangasianodon (BNP) in farmed striped catfish Pangasianodon hypophthalmus in 25 

Vietnam. Time of immersion in 107 CFU.ml-1 had significant effect on mortality. The 26 

immersion bacterial dose of 107 CFU ml-1 for 30 s resulted in a cumulative percentage 27 

mortality of 63%.  Three to 4 days post-bacterial challenge, fish showed gross clinical 28 

signs of natural BNP and E. ictaluri was recovered and identified from these fish. 29 

Moreover, a cohabitation challenge was evaluated as an alternative challenge method, 30 

although the mortalities among the infected fish were lower at around 15-40%. This 31 

study confirmed the horizontal transmission of E. ictaluri in striped catfish and 32 

elucidated that cohabitation challenge could be used in reproducing the disease under 33 

controlled conditions. 34 

Keywords: Pangasianodon hypophthalmus, Edwardsiella ictaluri, Bacillary Necrosis of 35 

Pangasianodon, immersion challenge, cohabitation challenge 36 

1. INTRODUCTION 37 

Bacillary necrosis of Pangasianodon (BNP), one of the most serious diseases of striped 38 

catfish in Vietnam. It was first described in 2001 (Ferguson et al., 2001) and E. ictaluri 39 

was identified as the causative agent in 2002 (Crumlish, Dung, Turnbull, Ngoc, & 40 

Ferguson, 2002) and aetiology confirmed through experimental studies in 2010 41 

(Crumlish, Thanh, Koesling, Tung, & Gravningen, 2010). Affected farms in Vietnam 42 
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reported 50-90% mortality during a natural outbreak (Dung, Crumlish, Ngoc, Thinh, & 43 

Thy, 2004).  44 

Over the last 20 years the farmed Vietnamese striped catfish (Pangasianodon 45 

hypophthalmus) has increased significantly and in 2018, over 1.4 million tonnes of 46 

catfish were farmed and sold globally (VASEP, 2019). Bacterial disease outbreaks due to 47 

Edwardsiella ictaluri continue to be one of the biggest threats to the sector (Phu, 48 

Phuong, Scippo, & Dalsgaard, 2015), however the lack of alternatives to fish infectivity 49 

models in aquaculture, there remains a reliance on the use of fish experiments to 50 

understand pathogenesis and evaluate treatment and prevention strategies for bacterial 51 

diseases. Such models have been established and tested for E. ictaluri in non-Pangasius 52 

species with varying degrees of success (Iwanowicz, Griffin, Cartwright, & Blazer, 2006; 53 

Pasnik, Evans, & Klesius, 2007;  Thinh et al., 2009).   54 

Performing in vivo bacterial challenge studies for fish species under experimental 55 

conditions is difficult to standardise between studies (Nordmo & Ramstad, 1997; 56 

Nordmo, Sevatdal & Ramstad, 1997). This is often due to variation in strain 57 

pathogenicity, concentration, exposure route of the pathogen and consideration must 58 

be given to the variation in the age, size and species of the fish host. All of these factors 59 

heavily influence the expected outcome of clinical signs of disease and morbidity similar 60 

to those experience in natural infections  (Crumlish et al., 2010; Thinh et al., 2009).  61 

Pathogen exposure methods in fish include injection, oral, hyperosmotic immersion, 62 

direct immersion, and cohabitation (Bell et al. 1984; Elliott et al. 1991), with injection 63 

being the most widely adopted method used in aquaculture. Pathogen exposure 64 

through injection remains the most favoured transmission route as it allows exact dose 65 

per fish to be known and reduced variation between individual fish. Immersion 66 
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(McCarthy et al. 1984; Nordmo et al., 1997) and cohabitation studies (Bell, Higgs, & 67 

Traxler, 1984, Nordmo et al, 1997) have shown promise as pathogen exposure routes as 68 

they require less handling and  represent a more natural route of pathogen entry than 69 

injection.  However, these methods are often more difficult to control and to 70 

standardise (Aoki, Kondo, Kawai, & Oshima, 2005; Nordmo & Ramstad, 1997) because it 71 

is difficult to know the individual uptake per fish and therefore the variation is larger which does 72 

actually mimic better then natural infection. Therefor, it requires longer exposure times to 73 

the pathogen, which can result in poor reproducibility between experimental studies, 74 

even using the same pathogen. Very little work has been done to standardize in vivo 75 

challenge tests using non-injection exposure routes generally in aquaculture but 76 

specifically with E. ictaluri. A robust and reliable challenge model is required for 77 

infectivity studies of E. ictaluri in P. hypophthalmus to determine changes in 78 

pathogenicity and host susceptibility as well as refinement of prevention and treatment 79 

strategies against infection. The aim of this study was to refine an immersion and co-80 

habitation challenge model for E. ictaluri infection in striped catfish, performed under 81 

experimental conditions, to provide improved options when studying aquatic 82 

pathogenesis, infectivity and treatments. 83 

2. MATERIALS AND METHODS 84 

2.1 Fish 85 

The fish used for the experimental studies were obtained from a stock population held 86 

in the Aquaculture Research Facility (ARF), University of Stirling.  These fish were 87 

purchased from a farm in central Thailand and had been health certified as free from 88 

BNP from the Department of Fisheries (DOF) Thailand prior to shipment to the UK.  The 89 

fish were maintained in 200L fibreglass tanks at 28oC ± 2oC, and fed a commercial 90 
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salmonid diet (Skretting, Norway).  In total for the challenge experiments, 10 fish per 91 

treatment group were allocated to 100L tanks with an average weight of 15  2 g.  The 92 

fish were starved for 24h prior to pathogen exposure.  93 

2.2 Bacterial strain 94 

A bacterial strain of E. ictaluri recovered from a natural outbreak of BNP in Vietnamese 95 

P. hypophthalmus was used for all challenge studies. This isolate was identified as E. 96 

ictaluri following the primary identification tests and biochemical profiles described in 97 

Crumlish et al., (2002). A species-specific polymerase chain reaction (PCR) targeting to 98 

the upstream region of the fimbrial gene was performed for rapid identification of E. 99 

ictaluri following the methods of Sakai, Yuasa, Sano, & Iida, (2009) 100 

2.3 Bacterial challenge study 101 

Prior to performing the challenge experiments, the E. ictaluri strain was passaged 102 

through naive fish, twice.  The bacterial suspension was grown in Tryptone Soya Broth 103 

(TSB, Oxoid, England) at 28oC, centrifuged and re-suspended in sterile 0.85% NaCl water 104 

to give a high bacterial concentration.  One hundred microliters of the suspension was 105 

then injected by intraperitoneal injection (i.p.) into each fish and recovered from 106 

moribund/dead fish directly from the spleen and kidney onto Tryptone Soya Agar (TSA, 107 

Oxoid UK).  This procedure was repeated twice, and the identification of the isolate 108 

recovered from the fish was confirmed as described above and then used for the 109 

subsequent challenge experiments. This is called bacterial passage with the purpose was 110 

to enhance virulence of the pathogen post-storage. 111 

The challenge inoculum was produced by adding 3-5 colonies of pure E. ictaluri isolate 112 

(ex-passage 2) grown on TSA into 50 ml of sterile Tryptone Soya Broth (TSB, Oxoid UK). 113 

This was then incubated to mid logarithmic phase (140 rpm, 28oC) in a shaking incubator 114 
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(Kuhner shaker, ISF-1-W, Switzerland).  After 24h, the bacterial broth suspension was 115 

centrifuged at 3,500 rpm (Sanyo NSE Mistral 2000R, Japan) and the cell pellet re-116 

suspended and adjusted to give an optical density (OD600nm) value of 1 using 0.85% 117 

sterile saline. The viable colony counts were performed using the Miles and Misra 118 

method (Miles et al. 1938) and then 10-fold serial dilutions performed to give 119 

approximately 1 x 107 cfu mL-1 for the challenge studies. 120 

To determine the immersion exposure time a pilot study was performed using 5 121 

treatment groups with n=10 fish per group and in treatment groups 1-6, all fish were 122 

exposed to a single concentration of 1 x 107 cfu mL-1 for either 1, 2, 5, 10, 15 and 30 123 

minutes. The control fish group was not exposed to the bacteria but instead the same 124 

volume of sterile saline was added to the tank and fish exposed for 30 min before being 125 

transferred to their original tanks.  126 

2.4 Challenge experimental design 127 

From the immersion pilot study results, a second immersion challenge was performed 128 

with more refined bacterial pathogen exposure time (Table 1). In the second study, 4 129 

treatment groups with 3 replicate tanks per treatment group each containing 10 fish per 130 

tank (Table 2). Fish in treatment groups 1-3 were exposed to a single concentration of E. 131 

ictaluri at approximately 1 x 107 cfu ml-1 for 30 seconds, 1 minute or 2 minute duration 132 

(Table 2).  133 

2.5 Cohabitation experimental design 134 

Co-habitation studies are considered the most natural route of bacterial exposure. 135 

Under experimental condition, this requires the introduction of an infected “seed” fish 136 

which is then co-habited with the naive fish. All seed fish in this study were identifiable 137 
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from the naïve fish by removing the adipose fin. The experimental studies and designs 138 

are described in Table 2. Briefly, each tank has 1 “seed” fish and 9 naïve fish. There were 139 

2 treatment groups, Treatment group 1a had the “seed” fish exposed to the E. ictaluri by 140 

i.p injection and then placed with the naïve fish in the same tank. The control tank 141 

(Treatment group 1b) for this exposure route had the “seed” fish given 0.85% sterile 142 

saline by i.p. injection (control). In Treatment group 2a the “seed” fish was exposed to 143 

the E. ictaluri by immersion for 15 min and then added to the niave fish whereas the 144 

control Treatment group 2b, the “seed” fish was not exposed to E. ictaluri but to same 145 

volume of sterile 0.85% sterile saline for 15 min.  146 

Water temperature was 26 ± 2oC and the duration of the study was 15 days for all of the 147 

challenge studies.  Water was aerated using an air stone and the fish were fed ad 148 

libitum. The water temperature and mortality/morbidity was checked and recorded 4 149 

times per day as per standard practise within the University of Stirling Aquarium 150 

Facilities. Moribund and freshly dead fish were necropsied and examined grossly for any 151 

external and internal clinical signs of disease. Bacterial samples were aseptically taken 152 

from the kidney and spleen of each fish onto TSA plates, incubated at 28oC.  These were 153 

checked daily for a maximum of 7 days for bacterial growth and purity. At the end of the 154 

challenge period, 50% of all surviving fish per treatment group were removed and 155 

examined for gross clinical signs of disease and sampled for bacteria culture as 156 

described above.  157 

Ethics statement 158 

 All experiments were conducted with the approval of the University of Stirling Ethics 159 

Committee and performed under Home Office Licence 60/3949.  160 
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All experimental protocols were adopted in this study in accordance with the UK 161 

legislation under the Animals (Scientific Procedures) Act 1986 Amendment Regulations 162 

(SI 2012/3039). 163 

2.6 Statistical analysis 164 

Parametric assumptions were checked using Levene´s test for homogeneity of variances 165 

and Shapiro-Wilk´s test for normality. The samples with homogenous variances were 166 

analyzed using ANOVA followed by Duncan test, while Dunnett´s T3 test was used for 167 

the samples with unequal variances. As data were normal-distributed and 168 

homoscedastic, the cumulative percentage mortalities between treatment groups were 169 

compared by using one-way ANOVA, followed by the Duncan test.  All the tests were 170 

performed using the SPSS program release 17.5. Differences were considered 171 

statistically significant if p<0.05. 172 

3. RESULTS 173 

3.1 Cumulative Percentage Mortality in Fish Exposed by Immersion Route (Pilot Study)  174 

Mortalities were observed in all fish groups receiving the bacteria by immersion for all 175 

exposure times (Fig. 1). The mortality curves were similar for each of the treatment 176 

group exposed to the E. ictaluri, with the highest total cumulative mortalities (100%) 177 

found in the treatment groups that had been exposed to the bacteria for 5 min or 178 

longer.  179 

In the second immersion challenge study the mortality curves were again similar for all 180 

treatment groups (Fig. 2). The longer the exposure time the higher the level of mortality 181 

in the treatment group. The reduction in the exposure time in study 2 shows that 182 

shorter exposure time provide better refinement of the infection process under 183 

experimental conditions. The first mortality occurred at day 3 within the group exposed 184 
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for 2 min (Fig. 2) and the second mortality was observed in the treatment group 185 

exposed for 1 min at day 4 post bacterial challenge. From day 5 post-bacterial exposure 186 

the mortalities occurred in all treatment groups except the control (Fig. 2). The highest 187 

percentage cumulative mortality (100%) was found in the treatment group exposed to 188 

the bacteria for the longest duration (2 min, Fig. 2).  189 

By the end of this experiment, the cumulative mortality was highest in the group 190 

exposed to bacteria for 2 min and was significantly higher than the 1 min immersion 191 

group (p = 0.024) and treatment group exposed for 30s (p= 0.001). The end-point 192 

mortality (63%) was found in groups that had been exposed to the bacteria for 30s (Fig. 193 

2). 194 

3.2 Cumulative percentage mortality in cohabitation experiment 195 

A significantly higher cumulative percentage mortality was observed in the treatment 196 

group (1b) where the seed fish was injected with the bacteria prior to cohabitation 197 

(Table 3, p=0.013). Furthermore, the onset of the mortalities occurred faster in the 198 

Treatment group (1b) compared with the Treatment group (1a) where the seed fish 199 

were exposed to the bacterium by immersion (Table 3).  200 

No mortalities or morbidity were observed in the seed saline/control fish or any other 201 

fish in the same treatment group (Table 3).   202 

3.3  Clinical signs and gross pathology 203 

Within 3 to 4 days post exposure, clinical signs commonly associated with E. ictaluri 204 

infection were observed in the fish in both immersion challenges and at day 7 in the 205 

cohabitation experiments (Fig 3).  206 

Affected fish in both immersion and cohabitation experiments showed behavioural 207 

changes including erratic swimming in a spiral motion and stopped feeding prior to 208 
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mortality. Internally, the affected fish presented grossly with white lesions (1-2 mm 209 

diameter) distributed throughout the spleen and the kidney (Fig 3). Later, white lesions 210 

also occurred in the liver of infected fish. The abdomen was swollen and abdominal 211 

dropsy was present with fluid in the peritoneal cavity. Spleen and kidney were enlarged.  212 

Large areas of cellular necrosis and haemorrhage were present in the spleen and kidney 213 

from the moribund fish sampled. Necrotic kidney tubules were observed in all fish 214 

exposed to E. ictaluri (Fig 4). Multiple extensive areas of necrosis were observed in the 215 

head kidney of affected fish presenting with clinical signs of BNP. The spleen also 216 

showed extensive confluent areas of necrosis within the parenchyma.  217 

The chromatin in the nucleus of liver cells was distributed irregularly through the 218 

cytoplasm indicative of nuclear fragmentation of a cell undergoing apoptosis (Fig 5). 219 

Cellular inflammation and necrosis were observed in the liver of infected fish in all 220 

bacterial treatment groups. Some areas of liver showed the process of karyolysis which 221 

resulted in the complete dissolution of the chromatin of a dying cell because of 222 

enzymatic degradation resulting in necrosis. This was preceded by karyorrhexis (Fig 5).  223 

No pathological changes were observed in fish in all control groups.  224 

Pure cultures of bacteria identified as E. ictaluri were recovered from moribund and 225 

fresh dead fish. Rate of re-isolation in moribund and dead fish of the bacterial group was 226 

100%. No mortalities/morbidity, clinical signs of disease or bacteria were observed or 227 

recovered from the control group or any of the survivors. 228 

3.4 Phenotypic and genomic identification 229 

The isolated strains from 96 moribund and fresh dead fish recovered during these 230 

challenge studies showed almost identical phenotypic characteristics with the original 231 
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challenge strain. They were all identified as Gram negative, non-motile short or varied 232 

length rods, fermentative on O/F and oxidase negative with an API 20E profile of 233 

4004000. These gave β-haemolysis when cultured on sheep blood agar and no H2S, acid 234 

or gas was produced when inoculated onto TSI slopes.  Generally, the phenotype of the 235 

bacteria recovered from 96 moribund and dead fish that all presented with typical 236 

clinical signs of BNP was consistent with the other members of the genus Edwardsiella 237 

and was identified as E. ictaluri. 238 

All of the E. ictaluri strains recovered from the experimentally exposed fish expressing 239 

clinical signs of BNP were confirmed positive by PCR as they provided a single molecular 240 

band at 470 bp. 241 

4 DISCUSSION 242 

The results of this study produced a successful immersion and co-habitation challenge 243 

model for the bacterial infection, BNP. The bacterium recovered and identified from the 244 

affected fish during the challenge study was identified as E. ictaluri, and was considered 245 

homogeneous in identification and moribund fish showed similar signs to those 246 

described for both natural and previous experimental BNP infections (Crumlish et al., 247 

2010; Ferguson et al., 2001; Ho, Areechon, Srisapoome, & Mahasawasde, 2008).  These 248 

fish challenge studies confirmed Koch’s postulates for new exposure routes, that are 249 

considered more natural compared with the traditional i.p. injection route. In the 250 

second immersion study, to comply with the 3R’s when working with experimental 251 

animals the lowest number of fish were used in the control group which did not affect 252 

the statistical validity of the study 253 
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In the immersion challenges performed in this study, mortality rates proved to be a 254 

valuable indicator of the challenge concentration received, and  in agreement with 255 

Murray et al., (1992). In the present study, mortalities were obtained in all treatment 256 

groups except the controls and these mortalities appeared to be concentration 257 

dependent, which was not unexpected. In this study, the mortalities were 100% even at 258 

5 min immersion, showing that for experimental studies on pathogenesis or evaluating 259 

prevention and treatment control strategies, the mortalities were very high using this 260 

route of pathogen exposure and concentration of bacteria. Other experimental 261 

challenge studies performed in striped catfish using the same immersion route 262 

presented mortalities as high as in the present study by using prolonged immersion time 263 

for 30 minutes to 1 hour. Immersion of 1.2 x 106 cfu ml-1 of E. ictaluri in 1 hour caused 264 

100% mortality of yellow catfish (Ye, Li, Qiao, & Li, 2009). The LD60 of E. ictaluri for 265 

striped catfish was 1x 106 cfu ml-1 for 1 hour immersion and 3.5 x 106 cfu ml-1 in ip-266 

injected fish (Thinh et al., 2009). Another study reported that an immersion challenge 267 

dose of 1 x 108 cfu ml-1 for 1 hour or 1 x 106 cfu ml-1 in i.p.-injected fish gave more than 268 

80% fish mortality (Crumlish et al. 2010). It may be that the duration of exposure by 269 

immersion may be too stressful for the fish, thus exacerbating the final morality rates, 270 

hence the need for a more refined and natural pathogen exposure route. 271 

In all in vivo pathogen challenge studies, fish are subjected to the additional stress of 272 

handling or prolonged exposure to the pathogen (Alcorn, Murray, Pascho, & Varney, 273 

2005). In this study, the short exposure time of 30 seconds was sufficient to establish an 274 

infection as shown from the presence of clinical signs, mortalities, bacterial recovery 275 

and histology results. 276 
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 Comparison of the data provided in this study showed that the range of organs affected 277 

and the nature of the host response was similar when an infection is created through a 278 

high level single pulse exposure (injected) or a high level stable aquatic bath exposure. 279 

In addition, the fish exposed to the bacterium had similar behavioral, clinical signs and 280 

histology changes of liver and kidney to those described for both natural and 281 

experimental BNP infections (Ferguson et al. 2001; Crumlish et al. 2002; Ho et al. 2008; 282 

Crumlish et al. 2010).   283 

Whilst pathogen uptake was not explored in the study presented, it may be that the skin 284 

is the first route of entry, simply  a matter of opportunity rather than actual tissue 285 

specificity. Menanteau-Ledouble, Karsi, & Lawrence, (2011) revealed that E. ictaluri 286 

entered channel catfish through the skin instead of penetrating the fish through 287 

intestine, nares, or gills.  288 

 The most natural exposure route for fish infectivity studies is co-habitation, however 289 

few, if any fish models exist for bacterial co-habitation studies. In the data presented, 290 

lower final mortality figures were achieved by co-habitation, irrespective of the 291 

exposure route of the “seed” fish and a difference was observed in the time to mortality 292 

between the i.p. and immersion exposure of the “seed” fish.  However, the mortality of 293 

striped catfish exposed to E. ictaluri in both immersion challenge and cohabitation 294 

challenge experiments stopped at day 12, and the study terminated by day 15. These 295 

factors complied with Amend, (1981) which defined the end point as two days beyond 296 

the day that the last fish  specifically died from the infection. Our data would therefore 297 

support a refinement in the experimental designs for future in vivo E. ictaluri challenge 298 

studies performed in P. hypothalamus catfish. 299 
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Cohabitation challenge permits the determination of crossover infections within a group 300 

of infected and un-infected fish (Murray et al., 1992). However, it takes significantly 301 

longer time between the introduction of the infected seed fish and the onset of 302 

mortality among the challenged fish than by immersion (Alcorn et al., 2005). Physical 303 

contact is considered a risk factor for transmission of any pathogen in the water body 304 

(Cvitanich, Garate, & Smith, 1991; Gaunt et al., 2006; P. Klesius, 1994; Shotts, Blazer, & 305 

Waltman, 1986)). Whilst the results of the co-habitation method developed in this study 306 

clearly showed mortalities with clinical signs of disease and recovery of the infectious 307 

agent, it was difficult to determine the challenge dose received by the naïve fish. 308 

Nevertheless, our data showed that it is possible to achieve infection through 309 

cohabitation where the seed fish were challenged by i.p injection or through immersion. 310 

In the present study, the mortality of striped the contact cohabitant by i.p. injection 311 

(38.89% ) or immersion (22.22%) confirmed the importance of physical contact as a 312 

vector in horizontal transmission of E. ictaluri among striped catfish thus early removal 313 

of infected fish might be important in reducing the infection of E. ictaluri in naïve striped 314 

catfish at the farm level. The high density of striped catfish applied in grow out farming 315 

(Phan et al. 2009; 2011) can cause an increased severity of infection with this bacterium 316 

where the infection spreads rapidly to healthy fish in the same pond and contiguous 317 

ponds once the BNP occurs.  318 

In conclusion, the present study fulfilled the study aims and produced two non-injection 319 

challenge models: immersion and cohabitation. An adequate level of challenge was 320 

achieved in the immersion challenge, which provided a minimum of 60% mortality of 321 

the infected fish suggesting that this method was reproducible and reliable alternative. 322 

Although the end-point mortality of co-habitation experiments was lower than expected 323 
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these models would be extremely useful in investigating alternatives to antibiotics or 324 

oral deliver of products at early stages of infection. Both of these methods would be 325 

suitable for investigating pathogenesis of E. ictaluri infections in P. hypophthalmus.  326 
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Figure legends 432 

FIGURE 1 Cumulative percentage mortalities in the immersion exposure group (pilot 433 

study) (IMM = immersion). 434 

FIGURE 2 Cumulative percentage mortalities in the immersion challenged groups with E. 435 

ictaluri for 30 s (IMM 30 s), 1 min (IMM 1 min), and 2 min (IMM 2 min) compared with 436 

the control group. Means with the same letters are not significantly different (p=0.07; 437 

0.12). 438 

FIGURE 3 White lesions (arrows) were presented in the anterior kidney and spleen of 439 

infected fish. 440 

FIGURE 4 Kidney from fish infected with E. ictaluri exposed for 30 second showed 441 

necrosis (N) and haemorrhagic areas (H) compared with un-infected fish in control 442 

groups (A). 443 

FIGURE 5 Liver and hepatopancreas cytopathology of fish infected with E. ictaluri exposed for 30 444 

second (B) showed cellular inflammation with some Pyknotic nuclei (P) cells compared with 445 

control un-infected fish (A). The liver of infected fish showed severve necrosis (N). 446 

 447 
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TABLE 1 Challenge experimental design demonstrating the concentration of E. ictaluri, exposure 

time, number of fish and replicate tanks per treatment group. 

Treatment 

group 

No. Fish 

per 

Group 

Bacterial concentration 

(cfu mL-1) 

Exposure time 

(s) 

1 30 1 x 107  30  

2 30 1 x 107  60 

3 30 1 x 107  120 

Control 10 0.85% sterile saline 120 
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TABLE 2 Experimental design for the direct contact cohabitation challenge according to the 

concentration of E. ictaluri, the method of experimental infection of seed fish, number of naive 

fish per treatment group.  

Treatment 

group 

Infection route (seed fish) Bacterial concentration 

1a i.p. injection 

(bacteria) 

1x106 cfu fish-1  

 

1b i.p. injection 

(control) 

0.1 ml of 0.85% sterile saline 

2a Immersion 

(bacteria) 

1x107 cfu mL-1 for 15 min 

 

2b Immersion 

(control) 

0.85% sterile saline 
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TABLE 3 Mortality among groups of challenged striped catfish with various controls or E. ictaluri 

infection followed by a cohabitation challenge. The first mortality was recorded as day post- 

challenge. 

Treatment Replicate No. Day first mortality Final cumulative mortality (%) 

1a  

(IMM for 15 min ) 

1 7 22 

2 7 22 

1b  

(i.p. injection)  

1 5 33 

2 5 44 

2a (IMM control) 1  0 

2b (i.p. injection 

control) 

1  0 

 

 








