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ABSTRACT 11 

The use of low fishmeal/fish oil in marine fish diets affects dietary essential fatty acids 12 

(EFAs) composition and concentration and subsequently, may produce a marginal 13 

deficiency of those fatty acids with a direct impact on the fish intestinal physiology.  14 

Supplementation of essential fatty acids is necessary to cover the requirements of the 15 

different EFAs, including the ones belonging to the n-6 series, such as arachidonic acid 16 

(ARA). ARA, besides its structural role in the configuration of the lipid classes of 17 

intestine, plays an important role on the functionality of the gut associated immune 18 

tissue (GALT).  19 

The present study aimed to test five levels of dietary ARA (ARA0.5 (0.5%), ARA1 20 

(1%), ARA2 (2%), ARA4 (4%) and ARA6 (6%) for European seabass (Dicentrarchus 21 

labrax) juveniles in order to: (a) determine its effect in selected distal intestine (DI) lipid 22 

classes composition; and (b) how these changes affected gut bacterial translocation rates 23 

and selected GALT-related genes expression pre and post challenge.   24 

No differences were found between distal intestines of fish fed the graded ARA levels 25 

in total neutral lipids and total polar lipids. However, DI of fish fed the ARA6 diet 26 

presented higher (P<0.05) level of phosphatidylethanolamine (PE) and sphingomyelin 27 

(SM) than those DI of fish fed the ARA0.5 diet. In general terms, fatty acid profiles of 28 

DI lipid classes mirrored those of the diet dietary. Nevertheless, a selective retention of 29 
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ARA could be observed in glycerophospholipids when dietary levels are low (Diet 30 

ARA0.5), as reflected in the higher glycerophospholipids-ARA/dietary-ARA ratio for 31 

those animals. Increased ARA dietary supplementation was inversely correlated with 32 

eicosapentaenoic acid (EPA) content in lipid classes, when data from fish fed the diets 33 

with the same basal composition (Diets ARA1 to ARA6). ARA supplementation did not 34 

affect intestinal morphometry, goblet cells number or fish survival, in terms of gut 35 

bacterial translocation, along the challenge test. However, after the experimental 36 

infection with Vibrio anguillarum, the relative expression of cox-2 and il-1β were up-37 

regulated (P<0.05) in DI of fish fed the diets ARA0.5 and ARA2 compared to fish fed 38 

the rest of the experimental diets. Although dietary ARA did not affect fish survival, it 39 

altered the fatty acids composition of glycerophospholipids and the expression of pro-40 

inflammatory genes after infection when included at the lowest concentration, which 41 

could be compromising the physical and the immune functionality of the DI, denoting 42 

the importance of ARA supplementation when low FO diets are used for marine fish.  43 
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Aquaculture. Dicentrarchus labrax. Arachidonic acid. Gut Polar lipids. Distal intestine. 45 
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1. INTRODUCTION 48 

Nowadays, due to economic and environmental reasons aquafeeds include 49 

important levels of vegetable oil (VO), rich in 18:C polyunsaturated fatty acids 50 

(PUFAs) (Hardy et al. 2010). In marine finfish, contrarily to freshwater species, in some 51 

cases these substitutions are critical, since they have a limited capacity of elongate and 52 

desaturate PUFAs into their long chain families (Tocher 2003). Thus, presenting dietary 53 

requirements of long chain PUFA (LC-PUFAs), in particular for eicosapentaenoic acid 54 

(EPA, 20:5 n-3), docosahexaenoic acid (DHA, 22:6 n-3), and arachidonic acid (ARA, 55 

20:4 n-6) (Tocher 2015), due to their important role into growth performance, nervous 56 

system or immune system development and functioning, for what they are recognized as 57 

essential fatty acids (EFA) for marine fish (Tocher et al. 2008). 58 

LC-PUFAs are selectively esterified into cell surface glycerophospholipids 59 

(GPs) by fatty acyltransferase enzymes, affecting signaling processes as regulation of 60 

nuclear receptors and transcription (Crowder et al. 2017), membrane stability and 61 
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fluidity, and, eventually, cell functions (Tocher 2003; Fernandez and West 2005; 62 

Yaqoob and Calder 2007). These functions can be exerted directly by GPs as 63 

phosphatidylcholine (PC) and phosphatidylserine (PS) which are activators of protein 64 

kinase C (Tocher et al. 2008), or through derivates as phosphoinositides, diacylglycerol, 65 

lysophosphatidic acid or oxidized PC, to bind and activate receptors as, for instance, 66 

peroxisome proliferator activated receptor (Davies et al. 2001). Similarly, GPs 67 

constitute a reservoir of fatty acids (FA) that are released by phospholipase A2 (Pla2) to 68 

be used by cyclooxygenase (Cox) and lipoxygenase (Lox) enzymes for eicosanoid 69 

production (Tocher 2003) as prostaglandins (PGs), thromboxanes or leukotrienes, 70 

among others. Eicosanoids are a group of highly active hormone-like molecules that 71 

exert their biological effects in a paracrine manner in many physiological processes as 72 

the inflammatory response (Tocher 2003; Yaqoob and Calder 2007). 73 

Given the fact that dietary oils and fats affect FA profile in fish tissues, 74 

especially in marine species (Tocher 2015), the organ function will be also influenced 75 

by dietary lipids (Tocher 2003). For instance, reductions of dietary EFA for gilthead 76 

seabream (Sparus aurata) together with changes on other FAs by the different dietary 77 

lipid sources are responsible for alterations in the morphology of intestine (Caballero et 78 

al. 2003 and 2004). The digestive tract of teleosts is one of the main entrances for 79 

pathogens (Zapata & Cooper, 1990), and particularly the gut-associated immune system 80 

(GALT) has a great importance in maintaining its health status (Rombout et al., 2011; 81 

Torrecillas et al. 2012). Fish gut houses a regional immune specialization and it is 82 

considered an important place for antigen uptaking, playing a key role achieving oral 83 

immune-protection (Rombout et al. 2011). In distal intestine (DI), lymphocytes, 84 

granulocytes and leukocytes, are spread on the epithelium and constitute the GALT, a 85 

local immune system that reacts to disturbances of homeostasis as those that occur 86 

during an infectious process or inclusion of terrestrial sources in diet (Torrecillas et al. 87 

2014; Salinas 2015). These immune cells can produce eicosanoids to induce immune-88 

cell proliferation, cytokine-release or to chemo-attract other immune cells (Zou and 89 

Secombes 2016). Hence, dietary imbalances of EFAs can lead to modifications on cell 90 

membranes composition and, therefore, alter gut morphology, growth performance and 91 

fish health (Tocher 2003; Montero et al. 2001, 2003, 2005, 2008, 2010).   92 

Recent studies are demonstrating that ARA plays an important role on fish growth 93 

performance (Bessonart et al. 1999; Carrier et al. 2011; Koven et al. 2003; Lund et al. 94 
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2007; Bae et al. 2010; Luo et al. 2012; Torrecillas et al. 2018a), lipid metabolism (Luo 95 

et al. 2012; Xu et al. 2018), or fish health and disease resistance (Xu et al. 2010; 96 

Torrecillas et al. 2017c), among others. Besides, the essential role of ARA and its 97 

relative low levels compared to n-3 LC-PUFAs in the marine environment and in fish 98 

tissues, have probably led to the strong preference of enzymes involved in eicosanoid 99 

synthesis, at the expense of EPA (Liu et al. 2006; Yaqoob and Calder 2007; Furne et al. 100 

2013). Indeed, the ratio ARA/EPA on the target organ, affects the synthesis of 101 

eicosanoids (Ganga et al. 2005,2006; Xu et al. 2018). Similarly, ARA-derived 102 

eicosanoids compete with those from EPA for the same cell membrane receptors 103 

(Sargent et al. 1999a; Ganga et al., 2005; Adam et al., 2017; Tian et al., 2017) although 104 

those originated from ARA seem to be more biologically active (Leslie 2004). Beyond 105 

eicosanoid production, the ARA role on immunity covers a great number of other 106 

mechanisms in cells as the activation of the NADPH oxidase enzyme in leukocytes to 107 

trigger the respiratory burst (Brash et al. 2001).  108 

Farmed European seabass presents reduced ARA tissue levels when compared with 109 

wild specimens (Alasalvar et al. 2002; Bell et al. 2007; Fuentes et al. 2010 Lenas et al. 110 

2011) indicating a necessary increase of dietary ARA. Indeed, studies of optimum 111 

levels of ARA have been made in larval stages of these species (Koven 2001, 2003; 112 

Atalah et al. 2011; Montero et al. 2015c) but scarce information exists in juveniles 113 

regarding ARA content in GPs and its influence in the intestinal immune response 114 

(Torrecillas et al. 2017c,d).  115 

Therefore, an experiment was conducted out using graded levels of dietary 116 

ARA- for European seabass juveniles to determine the influence and the content of this 117 

EFA in lipid classes of DI and the related effects on gut morphology, expression of 118 

intestinal immune-related genes, survival and resistance to intestinal infection. 119 

2. MATERIAL AND METHODS 120 

2.1. Experimental diets 121 

Five isolipidic and isoproteic experimental dry pelleted diets based on a 122 

commercial formulation were prepared to contain graded levels of ARA (total FA in 123 

diet, %) as follows: ARA0.5 (0.5%), ARA1 (1%), ARA2 (2%), ARA4 (4%) and ARA6 124 

(6%). Diet ingredients, proximate composition, and FA) profiles are reported in Table 1 125 
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and 2. This basal diet was supplemented to achieve desired ARA content in diets 126 

ARA2, ARA4, and ARA6 with increasing quantities of Vevodar
®

 (DSM Food 127 

Specialties, the Netherlands), a commercial fungal-oil rich in ARA obtained from 128 

Mortierella alpine (authorized in European Union by Commission Decision 129 

2008/968/CE). Diet ARA0.5, was formulated with defatted fish meal (FM) and without 130 

fish oil (FO) to reduce the presence of ARA and supplemented with vegetable oils to 131 

reach requirements. When necessary, supplementation of DHA and EPA was done 132 

using DHA50 and EPA50 (CRODA, East Yorkshire, UK). 133 

2.2. Fish and experimental conditions  134 

For this feeding trial, eight hundred and forty European seabass juveniles reared 135 

in a commercial farm were maintained in quarantine in the facilities of Marine Science-136 

Technology Park (PCTM) of University of Las Palmas de Gran Canaria (ULPGC), for 4 137 

weeks before the experience, and fed a commercial diet. Tanks were supplied with 138 

seawater at a natural temperature of 22.8–24.9 ºC in a flow-through system and kept at a 139 

natural photoperiod (12L:12D). Dissolved oxygen ranged between 5-8 ppm. Fish were 140 

fed the experimental diets for 70 days and, at the end of this feeding trial, fish were 141 

submitted to a challenge test against Vibrio anguillarum via intestinal inoculation.  142 

All animal manipulation in this trial complied European Union Council 143 

guidelines (86/609/EU) and Spanish legislation (RD 53/2013) and had been approved 144 

by Bioethical Committee of the ULPGC (Ref. 007/2012 CEBA ULPGC). 145 

2.3. Feeding trial 146 

With an average weight and length of 13.4 ± 0.3 g and 9.9 ± 0.1 cm respectively 147 

(mean ± SD), animals were randomly allocated in 15 fiberglass 200 L tanks (55 148 

fish/tank; 4 kg m
-3

 of stocking density). Diets were assayed in triplicate and animals 149 

were fed by hand for 70 days until apparent satiation, three times a day, 6 days a week. 150 

After 70 days, samples of DI were taken for biochemical, histologial and gene-151 

expression analyses. Survival was recorded during the whole period of the feeding trial.  152 

2.4. Challenge trial 153 
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After 70 days of experiment, fish were transferred to the Biosecurity Facilities of 154 

ULPGC in PCTM (Telde, Las Palmas, Canary Island, Spain). After 2 weeks of 155 

adaptation to the new experimental conditions, fish were inoculated with a sublethal 156 

dose (10
7
 CFU

 
ml

-1
 per fish) of V. anguillarum using the method of anal cannulation 157 

assayed previously in similar experimental conditions (Torrecillas et al. 2007). Fish 158 

were fed their corresponding experimental diets for 7 days, as frequent than before. At 2 159 

days after the infection, samples of DI were taken for immune-related genes analyses. 160 

Survival was recorded along this trial.  161 

2.5. Lipid class and fatty acid content of selected glycerophospholipids of distal 162 

intestine  163 

At day 70, eight fish per tank (N= 24 fish/diet), were used for biochemical 164 

analysis. The intestine was extracted out for analysis and distal section was separated as 165 

previously described by Torrecillas et al. (2013). Fish tissues were kept at -80º C until 166 

the analysis. Biochemical composition of distal intestine and diets were conducted 167 

following standard procedures from Association of Official Analytical Chemists 168 

(AOAC, 2016). The analysis of lipid class and fatty acid composition of selected 169 

glycerophospholipids (GPs) was conducted in the Institute of Aquaculture, Stirling 170 

University (UK). Separation of main lipid classes was realized in 10 × 10 cm plates 171 

(VWR, Lutterworth, UK) by double development high-performance thin-layer 172 

chromatography (HPTLC) using the technics described by Tocher and Harvie (1988), 173 

and Olsen and Henderson (1989). Firstly, plates were pre-run in diethyl ether and then 174 

activated at 120
o 

C for 1 hour. The lipid classes were visualized after spraying with 3% 175 

(w/v) copper acetate, containing 8% (v/v) phosphoric acid by charring at 160
o 

C for 20 176 

min. Quantification was made by densitometry using a CAMAG-3 TLC scanner 177 

(Version Firmware 1.14.16; CAMAG, Muttenz, Switzerland) with winCATS Planar 178 

Chromatography Manager. Samples and authentic standards run alongside, in the same 179 

conditions, on high-performance thin layer chromatography (HPTLC) plates, as the way 180 

to determine the identities of individual lipid classes by contrasting Rf values.  Total 181 

GPs, including PC, PS, phosphatidylethanolamine (PE), and phosphatidylinositol (PI) 182 

were isolated from HPTLC plates and subjected to acid-catalyzed transesterification 183 

according to the method of Tocher and Harvie (1988). Afterwards, extraction and 184 

purification were performed as described by Christie (1982). To separate and quantify 185 

fatty acid methyl esters (FAMEs) of selected GPs, a gas-liquid chromatography was 186 
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executed using a Fisons GC-8160 (Thermo Scientific, Milan, Italy) with the conditions 187 

determined previously (Izquierdo et al. 1992). 188 

2.6. Histological studies 189 

Samples from DI (N= 6 fish/diet) obtained after 70 days of feeding and taken as 190 

described by Torrecillas et al., (2013) were fixed in neutral-buffered formalin (4%). 191 

After 48 hours, tissues were dehydrated with an increased graded series of ethanol, 192 

submerged in xylene and embedded in paraffin blocks. Sections of 4µm were cut and 193 

stained with hematoxylin and eosin (H&E) and Alcian Blue-PAS (pH= 2.5) (Martoja 194 

and Martoja-Pierson 1970), for optical examinations and to differentiate mucus-195 

secreting cells, respectively. Micrographs analyzed were obtained with a Nikon 196 

Microphot- FXA microscope (objective lens 20X plus eyepiece 10X) equipped with an 197 

Olympus DP50 camera. Cell count and measures of DI were made according to 198 

Torrecillas et al. (2007), using Image-Pro Plus v5 software (Media Cybernetics Inc., 199 

Rockville, MD, USA). Structural measures of DI were studied with a light microscope 200 

(N=72; 12 sections per fish × 6 fish per tank × 3 tanks per diet) and using individual fish 201 

weight as co-variable. Following measures were calculated: fold area, FA; fold 202 

perimeter, FP; fold length, FL; fold width, FW; submucosa width, SW. To estimate 203 

mucus production, the number of mucus-secreting cells by unit of area was counted (N= 204 

288; 48 folds per fish × 2 fish per tank × 3 tanks per diet). 205 

2.7. RNA extraction, cDNA synthesis and Quantitative Real-Time PCR analysis  206 

After 70 days of feeding and during challenge trial (2 days), DI (N= 9 fish/diet) 207 

samples were collected in order to realize real time (RT) qPCR analyses. Tissues were 208 

submerged into Invitrogen
™

 RNAlater
™

 Stabilization Solution (Thermo Fisher 209 

Scientific Inc., USA) and conserved at -20
o
C. Then, using TRI-Reagent (Sigma-210 

Aldrich, Saint Louis, MO, USA) and RNeasy
®

 mini Kit (QUIAGEN, Germany), total 211 

RNA was extracted from 100 mg of pooled tissues, (N=3 fish/tank). RNA was 212 

quantified by spectrophotometry using Nanodrop 1000 (Thermo Fisher Scientific Inc., 213 

USA) and integrity was evaluated on a 1.4% agarose gel with Gel Red
™

 (Biotium Inc., 214 

Hayward, CA). The synthesis of cDNA was realized from 1µg RNA with iScript
™

 215 

cDNA Synthesis Kit (Bio-Rad Hercules, California) in 20µl final volume. Selected 216 

genes related to GALT functioning and eicosanoid production were as follows and 217 
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respectively: interleukin 10 (il-10), interleukin-1beta (il-1ß), tumor necrosis factor alpha 218 

(tnfα), and cyclooxygenase 2 (cox-2). RT-qPCR reactions were performed by triplicate 219 

and conditions were 1X (95
o
C, 10min), 35x (95

o
C, 45s/corresponding annealing 220 

temperature, 45s/72
o
C, 45s) 1X (72

o
C, 30s). Conditions, sequences and references are 221 

registered in Table 3. Two genes, elongation factor 1 (ef-1) and β-actin, were tested as 222 

housekeeping but ef-1 was found to be more stable to make calculations. Reactions 223 

were performed in an iCycler Optical Module (Bio-Rad, USA), the final volume used 224 

was 15µl, containing 2µl of cDNA (diluted 1/10), 0.6µl of each primer (10 mM) and 225 

7.5µl of Brilliant SYBR Green QPCR Master Mix (Bio-Rad Hercules, CA, USA). 226 

Blank samples, with 2µl of water replacing cDNA, were included in each assay as a 227 

contamination control. The Livak & Schmittgen (2001) method was used to calculate 228 

relative expression of each gene. 229 

2.8. Statistical analysis 230 

All statistical analyses were performed using SPSS 21 software package for 231 

Windows (IBM, Chicago, IL, USA). All data, presented as mean ± SD, were tested for 232 

normality and homoscedasticity. Statistical analyses followed methods outlined by 233 

Sokal and Rolf (1995). Data were submitted to a One-way analysis of variance 234 

(ANOVA). When F values showed significance, individual means were compared using 235 

post hoc tests for multiple means comparison. When data were not normally distributed, 236 

data analysis was made by non-parametric test (Kruskal-Wallis and U Mann-Whitney). 237 

When Levene’s test showed P<0.05, but ANOVA and Wells test showed P<0.05, post 238 

hoc test used was Games-Howell. Pearson coefficient was used for correlations and 239 

statistical significance was set at P˂0.05. Survival curves were performed and analyzed 240 

using the method described by Kaplan-Meier (Kaplan and Meier 1958). 241 

3. RESULTS 242 

3.1 Growth parameters 243 

The growth study has been previously reported (Torrecillas et al., 2018a) but it is 244 

important to point out that fish growth presented differences at the end of feeding trial. 245 

Briefly, fish fed the lowest dietary ARA levels showed significantly lower (P<0.05) 246 

weight (g) (ARA0.5 =33.0 ± 1.1) than those from the other diets, that are those diets in 247 

which ARA was supplemented on the same base diet (ARA1= 44.4 ± 1.1; ARA2= 43.8 248 
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± 1.0; ARA4= 43.9 ± 3.7; ARA6= 42.8 ± 2.5) (mean ± SD). Dietary ARA levels did not 249 

affect (P>0.05) cumulative survival percentages for European sea bass fed the 250 

experimental diets for 70 days (over 95% for all diets).   251 

3.2 Lipid class composition of distal intestine 252 

No differences were found between diets in the Ʃ neutral lipids or the Ʃ polar 253 

lipids of DI (Table 4). Regarding polar lipids, PC, followed by PE, were in higher 254 

proportion than the rest of lipid class (Table 4). Lysophosphatidylcholine (LPC) 255 

presented the lowest proportion (Table 4).  Among polar lipids, SM and PE were the 256 

only lipid class affected by dietary ARA (P=0.041 and P=0.049; respectively) (Table 4). 257 

Fish fed diet ARA6 had significant (P<0.05) higher level of PE than control diet 258 

(ARA0.5) (Table 4). Similarly, SM was more abundant in ARA6 than in ARA0.5, 259 

ARA1 and ARA2 (Table 4). Besides, significant correlations between dietary ARA and 260 

lipid classes in DI were found for PE (0.743/P=0.001), PC (0.640/P=0.010) and SM 261 

(0.700/P=0.004), (Pearson coefficient/P value). 262 

3.3 Fatty acid composition of selected glycerophospholipids in distal intestine. 263 

The FA composition of four main GPs (PC, PE, PS and PI) was analyzed in DI 264 

(Table 5 a, b, c & d). Increasing dietary ARA levels mirrored in the content of ARA in 265 

GPs (GPsARA). However, the lowest dietary ARA level (ARA0.5) induced a selective 266 

incorporation of ARA in all the GPs, reflected in the content of ARA (P˂0.05; Tables 267 

5a to 5d). The higher GPsARA/dietary ARA ratio (P˂0.05) found for PC, PE and PS in 268 

fish fed ARA0.5 diet in comparison to the values obtained for the animals feeding either 269 

of the rest of the diets, was also reflecting the selective incorporation of ARA (Tables 5a 270 

to 5c). For PI, no differences (P>0.05) were found in the GPsARA/dietary ARA ratio 271 

between fish fed ARA0.5 and ARA1 diets (Table 5d). The GPsARA/dietary ARA ratio 272 

in all GPs analyzed in DI, reflected that content of ARA was higher than dietary ARA. 273 

Significant (P˂0.05) correlations were found in DI between dietary ARA levels and the 274 

GPsARA in all analyzed polar lipids: PC (0.992/P˂0.001), PS (0.872/P˂0.001), PE 275 

(0.969/P˂0.001), PI (0.750/P=0.001) (Pearson coefficient/P value) (Tables 5a to 5d). 276 

Fish fed to ARA 0.5 diet presented high content of Ʃn-6 PUFA and Ʃn-3 PUFA due to 277 

the higher content of 18:2n-6 and 18:3n-3 from the diet, respectively. For the rest of the 278 

experimental diets, where ARA was supplemented on the same basal diet from diet 279 
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ARA1 to ARA6), all GPs analyzed in DI, increasing dietary ARA induced an 280 

accumulation of Ʃn-6 PUFA (P˂0.05), mainly due to the increased GPsARA in the 281 

different GPs, (Tables 5a to 5d). Moreover, in PC, PE and PS, dietary ARA induced a 282 

significant (P˂0.05) reduction of Ʃn-3 PUFA (Tables 5a to 5c). The increment of 283 

dietary levels of ARA was inversely correlated with the EPA content in GPs, although 284 

negative correlations were not significant (P>0.05), except for PE (data not shown), due 285 

to reduced dietary EPA level in diet ARA0.5 compared to the other diets (Table 2). 286 

Negative and significant (P˂0.05) correlations between dietary ARA level and EPA 287 

content were found for all GPs when ARA0.5 diet was excluded from the statistical 288 

analysis: PC (-0.904/P<0.001), PS (-0.777/P=0.003), PE (-0.941/P<0.001), and PI (-289 

0.807/P=0.002) (Pearson coefficient/P value) (Tables 5a to 5d). Besides, differences of 290 

Ʃ saturated and Ʃ PUFA were found in PC, with the higher (P˂ 0.05) Ʃ PUFA level and 291 

the lower (P˂0.05) level of Ʃ saturated in those fish fed ARA0.5 diet, due to significant 292 

increases of oleic, linoleic and alpha-linolenic acids, (Table 5a). Differences in DHA 293 

content were found in PS and PE among fish fed the different dietary treatments (Tables 294 

5b and 5c). In PS, lower (P˂0.05) level of DHA was found in fish fed ARA0.5 diet than 295 

ARA1, ARA2, and ARA4 (Table 5b). In PE, lower (P˂0.05) level of DHA was found in 296 

fish fed ARA0.5 and ARA6 diets when compared with the rest of experimental diets 297 

(Table 5c).  298 

3.4 Histological studies 299 

Morphometric analysis of DI showed no significant (P>0.05) differences in any 300 

intestinal measure (Table 6) when related to fish real weight. Similarly, no effect of 301 

dietary ARA was observed in the density of goblet cells by unit of area in relation to the 302 

real fish weight (Table 6). 303 

3.5 Relative expression of selected genes after feeding trial and challenge test 304 

against Vibrio anguillarum. 305 

The cumulative mortality after challenge test against V. anguillarum was not 306 

affected by dietary ARA (P>0.05). Despite the differences in the survival percentages 307 

were not significant, there was a trend to lower mortality in fish fed diet ARA6, which 308 

did not present mortality along the experimental intestinal infection, whereas the 309 
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survival percentage of fish fed the experimental diets ranged between 76.5 and 88.2%, 310 

for diets ARA0.5 and ARA4 respectively). 311 

The relative expression of immune related genes, including il-1β, tnfα, il-10 and 312 

cox-2, were analyzed in DI at both basal and 2 days post infection (Fig.1). No effect was 313 

found on tnfα relative gene expression (Fig. 1a). After the feeding period (basal level), 314 

increased expression of pro-inflammatory il-1β (P=0.030) was found in fish fed 315 

ARA0.5 diet in comparison to fish fed ARA1 and ARA2 (Fig.1b). After 2 days post 316 

infection, there was an up-regulation of il-1β relative gene expression in fish fed 317 

ARA0.5 and ARA2 diets when compared with those fish fed the rest of the diets 318 

(P<0.001) (Fig.1b). An increment of il-10 relative expression was found in fish fed 319 

ARA1 and ARA6 (P=0.002) at basal level compared to fish fed the other diets, whereas 320 

after infection a reduction was found in fish fed ARA2 compared to those fed the rest of 321 

the diets (P<0.001) (Fig.1c). No differences (P>0.05) were found at basal level for cox-2 322 

relative expression (Fig.1d). At 2 DPI, cox-2 gene expression was up-regulated  323 

(P<0.05) in fish fed ARA2 (Fig.1d) when comparing to fish fed the rest of the dietary 324 

treatments.  325 

4. DISCUSSION 326 

Fish have dietary requirements of GPs for normal growth, homeostasis 327 

maintenance, survival, or immune system function (Tocher et al. 2008; Adam et al., 328 

2017; Tian et al., 2017). Among other functions, GPs are related with lipid transport and 329 

plasticity of the cell membranes (Tocher et al. 2008). Besides, GPs, act as precursors of 330 

metabolism mediators as diacylglycerol or phosphoinositides, these last related with cell 331 

polarity to keep cytoarchitecture, which is determinant in epithelial barrier and transport 332 

functions allocated in the enterocyte-mucose layer (Shewan et al. 2011). GPs have 333 

described to be affected by the dietary fatty acid profile, both the amount of each GP 334 

and also the fatty acid composition of each lipid class (Olsen et al. 2003). 335 

In this study, levels of dietary ARA were correlated with the concentration of the 336 

different lipid class levels in DI of European seabass. Although increased dietary ARA 337 

seemed to be related with increased the concentration of PE and SM in DI, with values 338 

higher in the diets supplemented with high (ARA4 or ARA6) content of ARA, it was 339 

also correlated to PC level, a lipid class that is required for SM synthesis (Patel and Witt 340 
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2017) and is related to PE through remodeling pathways (Tocher et al. 2008). Previous 341 

studies have demonstrated the importance of SM in epithelial barriers of fish and other 342 

vertebrates, despite the structural differences between marine and terrestrial epithelia 343 

(Feingold 2007; Pullmannová et al. 2014; Cheng et al. 2018). In fact, this polar lipid, 344 

disposed in the outer leaflet of the cell membrane with another choline-container lipid 345 

as PC (Tocher et al. 2008), is more abundant in membranes of temperate-water fish 346 

suggesting its role in the membrane fluidity (Storelli et al. 1998; Palmerini et al. 2009). 347 

In Atlantic salmon, reductions in dietary EPA and DHA increased skin SM levels, 348 

denoting alterations of the barrier function of the skin with reductions of these EFAs 349 

(Cheng et al. 2018). Besides, SM has been linked with the regulation of the release of 350 

ARA, by the inhibition of the c-Pla2α bind to the GPs (Nakamura and Murayama 2014). 351 

In the present experiment, SM in DI increased when ARA increased in diet, with the 352 

subsequent decrease of the n-3 LC-PUFA/ARA ratio. The increase of SM in the gut of 353 

fish fed high dietary ARA could be ameliorating a possible increase of cPla2 activity 354 

induced by the high amount of ARA in the GPs of those fish fed the higher levels of 355 

ARA in diet.  356 

It is known that high LC-PUFA content induces the decarboxylation of PS to PE 357 

at membrane level of different organelles as mitochondria or Golgi (Kainu et al. 2013). 358 

In the present study, PE levels in DI were increased by dietary ARA, with the highest 359 

level corresponding to those fish fed the highest dietary ARA level. This could be 360 

related to the fact that the generation of PE through the PS decarboxylation pathway 361 

generated preferentially PE species with a PUFA at the sn-2 position (Bleijerveld et al. 362 

2007). However, the synthesis of PE through decarboxylation of PS has been shown to 363 

be promoted by DHA and not by ARA (Ikemoto et al. 1999), and thus, other metabolic 364 

pathways different than PS decarboxylation cannot be rejected to explain the increases 365 

of PE in the DI of the fish fed high ARA in diet.  366 

Dietary ARA also influenced fatty acid profiles of lipid classes in the distal 367 

section of the intestine. Olsen et al. (2003) showed that the effect of the type of dietary 368 

lipid is reflected in the fatty acid profile of the intestine and it is dependent of the 369 

section of intestine studied. In this study, correlations were found between dietary ARA 370 

and content of ARA for the four GPs studied in DI. 371 

As described for other species, PI was the lipid class with the highest content of 372 

ARA (Bell and Sargent 2003). Moreover, due to the abundance of PC and PE in the 373 
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tissue studied, higher ARA content was found in those GPs in agreement with previous 374 

studies (Bell et al. 1995). Besides, the increased content of ARA in studied GPs with 375 

respect to the dietary level occurred in all diets and GPs analyzed, although with more 376 

intensity in fish fed the lowest ARA level as reflected in the higher ratio GPs-377 

ARA/dietary for those animals. This selective retention can be considered as a way to 378 

keep functionality during EFA deficiencies (Skalli et al. 2006) as negative effects of 379 

EFA deficiencies can be magnified at chronic stressful situations. Indeed, ARA 380 

reductions were found in liver polar lipids when gilthead sea bream were subjected to 381 

high stocking densities probably due to its selective utilization in that stressful situation 382 

(Montero et al. 2001). Moreover, DHA concentration was also higher than dietary DHA 383 

levels in all studied GPs, particularly in PE and PS, although it must be taken into 384 

account that DHA is preferentially esterified to PE and PS (Kim et al., 2004), and thus 385 

DHA concentration in polar lipids depends not only on the DHA level in diets but also 386 

on the esterification within those lipid classes. The relatively high levels of ARA and/or 387 

DHA despite their dietary inclusion were in agreement to their preferential 388 

incorporation previously found by other authors in European sea bass tissues (Farndale 389 

et al. 1999; Eroldoğan et al. 2013; Torrecillas et al. 2015a) including in polar lipids 390 

(Torrecillas et al. 2013) and in other species (Bell et al. 2001; Montero et al. 2001, 391 

2003; Fountoulaki et al. 2003; Dantagnan et al. 2017). Furthermore, results from the 392 

present study indicate that inclusion of EPA in GPs was negatively correlated by the 393 

supplementation of ARA in diet (excluding from this correlation the results from diet 394 

0.5 formulated with different ingredients and different fatty acid profile), suggesting 395 

competition between EPA and ARA during phospholipid esterification, in agreement 396 

with previous studies (Bell et al. 1991, Bessonart et al. 1999; Fountoulaki et al. 2003; 397 

Atalah et al. 2011). Competition between both fatty acids as substrate for different 398 

enzymes is of especial relevance during eicosanoid synthesis, as both fatty acids are 399 

substrates for eicosanoid production, affecting different fish functions, including 400 

immune system (Bell et al. 1996b, Montero et al., 2015c; Adam et al., 2017).  401 

The graded dietary levels of ARA used in the present study did not affect 402 

survival, in agreement with previous studies using graded dietary ARA levels in 403 

European sea bass larvae (Atalah et al. 2011) or in other marine species such as gilthead 404 

seabream, Senegal sole (Solea senegalensis) or Japanese sea bass (Lateolabrax 405 

japonicus) (Fountoulaki et al. 2003; Villalta et al. 2005; Xu et al. 2010). Other studies in 406 
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gilthead seabream have found positive effects (Bessonart et al. 1999) related to stress 407 

resistance (Koven et al. 2001; Willey et al. 2003). Besides, low or too high dietary ARA 408 

has been described to induce a reduction of fish survival during a bacterial challenge in 409 

Atlantic salmon (Salmo salar) (Dantagnan et al. 2017). In the present experiment, the 410 

graded levels of dietary ARA did not affect survival after challenge test, but induced 411 

changes in the expression of GALT-related genes, as described for other species such as 412 

Atlantic salmon (Dantagnan et al. 2017) or guppy (Poecilia reticulata) (Khozing-413 

Goldberg et al. 2006). Indeed, a previous study has related dietary ARA with 414 

mechanisms of protection against damage in the intestine (Tarnawski et al. 1989). In 415 

this sense, intestine is an organ subjected to injury, intestinal barrier being highly 416 

compromised and subsequently acting as one of the main entrances for pathogens (Ellis 417 

2001; Campos-Pérez et al. 2000).  418 

The relation between intestine and eicosanoid synthesis has been widely studied 419 

in different fish species (Sargent et al. 1999a; Tocher 2003; Calduch-Giner et al. 2016). 420 

Although ARA and EPA are substrates for COX and LOX enzymes to produce 421 

eicosanoids (Bell & Sargent 2003, Tocher et al. 2008), these enzymes seem to have 422 

stronger preference for released-ARA than for EPA at least in freshwater fish and 423 

salmonids (Bell and Sargent 2003; Tocher et al. 2008; Furne et al. 2013). In this trial, 424 

the supplementation of dietary ARA did not influence directly basal levels of cox-2 425 

relative expression in gut, suggesting no effect on PGE2 production in intestine as 426 

described for other vertebrates (Tateishi et al. 2014) which is also supported by the 427 

absence of significant differences in PI levels, the main pool of ARA for eicosanoids 428 

production (Yaqoob and Calder 2007). However, after infection with V. anguillarum, in 429 

the present study European seabass juveniles fed 2% of ARA in diet increased cox-2 430 

relative expression, which has been related with protection to gastric mucosal defenses 431 

including stimulation of mucus secretion and maintenance of mucosal blood flow 432 

(Wallace and Devchan 2005). The gastro-protective properties of Cox-2-derived PGs 433 

have been demonstrated in eel (Anguilla anguilla) gastric mucosa (Faggio et al. 2000), 434 

and cox-2 expression in the intestine has been also associated to a response of Atlantic 435 

salmon to acute stress, mainly in DI (Oxley et al. 2010).  436 

The up-regulation of cox-2 levels found in the present study after bacterial 437 

infection was coincident with the increased il-1β gene relative expression. The Cox-2 438 

enzyme and pro-inflammatory cytokines such as Il-1β seems to be linked through the 439 
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p38 mitogen-activated protein kinase (P38 mapk) (Camacho-Barquero et al. 2007), 440 

which is known to be present in fish (Ribeiro et al. 2010; Yang et al. 2014b). The Mapk 441 

can be activated by ARA metabolites in a dose-dependent manner (Alexander et al. 442 

2001), which in turn can activate cox-2 expression (Sui et al. 2014). Besides, Mapk 443 

constitutes a signaling pathway involved in regulation of multiple cell functions 444 

including autophagy, a cell process of self-degradation to maintain homeostasis in 445 

which proinflammatory cytokines are implicated (Sui et al. 2014). PE plays an 446 

important role in autophagy because it is utilized by proteins required for the formation 447 

of autophagosomes to attach to cell membranes (Ichimura et al. 2000; Iula et al. 2018), 448 

and, besides, these autophagic vesicles are utilized for secretion of cytosolic Il-1β (Iula 449 

et al. 2018). At the same time, Il-1β has been suggested to be involved in the PE 450 

synthesis via Mapk (Sluzalska et al. 2017). In this way, the modification of PE levels in 451 

DI can be related with the secretion of Il-1β. In the present study, increased il-1β 452 

relative expression at basal time in diet ARA0.5 could be related to PE reduction in that 453 

diet, although other factors influencing the PE reduction cannot be rejected, as this diet 454 

had lower amount of DHA and EPA. Besides, other authors have shown that increased 455 

levels of Il-1β can reduce SM synthesis without affecting other choline-GPs as PC 456 

(Kronqvist et al. 1999). In this experiment, and when considering only the diets with 457 

same basal composition and graded ARA (diets from ARA1 to ARA6), the reduced 458 

levels found in SM levels could be related to increments in ARA release in those fish 459 

fed lower ARA level or to regulation of its synthesis, both mechanisms affected by Il-1β 460 

release.  461 

In conclusion, ARA is selectively retained in the GPs of DI of European seabass, 462 

supporting its important physiological role in this tissue. This ARA selective retention is 463 

especially evident when low dietary ARA levels are fed (Diet ARA0.5), as reflected in 464 

the higher glycerophospholipids-ARA/dietary-ARA ratio found. However, these 465 

variations were not enough to alter DI morphology or/and bacterial translocation rates, 466 

regardless of the ARA-deficiency related up-regulation of DI pro-inflammatory genes. 467 

Altogether pointing to a long-term compromised physical barrier integrity and immune 468 

functionality of the DI, denoting the importance of ARA supplementation when low FO 469 

diets are used for marine fish. 470 
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 900 

Captions to figures 901 

 902 

Figure 1. RT-qPCR of immune-related genes in distal intestine of D. labrax juveniles, 903 

at basal time and at 2 days post infection: (a) tnfα; (b) il-1β; (c) il-10; (d) cox-2. N= 9 904 

fish/diet. All values of relative expression are represented as mean ± SD. Differences 905 

were significant when P<0.05, after One-way ANOVA. Significant (p<0.05) differences 906 

among diets within same sampling point indicate with letters: lowercase for Basal and 907 

uppercase for 2DPI. 908 
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Table 1. Ingredients and biochemical composition analyzed for the different experimental diets containing 910 

graded levels of ARA (% of dry matter). 911 

 912 

   DIETS   

 

ARA0.6 ARA1 ARA2 ARA4 ARA6 

Fish Meal
1
 -- 52.50 52.50 52.50 52.50 

Fish oil
1
 -- 14.50 12.60 11.40 10.10 

Defatted Fish Meal
2
 46.50 -- -- -- -- 

Corn Meal
3
 7.00 6.00 6.00 6.00 6.00 

Soy 44 Meal
3
 10.00 10.00 10.00 10.00 10.00 

Wheat Meal
3
 5.50 5.50 5.50 5.50 5.50 

Wheat Gluten
3
 7.00 7.00 7.00 7.00 7.00 

Vegetable fats and oils
3
 14.50 -- -- -- -- 

Vitamins Mix 
4
 2.00 2.00 2.00 2.00 2.00 

Mineral Mix
5
 2.00 2.00 2.00 2.00 2.00 

CMC 
6
 0.50 0.50 0.50 0.50 0.50 

ARA
7
 -- -- 0.50 1.50 2.50 

DHA & EPA
8
 5.00 -- 1.40 1.60 1.90 

 Analyzed Proximate composition (g·kg
-1

; d.w.) 

Crude Lipids  20.77 21.33 20.87 21.12 22.02 

Crude Protein 43.71 43.32 44.93 44.61 45.14 

Ash 9.75 10.51 10.47 10.39 10.49 

Moisture 8.94 6.57 7.63 7.25 7.39 

1.  913 
2. Fish meal and oil, South American origin, (65% protein, 12% lipid). 914 
3. Defatted soymeal (GIA-ECOAQUA laboratory, produced by 3 x chloroform extraction; 73% protein, 2% 915 
lipid). 916 
4. Vegetable ingredients locally found (SBM:46% protein, 3% lipid). 917 
5. Vitamin premix contains (mg kg−1 or IU/kg of dry diet): thiamine 40 mg, riboflavin 50 mg, pyridoxine 918 
40 mg, calcium pantothenate 117 mg, nicotinic acid 200 mg, biotin 1 mg, folic acid 10 mg, cyanocobalamin, 919 
0.5 mg, choline chloride 2700 mg, Myo-inositol 2000 mg, ascorbic acid 5000 mg, menadione 20 mg, 920 
cholecalciferol 2000 IU, ethoxyquin 100 mg, retinol acetate 5000 IU.  921 
6. Mineral premix contains (g/kg of dry diet): calcium orthophosphate 1.60 g, calcium carbonate 4 g, ferrous 922 
sulphate 1.5 g, magnesium sulphate 1.6 g, potassium phosphate 2.8 g, sodium phosphate 1 g, aluminum 923 
sulphate 0.02 g, zinc sulphate 0.24 g, copper sulphate 0.20 g, manganese sulphate 0.08 g, potassium iodate 924 
0.02 g.  925 
7. Carboxymethyl cellulose (sodium salt, Sigma-Aldrich, Munich, Germany).  926 
8. Vevodar®, DSM Food Specialties, Netherlands.  927 
9. DHA50 and EPA50, CRODA, East Yorkshire, UK. 928 

  929 
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Table 2. Fatty acid composition (% of total identified FA) of total lipids in experimental diets. 930 

 931 

   Diets   

 

ARA0.5 ARA1 ARA2 ARA4 ARA6 

14:0 0.19 4.53 4.99 4.76 4.29 

15:0 0.04 0.53 0.56 0.53 0.48 

16:0 6.15 16.55 18.10 17.92 16.66 

17:0 0.01 0.55 0.50 0.48 0.48 

18:0 3.19 3.92 4.57 4.89 5.04 

20:0 0.25 0.29 0.35 0.38 0.40 

Ʃ Saturates 9.83 26.36 29.07 28.97 27.35 

16:1 n-7 0.28 5.78 6.04 5.73 5.19 

18:1 n-9 17.31 17.36 18.31 18.02 17.09 

18:1 n-7 0.89 3.00 3.15 3.01 2.75 

20:1 n-9 0.11 0.33 0.34 0.31 0.28 

20: 1n-7 0.73 2.54 2.58 2.43 2.16 

22:1 n-11 0.19 2.27 2.12 1.98 1.71 

22:1 n-9 0.28 0.44 0.43 0.41 0.36 

Ʃ Monoenes 19.92 32.61 33.91 32.80 30.35 

18:2 n-6 13.94 5.86 5.98 6.06 6.12 

18: 3n-6 0.06 0.33 0.42 0.55 0.73 

20:2 n-6 0.15 0.37 0.40 0.41 0.42 

20:3 n-6 0.05 0.15 0.23 0.42 0.61 

20:4 n-6 0.59 1.03 2.03 4.03 6.35 

22:4 n-6 0.14 0.17 0.18 0.19 0.20 

22:5 n-6 0.52 0.46 0.50 0.49 0.53 

Ʃ n-6 15.45 8.39 9.75 12.16 14.96 

16:4n-3 0.03 0.80 0.67 0.64 0.66 

18:3 n-3 42.28 1.61 1.59 1.36 1.27 

18:4 n-3 0.08 1.39 1.11 1.02 1.02 

20: 3n-3 0.24 0.18 0.17 0.16 0.15 

20:4 n-3 0.14 0.66 0.56 0.53 0.52 

20:5 n-3 2.06 9.65 7.68 7.32 7.61 

22:5 n-3 0.57 1.82 1.40 1.33 1.40 

22:6 n-3 9.14 14.65 12.19 11.89 13.01 

Ʃ n-3 54.57 30.93 25.54 24.42 25.79 

Ʃn-3LC-PUFA 12.15 26.97 22.00 21.22 22.69 

      

ARA/EPA 0.29 0.11 0.26 0.55 0.84 

DHA/EPA 4.43 1.52 1.59 1.62 1.71 

DHA/ARA 15.51 14.23 6.02 2.95 2.05 

n-3/n-6 3.53 3.69 2.62 2.01 1.72 

 932 

 933 

 934 

  935 
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 936 

Table 3. References, annealing temperatures, sequences and sources of primers for 937 

RT-qPCR. 938 

 939 

Genes 
Genbank 
reference 

Annealing 
temperature 

Primers sequence 5’-3’ From 

IL-10 AM268529 52oC 
F’ACCCCGTTCGCTTGCCA 
R’CATCTGGTGACATCACTC 

Buonocore 
et al., 
2007. 

IL1-ß AJ311925 58oC 
F’GGTGGACAAAGCCAGTC 
R’CCGAGCCTTCAACATCG 

Picchietti 
et al., 2009 

TNF-
α 

DQ070246.1 58oC 
F’ACAGCGGATATGGACGGTG 
R’GCCAAGCAAACAGCAGGAC  

Román et 
al., 2013 

COX-
2 

AJ630649 52oC 
F’CATTCTTTGCCCAGCACTTCACC 
R’AGCTTGCCATCCTTGAAGAGTC 

Picchietti 
et al., 2009 

EF-1 AJ866727 60oC 
F’GCTTCGAGGAAATCACCAAG 
R’CAACCTTCCATCCCTTGAAC 

Geay et al., 
2011 

 940 
 941 

  942 
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Table 4. Lipid class composition (% of lipid classes detected) in distal intestine of D. labrax. All results 943 

are expressed as mean±SD. Letters denote significant differences (P<0.05) after ANOVA analysis. 944 

                           Diets  

 

ARA0.5 ARA1 ARA2 ARA4 ARA6 

TAG (1) 55.20±9.36 55.77±11.30 56.40±9.06 51.27±10.47 53.87±2.81 

FFA (2) 10.20±4.79 7.50±5.20 7.97±4.10 9.07±4.04 6.57±0.74 

Cholesterol/sterols  8.97±1.03 9.83±0.65 9.13±0.31 9.47±0.32 10.37±0.83 

Unknown neutral lipid 4.40±2.43 3.87±2.11 4.03±1.97 4.03±1.83 3.07±0.23 

Ʃ neutral lipids 78.77±1.56 76.97±5.31 77.53±3.54 73.83±4.42 73.87±2.05 

PA/PGl/CL (3) 1.20±0.82 1.13±0.55 1.03±0.51 1.13±0.67 0.97±0.15 

PtdCho 6.03±0.42 6.63±1.50 5.87±0.23 7.07±0.59 7.70±0.17 

PtdSer 2.07±0.31 3.27±2.80 3.63±2.50 4.60±2.78 2.70±0.95 

PtdEtn  3.90±0.46a 4.57±0.98ab 4.47±0.47ab 5.10±0.40ab 5.77±0.67b 

PtdIns 1.83±1.07 1.80±0.75 1.83±0.74 2.17±0.76 1.97±0.38 

SPM (4) 2.23±0.32a 2.03±0.51a 1.97±0.64a 2.60±0.40ab 3.17±0.32b 

LSC (5) 0.43±0.15 0.73±0.40 0.57±0.21 0.40±0.17 0.47±0.31 

Pigmented material 3.53±0.64 2.87±0.45 3.10±0.61 3.10±0.85 3.40±0.53 

Ʃ polar lipids 21.23±1.56 23.03±5.31 22.47±3.54 26.17±4.42 26.13±2.05 

(1) Triacylglycerols, (2) Free fatty acids, (3) Phosphatidic acid/Phosphatidylglycerol/cardiolipin, (4) 945 

sphingomyelin (5) Lysophosphatidylcholine 946 

 947 

 948 

  949 
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Table 5. Selected fatty acids composition (% fatty acid identified) of the different 950 

glycerophospholipids (GPs). a: Phospatidylcholine (PC); b: Phophatidylserine (PS); c: 951 

Phosphatidyletanolamine (PE); d: Phosphatidylinositol (PI) analyzed in distal intestine 952 

of European sea bass fed graded levels of ARA in diet. GPsARA/ARA diet: Ratio 953 

between ARA in GPs and ARA in diet. Diferent letters within the same row denote 954 

significant (p<0.05) differences.  955 

 956 

a.  

phosphatidylcholine 

(PC) 

  

DIETS 

  

 ARA0.5 ARA1 ARA2 ARA4 ARA6 

16:0 19.86±1.09a 26.98±0.54b 27.37±0.80b 27.91±1.56b 25.93±0.59b 

18:0 9.25±0.40 9.26±0.73 8.95±0.91 8.85±0.55 9.27±0.88 

Ʃ saturated 30.88±1.17a 39.55±0.41b 40.32±1.17b 40.38±1.68b 38.90±1.49b 

18:1 n-9 13.36±0.36b 10.51±1.04a 11.08±0.37ab 10.84±1.72ab 10.60±1.13ab 

Ʃ monoenes 18.95±0.78 18.12±1.08 19.13±0.52 17.95±2.02 18.04±1.09 

18:2 n-6 6.71±0.42c 2.51±0.18b 2.01±0.07a 1.87±0.04a 1.67±0.13a 

20:4 n-6 3.10±0.08a 3.08±0.19a 5.26±0.13b 8.56±0.39c 11.28±0.12d 

Ʃ n-6 PUFA 13.09±0.57d 7.10±0.16a 8.90±0.20b 12.05±0.38c 14.62±0.28e 

18:3 n-3 11.82±1.06c 0.34±0.05b 0.29±0.04ab 0.26±0.02ab 0.23±0.05a 

20:5 n-3 5.25±0.37a 8.20±0.79c 7.21±0.19bc 6.09±0.09ab 5.47±0.74a 

22:6 n-3 18.89±2.23 25.17±1.70 22.82±0.73 22.13±3.47 21.65±1.29 

Ʃ n-3 PUFA 37.09±1.35c 35.22±1.33bc 31.65±1.07abc 29.60±3.58ab 28.41±2.23a 

Ʃ PUFA 50.17±0.81b 42.32±1.45a 40.55±1.26a 41.67±3.45a 43.06±2.56a 

∑ n-3/n-6 2.84±0.22a 4.96±0.13c 3.56±0.05a 2.46±0.34ab 1.94±0.12b 

∑ n-3 LC-PUFA 24.15±2.44a 33.37±1.21b 30.02±0.91ab 28.22±3.56ab 27.12±2.03ab 

GPsARA/ARA diet 5.26±0.14d 2.99±0.19c 2.60±0.07b 2.12±0.10a 1.78±0.02a 
 957 

 958 

b.  

phosphatidylserine 

(PS) 

  

DIETS 
  

  ARA0.5 ARA1 ARA2 ARA4 ARA6 

16:0 7.72±1.63 7.74±1.40 6.54±0.37 6.08±0.81 7.82±2.57 

18:0 34.04±1.43 32.64±1.14 34.29±0.84 34.74±2.41 32.57±2.95 

Ʃ saturated 44.90±0.73 43.54±2.78 43.89±1.12 43.89±1.26 43.87±2.17 

18:1 n-9 7.39±1.61 5.38±0.49 4.60±0.65 4.69±0.44 7.22±2.35 

Ʃ monoenes 12.90±1.58 10.19±0.84 9.45±1.06 9.36±1.06 12.33±2.91 

18:2 n-6 2.11±0.39b 1.05±0.24a 0.71±0.15a 0.62±0.04a 0.77±0.11a 

20:4 n-6 1.31±0.22a 1.82±0.50a 2.44±0.25ab 4.03±1.07bc 4.27±0.75c 

Ʃ n-6 PUFA 8.10±0.22b 5.48±0.55a 6.16±0.33ab 7.72±1.33b 8.03±0.87b 

18:3 n-3 2.69±0.30a 0.25±0.20b 0.16±0.03b 0.13±0.03b 0.16±0.04b 

20:5 n-3 1.06±0.13a 1.92±0.35b 1.39±0.09ab 1.06±0.11a 1.00±0.27a 

22:6 n-3 29.15±2.33a 36.39±2.65b 37.06±0.61b 35.87±1.99b 32.93±3.46ab 

Ʃ n-3 PUFA 34.05±1.87a 40.73±3.01b 40.47±0.72ab 38.97±1.64ab 35.75±3.88ab 

Ʃ PUFA 42.20±1.59 46.27±3.47 46.66±1.01 46.75±2.26 43.80±4.80 
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∑ n-3/n-6 4.21±0.35a 7.44±0.25b 6.58±0.24b 5.15±0.96ab 4.45±0.02a 

∑ n-3 LC-PUFA 30.21±2.21a 38.31±3.01b 38.44±0.53b 36.94±1.90b 33.93±3.60ab 

GPsARA/ARA diet 2.22±0.38d 1.77±0.49c 1.21±0.13bc 1.00±0.27ab 0.67±0.12a 

 959 

c.  

phosphatidyletanola

mine (PE) 

  

DIETS 
  

 ARA0.5 ARA1 ARA2 ARA4 ARA6 

16:0 6.97±0.68 10.02±1.86 9.73±0.99 9.26±1.02 8.27±1.00 

18:0 16.69±0.96 17.30±1.66 17.47±0.79 17.38±2.13 16.88±1.38 

Ʃ saturated 25.78±1.68 30.12±1.87 29.84±2.01 29.15±3.11 27.34±0.36 

18:1 n-9 6.66±0.13a 3.92±0.60b 4.05±0.11b 4.14±0.84ab 3.53±0.42b 

Ʃ monoenes 14.87±0.45 12.72±0.80 11.79±1.52 12.22±1.17 12.77±1.44 

18:2 n-6 2.72±0.33a 0.98±0.14b 0.80±0.14b 0.84±0.19b 0.96±0.68ab 

20:4 n-6 6.43±0.78a 5.96±0.48a 9.27±0.57b 13.13±1.29c 16.13±1.13d 

Ʃ n-6 PUFA 14.17±1.20bc 8.71±0.60a 12.24±0.85b 16.18±1.37c 19.50±0.54d 

18:3 n-3 3.70±0.41a 0.18±0.01b 0.16±0.01b 0.19±0.03b 0.22±0.11b 

20:5 n-3 5.01±0.27b 7.46±0.34d 6.00±0.41c 4.46±0.47ab 3.68±0.17a 

22:6 n-3 35.10±0.86a 38.98±2.33b 38.40±2.09b 36.29±0.26a

b 

35.07±1.61a 

Ʃ n-3 PUFA 45.14±0.52bc 48.41±2.10c 46.02±2.59bc 42.38±0.70a

b 

40.39±1.76a 

Ʃ PUFA 59.34±1.51 57.16±2.48 58.36±3.53 58.64±1.95 59.89±1.33 

∑ n-3/n-6 3.20±0.25bc 5.57±0.32d 3.76±0.05c 2.63±0.19ab 2.07±0.14a 

∑ n-3 LC-PUFA 40.11±0.76a 46.44±2.13b 44.41±2.50b 40.75±0.64a 38.75±1.75a 

GPsARA/ARA diet 10.91±1.32d 5.79±0.47c 4.58±0.28c 3.26±0.32ab 2.54±0.18a 

 960 

d.  

phosphatidylinositol 

(PI) 

  

DIETS 

  

 ARA0.5 ARA1 ARA2 ARA4 ARA6 

16:0 10.52±5.29 10.11±2.06 10.89±2.05 9.43±1.15 9.29±1.70 

18:0 22.42±2.40 26.35±1.22 24.50±1.51 24.39±2.09 25.01±1.18 

Ʃ saturated 37.00±6.13 39.52±1.59 42.44±3.96 41.05±4.24 40.22±3.94 

18:1 n-9 10.29±1.47b 6.06±0.65a 5.69±0.41a 7.00±2.63a 6.13±1.00a 

Ʃ monoenes 16.13±3.18 11.14±1.29 11.42±1.19 12.27±4.26 11.48±2.20 

18:2 n-6 2.20±0.38b 1.12±0.15a 0.85±0.14a 0.93±0.22a 0.87±0.15a 

20:4 n-6 14.48±1.86a 17.90±1.66ab 17.39±3.05ab 21.50±0.51b 21.13±0.62b 

Ʃ n-6 PUFA 19.16±2.22a 20.51±1.77ab 19.75±3.07a 23.69±0.63b 23.50±0.54b 

18:3 n-3 3.49±0.90b 0.22±0.05a 0.21±0.03a 0.21±0.14a 0.32±0.31a 

20:5 n-3 2.37±0.49a 3.86±0.82b 2.87±0.21ab 2.00±0.22a 1.92±0.26a 

22:6 n-3 20.71±4.14 22.90±3.23 22.04±3.45 19.57±1.96 21.13±2.70 

Ʃ n-3 PUFA 27.52±4.88 28.73±2.64 26.37±3.61 22.94±1.68 24.60±3.02 

Ʃ PUFA 46.86±7.10 49.34±2.59 46.14±4.98 46.68±1.40 48.30±3.50 

∑ n-3/n-6 1.43±0.12c 1.41±0.20c 1.35±0.27bc 0.97±0.09a 1.05±0.11ab 

∑ n-3 LC-PUFA 23.08±4.56 26.76±2.62 24.91±3.58 21.57±1.81 23.06±2.90 

GPsARA/ARA diet 24.57±3.16e 17.39±1.61d 8.59±1.50c 5.33±0.13b 3.33±0.10a 

 961 
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 962 

Table 6. Morphometric analysis and number of goblet cells in distal intestine of European sea bass 963 

fed graded levels of ARA in diet. All measures considering individual fish weight (g) as co-variable. All 964 

results are expressed as mean±SD. FA =fold area (μm2/g), FP=fold perimeter (μm/g), FL= fold length 965 

(μm/g), FW= fold width (μm/g), SW= submucosa width ([μm/g] * 100). GC= goblet cells/area (arbitrary 966 

units * 104) 967 

 968 

 969 
   DIETS   

 ARA0.5 ARA1 ARA2 ARA4 ARA6 

FA 252.99±21.12 198.76±22.27 215.94±36.01 222.36±26.11 225.45±32.28 

FP 12.26±2.90 14.17±3.36 13.67±2.08 13.29±1.36 12.84±1.40 

FL 3.90±0.85 3.74±0.51 4.04±0.51 4.09±0.20 4.08±0.46 

FW 1.38±0.43 1.25±0.16 1.29±0.11 1.38±0.12 1.35±0.07 

SW 68.24±7.56 50.38±4.55 60.04±13.58 50.54±6.18 50.85±6.04 

GC 34.84±9.22 29.69±1.16 33.24±2.09 32.21±1.54 29.53±0.86 

 970 

 971 

972 
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 973 


