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Abbreviations 26 

ALA, α-linolenic acid (18:3n-3) 27 

ARA, arachidonic acid (20:4n-6) 28 

BHT, butylated hydroxytoluene 29 

DHA, docosahexaenoic acid (22:6n-3) 30 

DPA, docosapentaenoic acid (22:5n-3) 31 

EFA, essential fatty acids 32 

Elovl, elongase of very long-chain fatty acids 33 

EPA, eicosapentaenoic acid (20:5n-3) 34 

Fad, fatty acyl desaturase 35 

FCR, feed conversion ratio 36 

HSI, hepatosomatic index 37 

LA, linoleic acid (18:2n-6) 38 

LC-PUFA, long-chain polyunsaturated fatty acids 39 

MUFA, Monounsaturated fatty acids 40 

NAMBS, Nan Ao Marine Biology Station 41 

PUFA, polyunsaturated fatty acids 42 

SFA, saturated fatty acids 43 

SR, survival rate 44 

SGR, specific growth rate  45 

WGR, weight gain rate  46 
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Abstract 49 

Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although  50 

some enzymes for long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis have been 51 

identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in 52 

vivo LC-PUFA synthesis in a 56-day culture experiment using six diets (D1-D6) formulated with 53 

linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 54 

0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared 55 

with the corresponding indeces of fish fed D0, the weight gain rate and specific growth rate, as well 56 

as the contents of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in tissues (liver, 57 

muscle, brain and eye) of D1-D6 groups were significantly lower (P < 0.05). These data suggested 58 

that T. ovatus could not synthesize LC-PUFA from C18 PUFA or such ability was very low. However, 59 

tissue levels of 20:4n-3 in fish fed diets D1-D6 were higher than that of D0 fish (P < 0.05), and 60 

positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among 61 

the D1-D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 62 

20:4n-3 to EPA, may be lacking or very low, suggesting incomplete LC-PUFA biosynthesis ability 63 

in T. ovatus. 64 

  65 



Introduction  66 

Long-chain polyunsaturated fatty acids (LC-PUFA) such as arachidonic (ARA; 20:4n-6), 67 

eicosapentaenoic (EPA; 20:5n-3), and docosahexaenoic (DHA; 22:6n-3) acids are important 68 

structural components of cell membranes (Marsh, 2008) and act as eicosanoid precursors (Villalta 69 

et al., 2008), as well as playing important roles in maintaining normal growth and metabolism 70 

(Sargent et al., 2002). Fish oil is the main source of dietary LC-PUFA for farmed fish, with around 71 

75 % of the total global supply of fish oil used in aquaculture (Tocher, 2015). However, the scarcity 72 

of fish oil resources makes it impossible to further increase the yield, which therefore impacts the 73 

development of aquaculture activities (Naylor et al., 2000; Tacon and Metian, 2009). For this reason, 74 

terrestrial vegetable oils have been considered as the most likely alternatives, because of the low 75 

cost, global availability and stable supply (Nasopoulou and Zaetakis, 2012). However, the 76 

polyunsaturated fatty acids (PUFA) in vegetable oils are predominantly linoleic (LA, 18:2n-6) and 77 

α-linolenic (ALA, 18:3n-3) acids, while the fatty acids that perform vital physiological functions in 78 

fish are EPA, ARA and DHA, which are abundant fish oil, are not present (Sargent et al., 2002). 79 

Freshwater fish and salmonid species generally possess the capacity to synthesize LC-PUFA from 80 

ALA and LA, while marine fish other than Siganus canaliculatus (Li et al., 2008) are assumed to 81 

lack this ability because of one or more of the key enzymes involved in the LC-PUFA biosynthesis 82 

pathway are absent and, thus, LC-PUFA are required in their diets (Bell et al., 1999; Sargent et al., 83 

2002; Regost et al., 2003). Therefore, the lack of LC-PUFA in vegetable oil places restrictions in 84 

their application in feed for marine fish. Consequently, there is a need to clarify the mechanisms 85 

underpinning the low LC-PUFA biosynthetic capacity of marine fish in order to develop methods 86 

for increasing such capability. 87 

Fatty acyl desaturase (Fads2) and elongase (Elovl) enzymes are involved in the biosynthesis 88 

of LC-PUFA but, due to competition between n-3 and n-6 PUFA substrates, the conversation of 89 

ALA to EPA and DHA can be influenced by the dietary levels of LA and vice versa (Tocher and 90 

Glencross, 2015). Thus, an optimum dietary balance of ALA/LA is important for the biosynthesis 91 

of LC-PUFA. Many studies have shown that the dietary ALA/LA ratio also influenced fatty acid 92 

deposition and metabolism in fish (Thanuthong et al., 2011; Tian et al., 2016; Chen et al., 2017). 93 

Studies in two marine herbivorous fish (Siganus canaliculatus and Scatophagus argus) specifically 94 

showed that an appropriate dietary ALA/LA ratio could also improve the expression level of key 95 



enzymes involved in the biosynthesis of LC-PUFA and the content of LC-PUFA in tissues (Xie et 96 

al., 2014; 2015; 2016; 2018).  97 

Golden pompano, Trachinotus ovatus is a carnivorous marine fish that prey mainly on 98 

zooplankton and fish (Tan et al., 2016). Due to its fast growth rate, high disease resistance, and high 99 

flesh quality, T. ovatus has developed rapidly along the southern coast of China (Lin et al.,2011). In 100 

2015, domestic aquaculture production exceeded 180,000 tons (Yang, 2015). Recently, the impact 101 

of dietary lipid source on growth performance, body composition and lipid metabolism was 102 

investigated in juvenile, T. ovatus (Liu et al., 2018). However, the precise nutritional requirements 103 

of T. ovatus remain largely unknown (Li et al., 2019). While two enzymes that might be involved 104 

in the biosynthesis of LC-PUFA have been cloned in T. ovatus, including an Elovl5 (Zhu et al., 2018) 105 

and a Fads2-like desaturase (Han et al., 2015), their precise functions have not been identified. Very 106 

recently, a new desaturase was found in T. ovatus, which might possess Δ4 desaturase and potential 107 

Δ5/8 desaturase activity (Zhu et al., 2019). Thus, potential molecular components of the LC-PUFA 108 

biosynthetic pathway are being reported in T. ovatus, but the actual activity of the pathway in vivo 109 

requires further study. The aim of the present study was therefore to investigate the endogenous 110 

capability of T. ovatus for LC-PUFA biosynthesis and further to determine effect of dietary ALA/LA 111 

ratio on LC-PUFA biosynthesis and accumulation in key tissues. 112 

 113 

Material and methods 114 

Experimental diets 115 

Formulations and proximate compositions of the experimental diets are presented in Table 1. 116 

Seven iso-nitrogenous (50.0 %) and iso-lipidic (12.0 %) experimental diets were formulated, with 117 

fish oil (rich in LC-PUFA) used as lipid source in the control diet (D0), while soybean oil and linseed 118 

oil (both devoid of LC-PUFA) were used as lipid sources for the other six diets (D1-D6) in blends 119 

to produce five ratios of ALA to LA of around 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5, respectively. The 120 

principal fatty acid compositions of the diets are detailed in Table 2. 121 

All the dry ingredients were finely ground and sieved with a 60-mesh sieve, then thoroughly 122 

mixed with their respective oil mixtures. An appropriate amount of water was added to produce stiff 123 

doughs that were then passed through a meat grinder with the appropriate diameter diet to prepare 124 

pellets. Pellets were air dried and sieved into proper pellet sizes. All experimental diets were stored 125 



at -20 °C until use.  126 

 127 

Experimental fish and feeding trial  128 

All procedures performed on fish were in accordance with the National Institutes of Health 129 

guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978) and 130 

approved by the Institutional Animal Care and Use Committee of Shantou University (Guangdong, 131 

China). The feeding experiment was conducted at an experimental floating sea cage site at Nan Ao 132 

Marine Biology Station (NAMBS) of Shantou University, Southern China. Approximately 1000 133 

juvenile T. ovatus of the same genetic background were obtained from a private breeding facility in 134 

Raoping, Guangdong province, China. Prior to the commencement of the feeding trial, all fish were 135 

fed on the mixed diets (D1-D6) for 2 weeks to acclimatize the fish to the experimental conditions 136 

and deplete their lipid reserves in a large floating sea cage (2 m x 2 m x 3 m). 137 

After acclimation, similar-sized fish (average initial body weight 8.32 ± 0.02 g) were randomly 138 

distributed into 21 floating sea cages at 25 fish per cage (1 m x 1 m x 1.5 m) in triplicates per dietary 139 

treatment. The fish were fed the experimental diets twice a day (at 07:00 and 17:00) to apparent 140 

satiation for 56 days, with the amount of feed provided recorded daily. Water temperature, salinity 141 

and dissolved oxygen were measured daily, with temperature ranging from 19.96 to 29.63 °C, 142 

salinity from 35 to 37 ‰, and dissolved oxygen at about 7 mg.L-1 for the duration of the trial. Any 143 

dead fish were weighed and used to calculated feed conversion rate (FCR). 144 

 145 

Evaluation of growth performance and sample collection  146 

At the end of the feeding trial, all fish were fasted for 24 h prior to final sampling. Fish were 147 

anesthetized by 0.01% 2-phenoxyethanol. Survival rate (SR) was calculated and growth 148 

performance evaluated by weight gain rate (WGR) and special growth rate (SGR). Four fish were 149 

randomly collected from each replicate cage (12 fish per treatment) and frozen at -20 °C for 150 

subsequent determination of whole body composition. The liver of the sampled fish was excised 151 

and weighed to adetermine hepatosomatic index (HSI). The liver, muscle, brain and eyes of these 152 

six fish were sampled, pooled into 1.5 ml tubes (RNAase-Free, Axygen, USA) and then stored at -153 

80 °C for fatty acid composition determination or RNA extraction. 154 

 155 



Chemical analysis 156 

Proximate composition  157 

The nutrient composition (moisture, crude protein, crude lipid and ash) of the experimental 158 

diets and whole-body of juvenile T. ovatus samples were measured according to AOAC (1995) as 159 

described in detail previously (Li et al., 2005, 2008; Xie et al., 2014). Briefly, moisture was 160 

determined by drying samples in an oven at 105 °C to constant weight. Crude protein (N * 6.25) 161 

content was determined using an auto-Kjeldahl System (KjeltecTM8400; FOSS, Denmark). Crude 162 

lipid was measured by petroleum ether (B.P. 40-60 °C for 3 h) extraction using the Soxlet method 163 

(SZF-06A; Xinjia Yiqi CO., LTD, China). For ash contend, samples were incinerated in a muffle 164 

furnace (CWF1100; Carbolite, Germany) at 550 °C for 12 h.  165 

 166 

Fatty acids analysis  167 

Total lipid in feeds and tissues of T. ovatus were extracted with chloroform/methanol (2:1, v/v) 168 

containing 0.01 % butylated hydroxytoluene (BHT) as antioxidant, and fatty acid methyl esters 169 

prepared by transesterification with boron trifluoride diethyl etherate (ca. 48 %, Acros Organics, 170 

Waltham, MA, USA) as described previously (Li et al., 2005, 2008). The fatty acid composition of 171 

feeds, liver, muscle, brain and eyes were determined using gas chromatograph (GC-2010; Shimadzu, 172 

Kyoto, Japan) with GC parameters as described in detail previously (Xie et al., 2014). 173 

 174 

Gene expression analysis by real-time quantitative RT-PCR (qRT-PCR) 175 

 Total RNA was extracted from liver, brain and eyes using BioFast Simply P Total RNA 176 

Extraction Kit (BioFlux, Japan). The quantity of isolated RNA was determined using NanoDrop 177 

2000 spectrophotometer (NanoDrop Technologies, USA) and the quality of total RNA was assessed 178 

by electrophoresis in 1 % agarose gel. Reverse transcription was performed using the FastKing 179 

gDNA Dispelling RT SuperMix (TIANGEN Biotech Co., Ltd., Beijing, China) including a genomic 180 

DNA elimination reaction. The mRNA levels of fatty acyl desaturase (fads2-like) (Han et al., 2015) 181 

and elongase5 (elovl5) (Zhu et al., 2018) as well as the housekeeping β-actin (Tan et al., 2016) in 182 

tissues were determined by real-time PCR using specific primers designed with Primer 5 Software 183 

(Table 3). The PCR was carried out on a Lightcycler 480 system (Roche, Basel, Switzerland) in a 184 

final volume of 10 μl containing 5 μl SYBR Green Supermix (Biorad, Hercules, CA, USA), 0.5 μl 185 



each primer, 3 μl ddH2O and 1 μl cDNA. The PCR program consisted of an initial DNA denaturation 186 

at 94 °C for 5 min, followed by 45 cycles at 95 °C for 10 s, annealing 60 °C for 20 s, and with a 187 

final extension step at 95 °C for 5 s, 65 °C for 1 min, and 40 °C for 10 s. The relative mRNA levels 188 

were normalized with β-actin. Normalized gene expression of group D0 was set to 1, and the other 189 

dietary groups D1-D6 of different ratios of ALA/LA were expressed relative to the D0 (FO) group. 190 

The optimized comparative Ct (2-∆∆Ct) method method was used to evaluate gene expression levels. 191 

 192 

Statistical analyses 193 

All data are presented as mean ± SEM (standard error of mean). Comparisons amongst 194 

treatments were analyzed by one-way analysis of variance (ANOVA) followed by Tukey's test using 195 

SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). The level of significant difference was set at P 196 

< 0.05. 197 

 198 

Results 199 

Growth performance  200 

The growth performance of fish at the end of the 8-week (56 days) feeding trial is shown in 201 

Table 4. Growth performance indices including WGR and SGR of fish fed diets D1-D6 were 202 

significantly lower than those of fish fed diet D0, while there was no significant differences among 203 

groups D1-D6. The FCR and HSI of groups D1-D6 were significantly higher than the D0 group. SR 204 

in the fish fed D0 was 100 %, and was lower in fish fed diets D1-D6, with lowest SR of 66% in fish 205 

fed D2, and SR of 92 % in D5 and D6 groups. 206 

 207 

Proximate composition  208 

The biochemical compositions of whole body of juvenile T. ovatus fed the experimental diets 209 

with different dietary ALA/LA ratios are shown in Table 5. Proportions of protein, lipid and ash did 210 

not differ significantly among the dietary groups, although whole body of fish fed diet D0 showed 211 

the lowest moisture content that was significantly difference from that of fish fed diet D1.  212 

 213 

Tissue fatty acid composition  214 

The fatty acid compositions of liver is shown in Table 6. The contents of ARA, EPA, and DHA 215 



in D1-D6 groups were significantly lower than the D0 group, which essentially reflected the dietary 216 

fatty acid profiles. However, the contents of 18:4n-3, 20:4n-3, 18:3n-6 and 20:3n-6 in fish fed diets 217 

D1-D6 were significantly higher than in fish fed D0. The levels of 18:3n-3 and 20:4n-3 increased 218 

with increasing dietary ALA/LA ratio, while 18:2n-6 and 20:3n-6 displayed the opposite pattern. 219 

The fatty acid compositions of muscle, brain and eyes showed the same trends as that described 220 

above for liver. Thus, the proportions of ARA, EPA and DHA in groups D1-D6 were lower than in 221 

the D0 group, while levels of 18:3n-3, 20:4n-3, 18:2n-6 and 20:3n-6 varied with the dietary ALA/LA 222 

ratio and were significantly higher in fish fed diets D1-D6 compared to the D0 group (Tables 7-9). 223 

 Notably, the relative levels of DHA in the brain and eyes were higher than those in muscle 224 

and liver in fish fed all the diets. The proportions of EPA in all tissues were relatively low and similar 225 

in fish fed diets D1-D6. The ratio of DHA and EPA was higher in brain and eyes compared to liver 226 

and musc el, and also higher in fish fed diets D1-D6 than in fish fed diet D0. 227 

 228 

Levels of fads2 and elovl5 gene expression in liver, brain and eyes 229 

The mRNA levels of fads2-like desaturase in liver were affected by the ratio of dietary 230 

ALA/LA, with the highest levels found in fish fed diets D5 and D6, both of which were higher than 231 

the expression levels in fish fed the other diets including diet D0 (Fig. 1). The lowest fads2-like 232 

mRNA level was found in fish fed diet D2 group, which was even lower than in fish fed diet D0. 233 

The mRNA levels of fads2-like in brain were significantly higher in fish fed diets D1-D6 compared 234 

to fish fed diet D0, but there was no significant differences among D1-D6 groups. However, the 235 

expression level of fads2-like in eyes displayed no differences between any dietary groups (Fig. 1). 236 

The expression levels of elovl5 in liver and eyes were not different among the experimental 237 

groups (Fig. 2). The mRNA levels of elovl5 in brain increased with increased dietary ratio of 238 

ALA/LA among fish fed diets D1-D6, with the levels of elovl5 in the D2-D6 groups significantly 239 

higher than in the D0 group. 240 

 241 

Discussion 242 

The biosynthesis of LC-PUFA is a process that involves consecutive desaturation and 243 

elongation steps of C18 PUFA substrates, ALA or LA, catalyzed by desaturase and elongase enzymes, 244 

respectively (Cook, 1996; Bell and Tocher, 2009). The synthesis of ARA is accomplished by Δ6 Fad 245 



desaturation of LA to 18:3n-6, which is elongated by Elovl5 (elongase) to 20:3n-6 and then 246 

desaturated by Δ5 Fad to ARA. Similarly, synthesis of EPA from ALA uses the same enzymes, Δ6 247 

Fad, Elovl5 and Δ5 Fad, to desaturate ALA to 18:4n-3, which is further elongated to 20:4n-3 and 248 

then desaturated to EPA. However, DHA synthesis requires 2-4 additional steps with at least one or 249 

more desaturase and elongase enzymes involved (Sprecher, 2000). In the present study, the 250 

proportions of pathway intermediates, i.e., 18:3n-6, 18:4n-3, 20:3n-6 and 20:4n-3, in liver, muscle, 251 

brain and eyes of fish fed diets D1-D6 were significantly higher than in fish fed diet D0. Notably, 252 

the percentages of 20:4n-3 increased with increased dietary ALA/LA ratio, while the proportions of 253 

20:3n-6 showed the opposite trend. These data suggest that T. ovatus has the ability to desaturate 254 

LA and ALA to 18:3n-6 or 18:4n-3, respectively, followed by elongation to 20:3n-6 and 20:4n-3, 255 

respectively, which requires the activities of Δ6 Fad and Elovl5 enzymes. However, the proportions 256 

of ARA and EPA were lower in fish fed diets D1-D6 than in fish fed D0. This strongly suggests that 257 

T. ovatus lacks the Δ5 desaturation activity required to convert 20:3n-6 and 20:4n-3 to ARA and 258 

EPA, respectively, similar to many/most other marine teleost fish species (Leaver et al., 2008; 259 

Tocher et al., 2010). Therefore, T. ovatus possess Δ6 Fads2 and Elovl5 activities, consistent with 260 

the fact that cDNAs of these genes have been cloned in many marine fish species (Seiliez et al., Xie 261 

et al., 2014, 2016, Zheng et al., 2009, Monroig et al., 2012), whereas it lacks a Δ5 Fad, a deficiency 262 

that has little consequence in the LC-PUFA-rich marine ecosystem (Tocher, 2010). This is consistent 263 

with juvenile T. ovatus lacking the ability to biosynthesize LC-PUFA, specifically EPA, ARA and 264 

DHA, from ALA or LA and, thus, require dietary LC-PUFA to meet their EFA requirements. 265 

Consistent with this, no differences were observed in the growth performance among juvenile T. 266 

ovatus fed diets D1-D6, although growth in these groups was significantly lower than in fish fed 267 

diet D0. Long-chain PUFA are essential for the normal growth and survival of teleosts (Bell et al., 268 

1986; Lee, 2001) and, hence, the absence of dietary EFA from fish diets can result in reduced growth, 269 

increased mortality and other pathologies (Sargent et al., 2002; Glencross et al., 2010). Similarly, in 270 

the present study fish, fish fed diets D1-D6 showed lower SGR and survival than fish fed D0. 271 

Overall the data suggest that juvenile T. ovatus were not capable of endogenously producing the key 272 

EFA, ARA, EPA and DHA when fed diets rich in ALA and LA. Therefore, while they express Δ6 273 

Fads2 and Elovl5 activities and, therefore, some ability to convert ALA and LA to 20:4n-3 and 274 

20:3n-6, respectively, a deficiency in Δ5 desaturase activity means T. ovatus lacked the capability 275 



for the endogenous biosynthesis of EPA and DHA, and thus LC-PUFA (e.g. FO) should be included 276 

in diets formulated for aquaculture. 277 

While the fatty acid composition analysis showed that T. ovatus did not have a complete LC-278 

PUFA biosynthesis pathway, the high proportions of DHA and high ratios of DHA/EPA found in 279 

brain and eyes of fish fed diets D1-D6, which were higher than in fish fed the control diet D0, 280 

suggested that T. ovatus may have the capability of converting EPA to DHA. DHA plays important 281 

roles in neural tissues, however, most marine fish such as cod, cobia, and Asian sea bass, lack the 282 

capability to synthesize DHA from C18 PUFA. Tocher (2010) speculated that the retention of D6 283 

Fad and Elovl5 activities in marine fish may be related to the need to maintain DHA levels in critical 284 

neural tissues (brains and eyes) via endogenous production from EPA. Therefor, the high expression 285 

of Δ6 Fads in the brain and eye of T. ovatus may help to maintain membrane DHA levels in neural 286 

tissues at times of high demand. If the DHA found in brain and eyes was of dietary origin, then the 287 

level should be higher in fish fed diet D0, and there should be no difference in DHA contents among 288 

the groups D1-D6. In fact, the ratio of DHA/EPA was different among the groups of D1-D6, 289 

consistent with the EPA levels. This suggested that at least a portion of the DHA in brain and eyes 290 

was derived from endogenous metabolism.  291 

The expression of fads2-like mRNA levels in liver was affected by the dietary ratio of ALA/LA. 292 

The expression of fads2-like mRNA was the highest when the dietary ratio of ALA/LA was 1.92 293 

(group D5), which was consistent with other studies in fish that showed dietary ALA/LA ratio 294 

influenced the expression of fads2. For example, Δ6 fad expression was highest in fish fed diets 295 

with ALA/LA ratios of 1.93 and 1.72 in Siganus canaliculatus (Xie et al., 2014) and Scatophagus 296 

Argus (Xie et al., 2015), respectively. In contrast, the mRNA level of elovl5 in liver showed no 297 

difference among groups D1-D6, which was different from other studies (Mohd-Yusof et al., 2010; 298 

Monroig et al., 2013; Wang et al., 2014). However, the expressions of both fads2-like and elovl5 299 

were significantly up-regulated in brain when fish oil (D0) was replaced by mixed vegetable oil 300 

(D1-D6), which suggested that the both key enzymes were involved in DHA biosynthesis in the 301 

brain.  302 

The fads2-like and elovl5 sequences investigated in the present study were those reported in 303 

previous studies although the function of fads2-like has not been characterized (Han et al., 2015; 304 

Zhu et al., 2018). Very recently, a further Fad of T. ovatus has been reported and shown to have  305 



mainly Δ4 desaturation activity and possibly residual Δ5 and Δ8 activities, but no Δ6 Fad activity 306 

(Zhu et al., 2019). This Fad was expressed mainly in brain, followed by eyes and liver, suggesting 307 

that it could be involved in DHA biosynthesis in brain and eyes. Furthermore, as this Fad did not 308 

have Δ6 activity, it may suggest that the fads2-like in the present study would have Δ6 desaturation 309 

activity, consistent with T. ovatus having the ability to convert ALA and LA to 20:4n-3 and 20:3n-310 

6, respectively. 311 

Nutritional factors can affect the activities of key enzymes involved in LC-PUFA biosynthesis 312 

through the in vivo regulation of these genes. Many studies have reported in both of freshwater and 313 

marine fish species that reducing dietary levels of LC-PUFA by replacing fish oil with vegetable oil 314 

in feeds resulted in higher expression levels of some desaturase and elongase genes (Zheng et al., 315 

2005b; Izquierdo et al., 2008 Seiliez et al., 2003; Liu et al., 2018). However, it has been reported 316 

that the expression of Δ6 Fad in liver was lower with the replacement of dietary fish oil by rapeseed 317 

oil in European sea bass (Mourente et al., 2002). In Atlantic cod, liver and intestinal Δ6Fad 318 

expression and activity showed no significant difference with fed diets containing either vegetable 319 

or fish oil (Tocher et al., 2006). In the current study, the expression level of fads2-like in liver of 320 

fish fed diet D2 (ALA/LA ratio of 0.5) was significantly lower than in fish fed diet D0 (FO group), 321 

while higher levels of ALA and higher ALA/LA ratios resulted in expression of Δ6 fads2 being 322 

higher in liver of fish fed diets D5 and D6 than in fish fed D0. This effect on the expression of Δ6 323 

fads2 might be due to the precise interaction between the different levels and ratios of ALA and LA 324 

in the experimental diets. On the other hand, the expression level of fads2-like in brain of fish fed 325 

diets D1-D6 groups was markedly higher than in fish fed D0 (FO group), whereas there was no 326 

effect of dietary ratio of ALA/LA. As the mention above, endogenous DHA biosynthesis in brain of 327 

T. ovatus may be via the direct activity of the D4Fad or via the “Sprecher shunt” pathway if the 328 

Fads2-like desaturase is able to desaturate 24:5n-3. However, the activity of the Fads2-like 329 

desaturase and the specific regulatory mechanisms of Fads2-like in brain requires further study. 330 

With the rapid development of aquaculture, balancing the increasing demand and supply of FO 331 

is one of the most serious constrains that could impact the continued growth of farming activities. 332 

Vegetable oils, potentially rich in ALA and LA, could be the most suitable alternatives (Nasopoulou 333 

and Zeatakis, 2012). While replacement of FO with vegetable oil has been successful for some 334 

omnivorous fishes, it is difficult to meet the LC-PUFA requirement of many carnivorous marine fish 335 



(Tocher, 2010; Turchini et al., 2009), due to limited information on the biosynthesis ability of LC-336 

PUFA in these species. In the present study, we showed regulation of fatty acid desaturase and 337 

elongase genes by dietary ALA/LA ratio, revealing that juvenile T. ovatus has some ability to 338 

convert ALA and LA to 20:4n-3 and 20:3n-6, respectively, but does not have a complete LC-PUFA 339 

biosynthetic pathway, likely lacking biologically significant D5 desaturase activity.  340 

In conclusion, based on growth performance, tissue fatty acid compositions and the expression 341 

of key enzymes involved in the biosynthesis of LC-PUFA, the current results suggested that juvenile 342 

T. ovatus possessed the ability to convert 18:3n-3 or 18:2n-6 to 20:4n-3 and 20:3n-6, respectively. 343 

It might also have some ability to synthesize DHA from EPA in brain and eyes. However, T. ovatus 344 

lacked a complete LC-PUFA biosynthetic pathway. Thus, EFAs, especially EPA, DHA and ARA, 345 

are required in diets of T. ovatus to maintain normal growth and survival.  346 
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Table 1 Ingredients, formulations and proximate compositions of the experimental diets. 520 
 521 

Ingredient (g/kg of dry weight) 
Dietary treatments 

D0 D1 D2 D3 D4 D5 D6 
Casein 410.0 410.0 410.0 410.0 410.0 410.0 410.0 
Fermented soybean meal 210.0 210.0 210.0 210.0 210.0 210.0 210.0 
Cassava starch 110.0 110.0 110.0 110.0 110.0 110.0 110.0 
α-Starch 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
Fish oil 90.0 / / / / / / 
Soybean oil  / 90.0 64.4 41.9 17.5 4.5 / 
Linseed oil / / 25.6 48.1 72.5 85.5 90.0 
Lecithin 20.0 20.0 20.0 20.0 20.0 20.0 20.0 
Choline chloride 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
Lysine 5.0 5.0 5.0 5.0 5.0 5.0 5.0 
Monocalcium phosphate 10.0 10.0 10.0 10.0 10.0 10.0 10.0 
Lutein 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
Vitamin premixa 20.0 20.0 20.0 20.0 20.0 20.0 20.0 
Mineral premixb 20.0 20.0 20.0 20.0 20.0 20.0 20.0 
CMCc 68.0 68.0 68.0 68.0 68.0 68.0 68.0 
        
Proximate composition (% dry weight) 
Moisture 14.2 13.7 13.6 14.0 13.7 14.3 14.1 
Crude protein 50.2 50.7 50.9 50.3 50.0 51.0 50.5 
Crude lipid 12.0 12.4 12.2 12.2 12.7 12.5 12.6 
Ash  4.6 4.7 4.7 4.6 4.6 5.1 5.0 

a Vitamin premix (/kg premix): VA, 1100000IU; VD3, 320000IU; VB12, 8mg；VK3, 1000mg; VB1, 522 
1500mg; VB2, 2800mg; calcium pantothenate, 2000mg；nicotinamide, 7800mg；folic acid, 400mg；523 

inositol, 12800mg; VB6:1000mg. 524 
b Mineral premix (/kg premix): were purchased from Guangdong Guangdong feed group of China. 525 
c CMC: carboxy methyl cellulose 526 

  527 



Table 2 528 
Fatty acid compositions (% total fatty acids) of the experimental diets for golden pompano, 529 
Trachinotus ovatus.  530 

nd: not detected (< 0.01). 531 
MUFA, mono-unsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.  532 
 533 

  534 

Fatty acid 
Dietary treatments 
D0 D1 D2 D3 D4 D5 D6 

14:0 5.56 0.65 0.65 0.67 0.64 0.66 0.66 
16:0 21.83 12.31 11.25 10.26 9.27 8.70 8.50 
18:0 5.42 4.97 4.74 4.69 4.63 4.61 4.57 
22:0 1.55 nd nd nd nd nd nd 
16:1n-7 4.96 0.24 0.43 0.30 0.24 0.21 0.21 
18:1n-9 19.43 20.50 19.75 19.04 18.24 17.77 17.47 
18:3n-3 (ALA) 6.80 6.99 17.22 26.82 36.99 43.06 45.35 
18:4n-3 0.31 nd nd nd nd nd nd 
20:4n-3 0.33 nd nd nd nd nd nd 
20:5n-3 (EPA) 7.88 nd nd nd nd nd nd 
22:5n-3 (DPA) 1.54 nd nd nd nd nd nd 
22:6n-3 (DHA) 9.17 nd nd nd nd nd nd 
18:2n-6 (LA) 12.36 50.55 43.00 34.88 27.11 23.33 20.63 
18:3n-6 0.35 nd nd nd nd nd nd 
20:3n-6 0.43 nd nd nd nd nd nd 
20:4n-6 (ARA) 2.31 nd nd nd nd nd nd 
        
∑SFA 34.35 17.95 16.64 15.62 14.54 13.97 13.73 
∑MUFA 26.60 21.23 20.56 19.66 18.70 18.17 17.87 
∑n-3 PUFA 24.07 7.45 17.53 27.13 37.26 43.30 45.57 
∑n-6 PUFA 15.08 50.55 43.00 34.88 27.11 22.33 20.63 
n-3/n-6 PUFA 1.60 0.15 0.40 0.78 1.37 1.94 2.21 
ALA/LA 0.55 0.14 0.40 0.77 1.36 1.92 2.20 



Table 3 535 
Nucleotide sequences of the primers used to assay gene expression by real-time polymerase chain 536 
reaction  537 

Target gene  Forward/Reverse (5’ to 3’) Reference/GenBank 
fads2-like F: CATCACCTTCGTCAGGTTTCT KP295471 

R: TTAACCAGTCCCGGTGTTTC 
elovl5 F: CCACGCTACCATGCTGAATA KY860144 

R: ATGAGAGGCCGTAGTAGGAATA  
β-actin F: TACGAGCTGCCTGACGGACA Tan et al., 2017 

R: GGCTGTGATCTCCTTCTGC 
 538 
 539 
 540 
  541 



Table 4  542 
Growth performance, feed utilization efficiency and survival rate of juvenile golden pompano fed 543 
different diets for 8 weeks1.  544 

 Dietary treatments 
D0 D1 D2 D3 D4 D5 D6 

  (0.0) (0.5) (1.0) (1.5) (2.0) (2.5) 
Initial weight (g) 8.40±0.00 8.27±0.07 8.27±0.07 8.27±0.07 8.27±0.07 8.40±0.00 8.40±0.00 

Final weight (g) 46.57±3.19b 29.69±1.32a 30.65±1.10a 30.27±2.77a 32.78±0.75a 31.35±1.28a 31.12±0.94a 

WGR (%)2 416.60±6.44b 256.00±9.22a 269.04±18.52a 266.32±34.17a 296.68±11.97a 273.19±15.26a 270.47±11.11a 

SGR (% day–1)3 3.05±0.12b 2.28±0.04a 2.33±0.09a 2.30±0.17a 2.46±0.05a 2.35±0.07a 2.34±0.05a 

FCR 4 1.19±0.09a 2.18±0.14b 2.41±0.10b 2.54±0.22b 2.11±0.07b 2.09±0.19b 2.08±0.05b 

HSI (%)5 1.81±0.14a 4.28±0.31bc 4.77±0.21c 3.94±0.41bc 3.52±0.16bc 3.37±0.20b 3.64±0.18bc 

SR (%)6 100.00c 89.33±2.67bc 66.00±2.00a 70.67±3.52a 73.33±4.81ab 92.00±4.00c 92.00±2.31c 
1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 545 
significantly different (P < 0.05) 546 
2 Weight gain rate (WGR, %) = 100 × (final body weight − initial body weight)/initial body weight; 547 
3 Specific growth rate (SGR, % day−1) = 100 × [Ln (final weight) – Ln (initial weight)]/days; 548 
4 Feed conversion rate (FCR) = feed intake (dry matter)/fish wet weight gain (g);  549 
5 Hepatosomatic index (HSI, %) =100× liver weight/body weight; 550 
6 Survival rate (SR, %) = 100×survived fish number/total fish number. 551 

 552 
  553 



 554 
Table 5 555 
Proximate compositions (% dry weight) of whole body of golden pompano fed different diets for 8 556 
weeks1. 557 
 558 

1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 559 
significantly different (P < 0.05) 560 
  561 

  562 

 
Dietary treatments 

D0 D1 D2 D3 D4 D5 D6 

Moisture (% 
wet weight) 67.96±1.07a 72.75±0.60b 68.83±1.68ab 70.44±1.23ab 71.31±0.47ab 69.67±0.45ab 70.21±0.85ab 

Protein (%) 34.07±1.29 27.01±0.26 30.84±3.03 32.97±1.73 28.88±1.77 30.38±1.47 29.64±2.22 
Lipid (%) 53.56±1.70 54.77±0.92 51.76±0.60 52.25±0.68 53.62±0.98 55.47±0.57 54.82±0.85 

Ash (%) 11.36±0.08 11.97±0.53 12.00±0.42 11.62±0.72 11.95±0.10 12.71±0.04 12.68±0.20 
        



Table 6  563 
The fatty acid composition (% total fatty acids) of liver from juvenile golden pompano fed with 564 
diets containing different ratios of ALA/LA1. 565 

1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 566 
significantly different (P < 0.05) 567 
nd: not detected 568 

  569 

Fatty acid 
Dietary treatments 

D0 D1 

 

D2 

 

D3 

 

D4 

 

D5 

 

D6 

 

14:0 1.61±0.10b 1.05±0.02a 0.92±0.04a 1.05±0.06a 1.02±0.04a 1.04±0.04a 1.05±0.05a 

16:0 25.07±0.52d 19.96±0.42bc 16.95±0.60a 18.72±0.21ab 20.77±0.20c 18.49±0.44ab 21.58±0.39c 

18:0 7.28±0.34b 4.51±0.05a 4.46±0.17a 4.32±0.22a 4.96±0.15a 4.37±0.16a 4.33±0.30a 

∑SFA 34.97±0.72d 26.07±0.44bc 23.05±0.77a 24.94±0.41ab 27.65±0.22c 24.96±0.55ab 27.96±0.44c 

16:1 3.37±0.09b 1.38±0.06a 1.34±0.03a 1.41±0.08a 1.48±0.10a 1.52±0.13a 1.56±0.10a 

18:1 35.12±1.37d 33.06±0.88cd 27.88±0.19a 28.02±0.27a 31.22±0.17bc 29.93±0.29ab 33.79±0.32cd 

∑MUFA 38.49±1.35d 34.44±0.92bc 29.22±0.21a 29.43±0.30a 32.70±0.24bc 31.45±0.39ab 35.36±0.36cd 

18:3n-3(ALA) 4.52±0.13a 4.26±0.04a 6.71±0.27b 8.83±0.22c 11.77±0.25d 15.51±0.32f 13.49±0.18e 

18:4n-3 0.14±0.01a 0.31±0.02b 0.32±0.01b 0.31±0.00b 0.33±0.01b 0.33±0.01b 0.34±0.02b 

20:4n-3 0.92±0.20a 1.67±0.04b 2.50±0.07b 3.56±0.09c 5.04±0.14d 6.24±0.20e 6.39±0.34e 

20:5n-3(EPA) 0.78±0.05b 0.56±0.02a 0.54±0.02a 0.58±0.03a 0.58±0.02a 0.57±0.04a 0.53±0.02a 

22:5n-3(DPA) 0.93±0.10 nd Nd nd nd nd nd 

22:6n-3(DHA) 5.04±0.16b 0.29±0.01a 0.40±0.01a 0.50±0.01a 0.43±0.02a 0.49±0.03a 0.41±0.02a 

∑n-3PUFA 14.74±0.50c 7.06±0.07a 10.59±0.26b 13.95±0.21c 18.41±0.33d 23.61±0.38f 21.42±0.26e 

18:2n-6(LA) 6.62±0.17a 25.42±1.17d 29.60±0.72e 24.47±0.33d 15.94±0.19c 15.10±0.37c 10.98±0.32b 

18:3n-6 0.22±0.01a 0.45±0.01b 0.45±0.03b 0.43±0.01b 0.44±0.01b 0.42±0.01b 0.45±0.02b 

20:3n-6 1.09±0.02a 4.18±0.11f 3.32±0.14e 2.71±0.11d 1.90±0.05c 1.75±0.08bc 1.49±0.08b 

20:4n-6(ARA) 0.45±0.09b 0.11±0.00a 0.12±0.00a 0.12±0.00a 0.14±0.00a 0.12±0.00a 0.11±0.00a 

∑n-6PUFA 8.16±0.17a 29.71±1.27d 33.04±0.71e 27.31±0.30d 17.98±0.20c 16.97±0.39c 12.59±0.30b 

∑PUFA 22.90±0.61a 36.77±1.28b 43.67±0.87c 41.26±0.38c 36.39±0.26b 40.59±0.74c 34.01±0.48b 

n-3/n-6PUFA 1.81 0.24 0.32 0.51 1.02 1.39 1.70 

ALA/LA 0.68 0.17 0.23 0.36 0.74 1.08 1.23 

DHA/EPA 6.46±0.18c 0.52±0.03a 0.74±0.05ab  0.86±0.05b  0.74±0.03ab  0.86±0.07b  0.77±0.02ab  



Table 7  570 
The fatty acid composition (% total fatty acids) of muscle from juvenile golden pompano fed with 571 
diets containing different ratios of ALA/LA1.  572 

1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 573 
significantly different (P < 0.05) 574 

  575 

Fatty acid 
Dietary treatments 

D0 D1 

 

D2 

 

D3 

 

D4 

 

D5 

 

D6 

 

14:0 4.51±0.05b 1.12±0.02a 1.12±0.01a 1.14±0.04a 1.11±0.03a 1.07±0.04a 1.19±0.04a 

16:0 22.78±0.14c 16.92±0.32b 16.34±0.59ab 15.99±0.34ab 15.04±0.34a 15.25±0.35a 15.84±0.46ab 

18:0 5.73±0.07b 4.49±0.08a 4.40±0.08a 4.45±0.10a 4.45±0.19a 4.29±0.10a 4.18±0.11a 

∑SFA 33.33±0.14d 24.07±0.35c 23.39±0.62bc 23.01±0.26abc 22.14±0.23ab 21.60±0.38a 22.19±0.97ab 

16:1 4.99±0.05b 1.15±0.06a 1.15±0.06a 1.51±0.05a 1.13±0.07a 1.16±0.07a 1.33±0.07a 

18:1 26.05±0.33 23.56±0.52 23.36±0.82 22.47±0.63 22.38±0.62 22.10±0.59 22.69±0.55 

∑MUFA 31.54±0.37b 25.04±0.56ab 24.10±0.63a 23.88±0.68a 24.29±0.49a 23.43±0.63a 24.22±0.60a 

18:3n-3(ALA) 5.44±0.06a 4.53±0.10a 8.96±0.43b 14.01±0.76c 18.90±0.27d 23.99±0.88e 24.20±1.02e 

18:4n-3 0.27±0.02a 0.46±0.01b 0.45±0.01b 0.46±0.01b 0.47±0.01bc 0.50±0.03c 0.47±0.01bc 

20:4n-3 1.14±0.02a 0.92±0.02a 1.38±0.24a 2.74±0.08b 3.59±0.06c 4.31±0.21d 4.51±0.19d 

20:5n-3(EPA) 3.09±0.03c 0.31±0.02a 0.31±0.02a 0.42±0.04ab 0.45±0.02b 0.35±0.03ab 0.39±0.03ab 

22:5n-3(DPA) 2.55±0.05b 0.25±0.01a 0.26±0.02a 0.26±0.01a 0.27±0.01a 0.23±0.01a 0.29±0.02a 

22:6n-3(DHA) 10.72±0.20b 1.32±0.11a 1.35±0.14a 1.76±0.18a 1.86±0.13a 1.38±0.06a 1.43±0.16a 

∑n-3PUFA 22.39±0.27c 7.08±0.09a 12.67±0.11b 18.93±0.23c 24.81±0.23d 30.03±0.44e 30.54±0.44e 

18:2n-6(LA) 10.11±0.08a 34.92±0.61e 33.62±1.19e 26.52±0.48d 21.82±0.32c 18.53±0.27b 16.79±0.45b 

18:3n-6 0.18±0.02a 0.40±0.02b 0.41±0.02b 0.42±0.01bc 0.42±0.01bc 0.45±0.03c 0.43±0.02bc 

20:3n-6 0.98±0.01a 3.25±0.15d 2.93±0.20d 2.07±0.25c 1.63±0.04b 1.23±0.06ab 1.13±0.06a 

20:4n-6(ARA) 0.62±0.02b 0.21±0.02a 0.19±0.01a 0.22±0.02a 0.25±0.02a 0.19±0.02a 0.20±0.01a 

∑n-6PUFA 11.71±0.10a 38.70±0.64f 35.95±0.82e 29.11±0.49d 23.96±0.38c 20.02±0.31b 18.16±0.48b 

∑PUFA 32.1±0.27a 45.78±0.61b 48.02±0.82bc 48.04±0.59bc 48.77±0.47c 50.05±0.72c 48.70±0.81c 

n-3/n-6PUFA 1.53 0.18 0.38 0.65 1.03 1.5 1.68 

ALA/LA 0.54 0.13 0.27 0.53 0.87 1.29 1.44 

DHA/EPA 3.47±0.05  4.26±0.18  4.35±0.25  4.19±0.20  4.13±0.28  3.94±0.15  3.67±0.27  



Table 8 576 
The fatty acid composition (% total fatty acids) of brain from juvenile golden pompano fed with 577 
diets containing different ratios of ALA/LA1. 578 

1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 579 
significantly different (P < 0.05) 580 

  581 

Fatty acid 
Dietary treatments 

D0 D1 

 

D2 

 

D3 

 

D4 

 

D5 

 

D6 

14:0 0.97±0.14b 0.44±0.02a 0.46±0.08a 0.51±0.03a 0.44±0.03a 0.40±0.02a 0.48±0.03a 

16:0 18.55±0.40b 16.69±0.64a 16.03±0.10a 16.39±0.12a 16.15±0.19a 16.11±0.05a 16.54±0.32a 

18:0 12.97±0.44b 11.85±0.22ab 11.43±0.61ab 11.15±0.23a 11.95±0.23ab 12.57±0.40ab 12.44±0.40ab 

∑SFA 32.84±0.30b 29.53±0.77a 28.44±0.52a 28.54±0.30a 29.06±0.27a 29.54±0.43a 29.85±0.50a 

14:1 1.96±0.11 2.00±0.12 1.97±0.24 1.60±0.09 1.84±0.19 2.30±0.15 2.24±0.12 

15:1 1.22±0.07ab 1.13±0.06ab 1.10±0.12ab 0.93±0.04a 1.05±0.09ab 1.39±0.08b 1.32±0.11b 

16:1 2.20±0.16b 1.36±0.04a 1.30±0.03a 1.37±0.03a 1.45±0.04a 1.41±0.03a 1.46±0.06a 

18:1 21.68±0.38a 22.76±0.17ab 22.57±0.13ab 22.54±0.26ab 22.96±0.30b 22.93±0.33ab 23.29±0.29b 

24:1n-9 0.87±0.04a 1.34±0.06b 1.42±0.16b 1.26±0.02b 1.51±0.03b 1.33±0.03b 1.28±0.05b 

∑MUFA 27.93±0.43 28.58±0.39 28.35±0.46 27.70±0.40 28.80±0.50 29.35±0.59 29.58±0.40 

18:3n-3(ALA) 1.47±0.16a 1.84±0.23a 3.53±0.53ab 5.72±0.38bc 5.51±0.30bc 6.91±0.84c 7.00±0.68c 

18:4n-3 0.16±0.01a 0.53±0.02b 0.54±0.01b 0.53±0.03b 0.57±0.01b 0.54±0.02b 0.48±0.02b 

20:4n-3 0.45±0.04a 0.85±0.06a 1.49±0.04b 2.02±0.03c 2.25±0.10cd 2.49±0.18d 2.60±0.13d 

20:5n-3(EPA) 3.83±0.03b 1.98±0.10a 1.92±0.19a 1.69±0.05a 2.02±0.10a 1.80±0.14a 1.68±0.08a 

22:5n-3(DPA) 2.46±0.11b 0.91±0.03a 1.01±0.03a 0.97±0.04a 1.12±0.017a 1.12±0.08a 1.10±0.03a 

22:6n-3(DHA) 23.10±1.00b 15.01±00.46a 14.71±0.64a 14.48±0.40a 15.86±0.35a 15.37±0.75a 15.89±0.97a 

∑n-3PUFA 31.30±0.78f 20.59±0.35a 22.65±0.43b 24.87±0.20c 26.75±0.21d 27.70±0.54e 28.26±0.33e 

18:2n-6(LA) 3.73±0.39a 13.83±0.59c 13.63±1.52c 12.31±0.57c 8.62±0.42b 7.85±0.64b 7.39±0.50b 

18:3n-6 0.16±0.01a 0.40±0.02b 0.43±0.03b 0.46±0.03b 0.41±0.01b 0.41±0.02b 0.37±0.01b 

20:3n-6 0.40±0.02a 1.97±0.14d 1.68±0.08cd 1.52±0.10c 1.05±0.23b 0.90±0.06b 0.79±0.04ab 

20:4n-6(ARA) 2.46±0.11b 0.91±0.03a 1.01±0.03a 0.97±0.04a 1.12±0.02a 1.12±0.08a 1.10±0.03a 

∑n-6PUFA 6.13±0.43a 18.71±0.84c 17.94±1.42c 16.48±0.59c 12.30±0.41b 11.33±0.65b 10.50±0.92b 

PUFA 37.43±0.39a 39.30±0.76ab 40.59±1.13ab 41.36±0.6b 39.05±0.52ab 39.03±0.92ab 38.76±0.27ab 

n-3/n-6PUFA 5.11  1.10  1.26  1.51  2.17  2.44  2.69  

ALA/LA 0.39  0.13  0.26  0.46  0.64  0.88  0.95  

DHA/EPA 6.03±0.21a  7.58±0.54ab  7.66±0.29ab  8.57±0.20b  7.85±0.28ab  8.54±0.52b  9.46±0.77b  



Table 9 582 
The fatty acid composition (% total fatty acids) of eyes from juvenile golden pompano fed with 583 
diets containing different ratios of ALA/LA1.  584 

1 Values (mean ± SEM of 6 samples from three replicate groups) with different superscript letters within a row are 585 
significantly different (P < 0.05) 586 

 587 
  588 

Fatty acid 
Dietary treatments 

D0 D1 

 

D2 

 

D3 

 

D4 

 

D5 

 

D6 

14:0 3.06±0.17b 0.91±0.04a 0.99±0.01a 0.97±0.08a 0.92±0.01a 0.85±0.05a 0.94±0.03a 

16:0 20.37±0.32c 16.04±0.36b 15.27±0.12ab 15.43±0.24ab 14.81±0.56ab 14.69±0.20ab 14.31±0.19a 

18:0 6.67±0.41 5.36±0.25 5.18±0.15 6.23±0.87 5.64±0.35 5.68±0.70 6.01±0.40 

∑SFA 30.11±0.10b 22.31±0.42a 21.44±0.17a 22.63±0.95a 21.37±0.90a 21.22±0.82a 21.26±0.49a 

16:1 4.06±0.15b 1.28±0.07a 1.28±0.06a 1.21±0.07a 1.18±0.06a 1.21±0.11a 1.41±0.12a 

18:1 22.68±0.54ab 24.52±0.71b 23.30±0.36ab 21.96±1.11ab 22.38±0.24ab 22.95±0.53ab 21.68±0.46a 

∑MUFA 27.37±0.45b 26.17±0.80ab 25.08±0.41ab 23.70±1.19a 24.22±0.30a 24.78±0.43ab 23.83±0.58a 

18:3n-3(ALA) 4.82±0.39a 5.12±0.20a 9.62±0.18b 13.90±0.31c 19.21±0.83d 22.77±0.17e 22.46±0.19e 

18:4n-3 0.26±0.01a 0.45±0.01b 0.46±0.00b 0.45±0.02b 0.45±0.02b 0.46±0.02b 0.46±0.01b 

20:4n-3 1.29±0.10a 1.36±0.05a 2.32±0.10b 3.03±0.09b 4.23±0.34c 4.09±0.34c 4.50±0.19c 

20:5n-3(EPA) 2.90±0.21b 0.43±0.03a 0.50±0.05a 0.46±0.04a 0.35±0.05a 0.52±0.07a 0.43±0.04a 

22:5n-3(DPA) 2.99±0.17b 0.37±0.02a 0.52±0.03a 0.56±0.07a 0.52±0.05a 0.48±0.11a 0.62±0.05a 

22:6n-3(DHA) 17.63±1.53b 4.41±1.07a 4.98±0.45a 6.08±1.04a 6.57±0.73a 4.61±0.19a 7.65±0.28a 

∑n-3PUFA 29.64±0.79d 11.69±0.84a 17.93±0.33b 24.05±0.74c 30.88±0.42de 32.47±0.27e 35.67±0.31f 

18:2n-6(LA) 9.56±0.38a 34.85±0.84f 31.48±0.39e 25.67±0.63d 20.75±0.79c 19.00±0.49bc 16.63±0.77b 

18:3n-6 0.22±0.01a 0.43±0.00b 0.42±0.01b 0.45±0.04b 0.45±0.03b 0.41±0.02b 0.44±0.02b 

20:3n-6 0.97±0.03a 3.48±0.18e 2.64±0.09d 2.14±0.09c 1.57±0.09b 1.23±0.08ab 1.17±0.04ab 

20:4n-6(ARA) 1.27±0.09b 0.41±0.05a 0.36±0.03a 0.63±0.12a 0.41±0.12a 0.49±0.11a 0.65±0.06a 

∑n-6PUFA 12.89±0.26a 39.82±0.92f 35.55±0.27e 29.62±0.39d 23.53±0.70c 21.53±0.42bc 19.25±0.76b 

∑PUFA 42.53±0.53a 51.51±0.98b 53.48±0.43b 53.67±0.66b 54.41±1.01b 54.00±0.60b 54.91±0.53b 

n-3/n-6PUFA 2.30  0.29  0.50  0.81  1.31  1.51  1.85  

ALA/LA 0.50  0.15  0.31  0.54  0.93  1.20  1.35  

DHA/EPA 6.08±0.32a  10.26±1.23ab  9.96±0.48ab  13.22±1.57bc  18.77±0.39c  8.87±1.27bc  17.79±2.28bc  



Figure Legends 589 

Fig. 1. Relative mRNA expression levels of fads2-like genes in liver, brain and eyes of 590 

golden pompano fed the experimental diets with different dietary ALA/LA ratio for 8 591 

weeks 592 

 593 

Fig. 2. Relative mRNA expression levels of elovl5genes in liver, brain and eyes of 594 

golden pompano fed the experimental diets with different dietary ALA/LA ratio for 8 595 

weeks 596 

 597 
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