ESTABLISHED AND EMERGING TECHNIQUES FOR CHARACTERISING THE FORMATION, STRUCTURE
AND PERFORMANCE OF CALCIFIED STRUCTURES UNDER OCEAN ACIDIFICATION

SUSAN C. FITZER1,2*, VERA BIN SAN CHAN2,3,4†, YUAN MENG4, KENMANI CHANDRA RAJAN5,
SUZUKI MICHIOS6, CHRISTELLE NOT7, TAKASHI TOYOFUKU7, LAURA FALKENBERG8,9, MARIA
BRYNE10,11, BEN P. HARVEY12, PIERRE DE WIT13, MAGGIE CUSACK14, K. S. GAO15, PAUL TAYLOR16,
SAM DUPONT17, JASON HALL-SPENCER18, V. THIYAGARAJAN4*

1Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Pathfoot Building,
Stirling, FK9 4LA, UK

2Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA

3Ifremer, Physiologie Fonctionnelle des Organismes Marins UMR 6539 LEMAR
(CNRS/UBO/IRD/Ifremer) Technopole Iroise - CS 10070 29280 Plouzane, France.

4The Swire Institute of Marine Sciences and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.

5Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

6Department of Earth Sciences, The University of Hong Kong, Hong Kong, China

7Japan Agency of Marine Earth Science and Technology JAMSTEC, Department of Marine Biodiversity Research BioDive, Yokosuka, Kanagawa, Japan

8Norwegian Institute for Water Research NIVA, NIVA Region West, Thormøhlensgate 53 D
5006 Bergen, Norway

9Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong

10School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia

11School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
Ocean acidification (OA) is the decline in seawater pH and saturation levels of calcium carbonate minerals that has led to concerns for calcifying organisms such as corals, oysters and mussels because of the adverse effects of OA on their biomineralisation, shells and skeletons. A range of cellular biology, geochemistry and materials science approaches have been used to explore biomineralisation. These techniques have revealed that responses to seawater acidification can be highly variable among species, yet the underlying mechanisms remain largely unresolved. To assess the large-scale impacts of global OA, researchers will need to apply a range of tools developed across disciplines, many of which are
emerging and have not yet been used in this context. This review outlines techniques that could be
applied to study OA-induced alterations in the mechanisms of biomineralisation and their ultimate
effects on shells and skeletons. We illustrate how to characterise, quantify and monitor the process of
biomineralisation in the context of global climate change and OA. We highlight the basic principles as
well as the advantages and disadvantages of established, emerging, and future techniques for OA
researchers. A combination of these techniques will enable a holistic approach and better understanding
of the potential impact of OA on biomineralisation and consequences for marine calcifiers and
associated ecosystems.

Introduction

The precipitation of minerals such as calcium carbonate (CaCO₃) for shells and skeletons using
dissolved carbonate and calcium ions is commonly called ‘biomineralisation’ (Doney et al. 2009).
Marine organisms have been producing calcium carbonate biominerals since the Precambrian and the
resultant rich fossil record provides insight into the evolution of intricate, orderly and often beautiful
structures (Wilkinson 1979). The composition of biominerals varies among taxa and, as the production
of shell materials is dependent on the availability of mineral ion resources and on physiological
conditions at the site of calcification (Wilbur 1964), mineral composition can reveal how organisms
have interacted with environmental conditions over geological time to the present day.

Atmospheric CO₂ levels have increased at a faster rate during the Anthropocene than in any previous
time in Earth’s history causing a rapid decline in seawater pH and lowering the amount of calcium
carbonate minerals (Orr et al. 2005).

Since concerns about OA were first highlighted it has become apparent that CO₂-driven acidification
can lead to skeletal abnormalities and slower growth in many marine calcifiers (Hofmann et al. 2008,
(Wehrmeister et al. 2011), and amorphous calcium carbonate which is an important precursor of
crystalline carbonate minerals (Addadi et al. 2003), are phases of CaCO₃ whose production may be
modified by OA. Organisms can be affected by OA as they need to maintain conditions that are
chemically suitable for the process of calcification (supersaturated with calcium [Ca^{2+}] and carbonate [CO_{3}^{2-}]) or for preventing dissolution (saturation state \(\Omega > 1 \)). Calcite is less susceptible to dissolution at lower pH values than aragonite, unless it contains high levels of magnesium (Ries et al. 2009, Chan et al. 2012). Production of any form of CaCO_{3} can be energetically expensive (Comeau et al. 2017a) and so the impact of OA on the production and maintenance of CaCO_{3} structures are modulated by energy acquisition (Melzner et al. 2011) and may be due to by CO_{2}-driven organism hypercapnia (Byrne et al. 2013).

To capture fully the impact of OA on biomineralisation, several key questions should be addressed. These include questions regarding the direct impact of OA on the process of biomineralisation itself and also about the functional consequences of these changes on shells and skeletons. Resolving these issues requires multidisciplinary research ranging from ‘–omics’ to cell culture, from physiological mechanisms to ecology, and from materials science to crystallography. The complexity of the task is reflected in the plethora of techniques that have been used to investigate biomineralization under OA conditions, including buoyant weight, total alkalinity anomaly, total calcium content, annual extension, calcein labelling and the use of radio isotopes (Table 1). This diversity of approaches allows investigators to tackle different questions related to the impact of OA on the process of biomineralisation, although there is a need to understand how different techniques compare when measuring similar processes (Schoepf et al. 2017). The selection and refinement of a technique is dependent upon scientific question and practical aspects related to the study question, experimental design and biological models (Figure 1).
Figure 1. A schematic representation of analytical methods studying whole animal growth and development (in blue), mechanical strength (in pink), mineral composition (in green), and cellular mechanisms of biomineralisation (in orange) that enables the answering of various level of questions. These techniques can be strategically applied to macrobiota (e.g. urchin or oysters) or microbiota (e.g. phytoplankton or zooplankton). From left to right, the figure shows the techniques applicable to smaller scale samples with increasing resolution. At a lower resolution, macrobiota can be measured in terms of various shell growth and development parameters (in blue) and mechanical properties, while some approach has more limitations with microbiota. At a high resolution, microbiota and macrobiota can be studied for their shell structure (in green) and cellular mechanisms for biomineralisation (in orange).

Here we review an array of techniques used to explore the consequences of rising global CO₂ levels on biomineralisation in marine organisms. We organize the techniques by categorizing the biological or mineralogical parameters of interest. We evaluate their advantages and disadvantages so that future work can more effectively measure the effects of OA on biomineralisation. We also highlight recent advances in the study of the effects of ocean acidification on biomineralisation and how interdisciplinary collaboration can advance the field.
When evaluating the impact of OA on biomineralisation, it is important to discriminate between methods measuring gross and net calcareous shell growth as the product of biomineralisation (Figure 2). The term ‘gross calcification’ refers to the biologically controlled process of CaCO$_3$ production through the formation of CaCO$_3$ minerals from a super saturated solution (CaCO$_3$ precipitation). In contrast, the term ‘net calcification’ is the net effect of gross calcification and dissolution (Cyronak et al. 2016). CaCO$_3$ dissolution or decalcification is the dissolution of CaCO$_3$ minerals in an under saturated solution. These processes combine to influence net calcification; for example, the upregulation in gross calcification rates of the limpet *Patella caerulea* helps to counteract higher shell dissolution rates (Rodolfo-Metalpa et al. 2011).
Figure 2. Schematic representation of techniques for measuring growth and development in biomineralising organisms. The tapering bar on the left indicates the changing level of resolution for each technique. From top to bottom, growth and development can be measured on whole shells and skeletons using techniques such as length and buoyant weight measurements. More sensitive techniques are represented in the middle for the use of dyes, radioactive isotopes and total alkalinity anomaly technique. At the bottom of the figure, sectional surface of a shell at higher resolution can be visualized and thickness can be measured using techniques such as SEM microscopy.

Dyes

A range of chemical dyes (e.g. alizarin red, calcein) are used to mark shells or exoskeletons to assess growth over time and have been used in OA studies to determine the impact on calcification in corals, coralline algae and bivalves (Rodolfo-Metalpa et al. 2011, Dickinson et al. 2012a, Tambutté et al. 2012, Bradassi et al. 2013, Venn et al. 2013, Fitzer et al. 2014b, Fitzer et al. 2015b). Calcein labelling is often preferable because calcein was found better incorporated into foramiferan calcite and emitted fluorescence more strongly than the other markers such as Alizarin complexone, oxytetracycline, and xylene orange (Bernhard et al. 2004). Calcein has been applied in OA research to assess coralline algal, coral and mollusc growth during experiments (Dickinson et al. 2012b, Bradassi et al. 2013, Venn et al. 2013, Fitzet al. 2014b, Fitzer et al. 2015b). The techniques are low cost, less invasive as compared to sacrificial shell sampling and the results are readily comparable.

SEM

Abnormalities and morphology can be assessed by optical microscopy. However, scanning electron microscopy (SEM) is required for high resolution characterisation of biomaterial microstructures and has been used to show modified skeletal phenotypes in a range of species grown under OA conditions (Riebesell et al. 2000, Orr et al. 2005, Iglesias-Rodriguez et al. 2008, Lombardi et al. 2015). The
advantage of this approach include the ability to assess shape and malformation in net growth, while
the disadvantages include higher costs and an extended preparation time.

When evaluating net shell growth as the overall product of biomineralisation, one of the simplest and
most widely used methods to approximate net calcification is shell and exoskeleton length, as it is both
non-invasive low-cost. However, this approach can fail to reveal impacts on gross and net calcification
not expressed in the overall structure of the skeleton. For example, OA can cause skeletal malformations
which can only be identified by microscopy (Langdon et al. 2000, Reynaud et al. 2003, Langdon and
partly addressed by including morphometric parameters to resolve shapes, and thickness, for example
using 3-dimensional measurements generated from computed tomography (Rühl et al. 2017). It is
therefore important to consider the net growth of the whole shell or skeleton.

Skeletal growth assessed as annual extension rate (cm² yr⁻¹) is commonly used to determine growth
rates of calcareous red algae and corals (Marsh 1970), with recent research applying photogrammetric
methods based on digital photography and advanced image processing techniques for non-destructive
measurements of area and volume (Mackenzie et al. 2014, Norzagaray-López et al. 2017). Densitometry
using X-rays (Table 2) assesses the density of calcified structures (Carricart-Ganivet and Barnes 2007)
and has been used to identify growth bands and to calculate growth rates of individuals or colonies
(Cooper et al. 2008).

Buoyant weight

To monitor changes in mineral content, buoyant weight determined by immersion is frequently used
(Davies 1989, Herler and Dirnwöber 2011). Correction for seawater salinity and temperature variation
between measurements is necessary (Fang et al. 2013). The buoyant weight technique is non-invasive
(Molina et al. 2005) and remains one of the most common techniques to determine net calcification rate
in OA studies, especially in corals (Herler and Dirnwöber 2011). Such an approach has shown that an
array of temperate corals Oculina arbuscula, pencil urchins Eucidaris tribuloides, hard clams
Mercenaria mercenaria, conchs Strombus alatus, serpulid worms Hydroides crucigera, periwinkles
Littorina littorea, bay scallops Argopecten irradians, oysters Crassostrea virginica, whelks Urosalpinx cinerea, and soft clams Mya arenaria show mixed responses to CO₂-induced acidification, thereby highlighting the complexity of biomineralisation responses (Ries et al. 2009).

Radioactive isotopes

Naturally occurring radioactive isotopes can be used to measure growth by spiking organisms with a radiotracer (Sabatier et al. 2012). Liquid scintillation counting is used to amplify the signal and quantify the amount or rate of 45Ca being incorporated into the biomineral structure (Rodolfo-Metalpa et al. 2011, Rodolfo-Metalpa et al. 2015). 45C is a non-natural radioactive isotope, therefore any changes in 45Ca quantity represents shell material accretion or loss by the calcification process that occurs during the experiment and prior calcification is not taken in account (Furla et al. 2000). Similarly, synthetic radioactive 14C isotopes enable the measurement of carbon flux related to photosynthesis and calcification (Guo et al. 2009, Li et al. 2015). The 45Ca technique has been used in OA research to determine the impact of increasing pCO₂ levels on cold-water corals, suggesting that calcification is not disrupted under OA (Rodolfo-Metalpa et al. 2015). Gross calcification rates have been quantified using 45Ca in corals, limpets, mussels, foraminifera, coccolithophores and oyster larvae (McEnery and Lee 1970, Erez 1978, Satoh et al. 2009, Rodolfo-Metalpa et al. 2011, Rodolfo-Metalpa et al. 2015, Frieder et al. 2016). In contrast, 14C has mainly been applied in unicellular organisms such as coccolithophores (Paasche 1963, Nimer and Merrett 1993, Gao et al. 2009), foraminifera (ter Kuile et al. 1989), and diatoms (Li et al. 2015). Advantages include the improved spatial resolution, taking into account material accretion during the incubation period. However, a major disadvantage of this technique is the destructive nature of sampling unlike other techniques such as buoyant weight to determine calcification rates.

Total alkalinity anomaly technique

Net calcification rate can be measured by determining the amount of CaCO₃ taken up by an organism (Gazeau et al. 2007). When an organism precipitates a mole of CaCO₃ it takes up two moles of HCO₃⁻, thereby reducing the alkalinity of the surrounding seawater over the incubation period (Langdon et al.
The total alkalinity anomaly technique has been used as an alternative to the buoyant weight method to determine net calcification rates in a range of calcifying organisms including corals, mussels and oysters (Langdon et al. 2000, Langdon and Atkinson 2005, Gazeau et al. 2007). A recent study recommends that the technique is more suitable for shorter term (e.g. day/night) incubations whereas the buoyant weight method is suitable for longer term studies when resources are limited (Schoepf et al. 2017). Less frequently, calcium content has been determined directly using mass spectrometry as a proxy for calcification (Wood et al. 2008). Both the total alkalinity anomaly and the buoyant weight techniques are low cost and take into account skeleton malformations, however there is variability between incubation methods. Promisingly, there is agreement in the results obtained from the different methods, with the major trend of a reduction in net biomineralisation under OA shown by both techniques (Langdon et al. 2000, Langdon and Atkinson 2005, Gazeau et al. 2007).

Mechanical tests - Protective function or ability to survive

OA impacts the gross and net calcification in many marine calcifiers, and therefore it would be expected that OA would similarly impact the function of the shell or skeleton. Mechanical properties of shells/skeletons can be quantified by two parameters: a) hardness (resistance to irreversible deformation) and b) compressive strength (force needed to induce cracking). These parameters can be used to evaluate the functional impacts of changes in biomineralisation under OA. For example, changes in these parameters have implications on the vulnerability of reef-forming species and associated ecosystems, as well as consequences for predator-prey interactions (Fu et al. 2016).

Three-point bending tests

As a classical, simplistic and low cost approach to examine mechanical features of brittle biomineral structures, three-point bending tests measure the flexural strength and modulus and commonly used to define material properties in its ability to resist bending. Three-point bending tests have been applied to measure the stiffness of the ambital plates in sea urchins grown in OA and found that there can be no significant impact on the protective function of the exoskeleton (Collard et al. 2016). Purpose-made
devices consisting of two supportive beams with appropriate span length and a loading beam can be built according to the specific morphology of the biomineral sample (Guidetti and Mori 2005, Asnaghi et al. 2013). These tests provide relevant information to the protective function of the shell or exoskeleton. The flexural response to a three-point bending test device mimics the deformation response to predatory attack by fish (Guidetti and Mori 2005). This exoskeleton robustness test was applied in the OA study of a sea urchin, and revealed increased pCO_2 reduced the defense of a sea urchin to the predator (Asnaghi et al. 2013). If samples are to be directly compared, it is essential to first standardize the thickness and sectional area of the test material, which requires additional preparation time to ensure the biomineral samples are cut into a standard size. The three-point bending tests have the advantage of being able to measure the whole structure mechanical response; disadvantages are that it can be time consuming as purpose-made devices may be required for unusually shaped shell structures.

Computed tomography

Computed tomography (CT) and micro-computed tomography (Micro-CT) are powerful, non-destructive techniques to evaluate biomineralised structures. Micro-CT allows 3D visualisation of X-ray image series generated by scanning with axial rotation in small steps. This method enables examination of internal structural features at fine spatial resolution (Li et al. 2016). A micro-CT dataset allows a variety of quantifiable measurements, including thickness in terms of pixel distance, volume in terms of voxel counts and density in terms of brightness of each pixel at higher resolution compared to CT (Fantazzini et al. 2015, Tambutté et al. 2015, Chatzinikolaou et al. 2017).

With these 3D geometric morphometrics and measurements, the growth rate, density and morphological changes due to OA can be investigated. Micro-CT has been applied in OA studies on gastropods (Chatzinikolaou et al. 2017), tubeworms (Li et al. 2014, Li et al. 2016), and shrimp (deVries et al. 2016) to infer changes in the protective function of the exoskeletons. 3D model visualisation also enables the analysis of density distribution to understand the engineering of calcareous structures. Consequently, the presence of structurally vulnerable regions can be identified. Micro-CT analysis has been used in OA to determine the survival of coral through protective exoskeleton function (Tambutté et al. 2015).
Exoskeleton porosity often represents shell protective function. In particular, intertidal gastropods *Nassarius nitidus* and *Columbella rustica* exhibited density reduction in acidified conditions (Chatzinikolaou et al. 2017) while coral skeletons also showed an increased porosity at lower pH through micro-CT (Fantazzini et al. 2015, Tambutté et al. 2015).

The spatial resolution of most medical micro-CT is sufficient to provide a good measurement for large calcifiers, and typically have a resolution of 15 - 1000 μm per pixel. As a consequence, however, observation of marine plankton and larvae remains as a challenge. Another limitation of micro-CT is the detection sensitivity which can generate false negatives through thin minerals where regions may appear as empty space in the 3D reconstruction. Therefore, it is important to verify the representative morphology by combining micro-CT with an SEM approach. All density measurements should be calibrated with a standard material which has a known bone mineral density (BMD, g.cm\(^{-3}\)) in terms of calcium hydroxyapatite and its corresponding pixel intensity for each scan (Li et al. 2014). Since there are no commercially available standards for calcium carbonate calibration, density measurements are relative and has limited comparability with other studies.

Finite element analysis

The field of engineering and computational simulation can be applied creatively to understand structural impacts to biominerals caused by OA. In a simulation, any weakness in the architecture is highlighted and the loading capacity can be calculated from the shape and empirical data (Li et al. 2016). Therefore, the application of structural analysis can be performed when shapes and mechanical properties of the biological mineral are both known, providing a holistic picture of how well each calcified material functions as the protective or supportive structure.

The most widely applied numerical tool for computational simulation is finite element analysis (FEA) (Li et al. 2014; Li et al. 2016). To solve a problem using FEA, the problem is divided into smaller and simpler parts which are called finite elements. By assembling the solution of all finite elements mathematically, a total approximate solution of the large problem can be obtained. FEA enables the mechanical behaviours of complex biomineralised structures to be investigated accurately. The FEA
can include the different experimental mechanical properties, such as elasticities of different components of the shell structure, as well as simulate the effects of loading, for example the crushing forces associated with a predator attack.

With the diverse calcareous structures being produced by marine organisms, FEA can be applied to assess changes in mechanical performances due to morphological changes. For example, FEA has been applied to understand the mechanical response of a tubeworm under OA combined with low salinity and warming treatments. This enabled the identification of the most vulnerable region of the tube and the highest risk of fracture failure under predatory attack (Li et al. 2014, Li et al. 2016). This demonstrates that FEA can be developed as biologically accurate model to determine the impact of OA on the protective function of calcareous shells and exoskeletons. Beside its advantage, FE models especially when it is 2-D simplified (Ragazzola et al. 2012), often fail to account for heterogeneity, malformation and shape changes. In addition, 3-D models are complex and requires advanced computational efforts (Melbourne et al. 2015).

Micro- and nanoindentation

Biominerals are composed of mineral crystals and an organic matrix framework. As a result, biogenic calcite has been reported to be 50-70% harder than geological calcite (Kunitake et al. 2012, Kunitake et al. 2013). Due to the high heterogeneity in morphology, structure and composition of mineralized shells and exoskeletons, hardness has been widely used as a comparable evaluation of mechanical properties (Beniash et al. 2010, Dickinson et al. 2012a, Fitzer et al. 2015b).

The strength of biomineralised structures can be characterised by a crushing or compressive test where machine applies and reads compressive force- versus displacement. The entire structure of specimens can be used to mimic a predatory attack (Byrne et al. 2014). However, biomineralised structures are typically not homogenous and using a single point allows a better mechanical understanding of the shell property.
Figure 3. Schematic representation of techniques to compare mechanical properties in biomineralizing organisms. Nanoindentation and 3-point bending are two highlighted techniques for assessing mechanical properties including hardness, elasticity, fracture toughness and stiffness.
Two main methods can be used to understand the impact of OA on shell mechanical properties (Figure 3): 1) microhardness tests can measure Vickers hardness numbers (HV) determined by the ratio of the force applied by the indenter and the surface area of the final indent (Beniash et al. 2010, Dickinson et al. 2012a); and 2) nanoindentation which can measure the hardness and elasticity in a single indent. With the development of a depth-sensing indenter, the hardness and elastic modulus (a measure of stiffness) in units of pascals (Pa) from each indentation can be obtained from the loading-unloading curve by using the Oliver-Pharr model (Oliver and Pharr 1992). This method enables the measurement of shell hardness and has been used to address how the protective function of several mollusc species grown under experimental OA might be affected (Beniash et al. 2010, Dickinson et al. 2012a, Fitzer et al. 2015b). The results indicate no significant impact on microhardness in clams (Beniash et al. 2010) and oysters (Dickinson et al. 2012a) but an increase in microhardness in mussels (Fitzer et al. 2015c).

The advantage of nanoindentation is its precision at the nanometre scale. Nanoindentation enables spatial refinement where the mechanical properties profile can be examined (Li et al. 2014). At finer spatial resolution, mechanical features can be associated with the different textures of the mineral (Goffredo et al. 2014). The influence of OA can be reflected in different mineralised layers or structures of the marine invertebrate shell. Nanoindentation enables substantial refinement, for example, the hardness and modulus of the tubeworm from the exterior to the interior were mapped by nanoindentation in order to address questions about the protective function of the structure (Li et al. 2014, Fitzer et al. 2015b). The mechanical properties of the exterior to the interior portion of the tube were shown to decrease under OA compared to the middle portion of a tubeworm (Li et al. 2014). Researchers can analyse the same polished sample using SEM, allowing correlation between structural alteration and mechanical performance. This has been done for mussels (Fitzer et al. 2015b) and
tubeworms (Chan et al. 2012, Li et al. 2014) grown in OA for extended periods of time showing that OA-induced structural alteration may lead to deteriorations in mechanical performance. Both hardness tests have the disadvantage of requiring a highly polished sample surface (Perez-Huerta and Cusack 2009) and sample preparation can be both time-consuming and challenging (Milano et al. 2016).

In addition to hardness, the dimensions of the cracks generated around the indent can be used to determine the fracture toughness combined with the elasticity of the material as shown for bivalves grown under OA conditions (Beniash et al. 2010, Dickinson et al. 2012a, Fitzer et al. 2015b). By measuring the lengths of cracks, the plane-strain fracture toughness (KIC) can be calculated (Lawn et al. 1980, Anstis et al. 1981). However, it is difficult to define the local and bulk fracture behaviours by this technique, which makes it problematical to determine the accuracy of the fracture toughness values given by indentation (Kruzic et al. 2009). This technique has enabled the determination of the impact of OA on shell protective function: the fracture toughness of oyster shells and mussel shells was reduced (as measured by microhardness tests), which confirmed that the calcite shell became more brittle in OA conditions (Beniash et al. 2010, Dickinson et al. 2012a, Fitzer et al. 2015b).

Mineral composition - Biomineralisation mechanisms to enable shell growth

Trace elements present in seawater are incorporated within the shell structure of calcifying organisms and several empirical relationships have been observed between the trace element to calcium ratio and environmental parameters of the surrounding water. For example, the Mg/Ca ratio of a shell is positively correlated with the temperature of the surrounding water (Nürnberg et al. 1996, Dwyer et al. 2002, Pérez-Huerta et al. 2008, Kamenos et al. 2013). Based on empirical and experimental calibration, several element to calcium ratios have been observed to reflect the environmental condition. Trace element to calcium ratios and particularly Mg/Ca and Sr/Ca have been widely used to understand the biomineralisation process (but noted that biological activity can influence the elemental composition in the mineral rather than recording the environmental conditions, Weiner and Dove 2003). For example, OA has been shown to affect trace element to calcium ratios in corals (Sinclair 2005), foraminifera (Elderfield et al. 1996, Keul et al. 2013, Not et al. 2018), ostracods (Dwyer et al. 2013), and tubeworms (Chan et al. 2015b), but not sea urchins (Byrne et al. 2014). For sea urchins grown under OA and
warming from the juvenile to the adult stage, the Mg/Ca was not affected by OA but, as expected, was altered by temperature (Byrne et al. 2014). When exposed to OA, Mg/Ca increased in vermetid shells, suggesting a dissolution of aragonite and increase in calcite (Chan et al. 2012, Milazzo et al. 2014). Milazzo et al. (2014) applied inductively coupled plasma optical emission spectrometry (ICP-OES) techniques to understand impacts of OA on calcification as growth and suggested that under OA shell dissolution will occur with the potential to impact survival through weakened shell protection.

Mass spectrometry

A variety of methods are available to measure the elemental ratios of a biological mineral. Basically, calcifying organisms can be measured in a solid phase using techniques such as X-ray fluorescence (XRF) or laser ablation (LA) or in dissolved phase after dilution using a range of inductively coupled plasma spectrometry. Since trace elements are measured within the mineral, several cleaning steps are required to remove organic matter and potential lithogenic contamination (Martin and Lea 2002). Typically, analysis of a dissolved sample by inductively coupled plasma (ICP) spectrometry requires the preparation of the shell or skeleton sample by acid digestion, fusion, or ash drying. Techniques for solution analyses include, ICP- optical emission spectrometry (OES), ICP- atomic emission spectroscopy (AES), ICP-mass spectrometry (MS), and multiple collector (MC) ICP-MS. The differences between these ICP spectrometry techniques are the increase of precision of the analyses, the higher resolution and therefore lower detection limits of elements up to isotopic measurement with MC-ICP-MS, whereas the disadvantages are the cost and maintenance of the equipment.

Electron microscopy AEM/ EDS/ SIMS/ EELS

Spatial information of elemental distribution in the mineral provides valuable information to predict mechanical properties. Solid-sampling methods have been developed for ICP analysis for this purpose. Electro-thermal-vaporisation (ETV) and laser ablation (LA) are applied to generate vapour for characterisation. In combination with ICP-OES or ICP-MS, these techniques are suitable for analysis of a solid sample (Limbeck et al. 2017). However, LA-ICP-MS only provides resolution of > 5 µm, while secondary ion mass spectrometry (SIMS) distinguishes sub-micrometre resolution (Becker et al. 2010). Although SIMS has a sensitive detection level of 1 ppm, the technique is not directly quantitative.
due to its dependence on a solid-state chemical standard, and the nonlinear and highly variable nature
of the ionisation process of different elements in SIMS (Williams 1985). In addition, SIMS can be used
to obtain depth profiles of mineral composition of shells (Jeffree et al. 1995). All of these methods have
an advantage of giving spatial information on the elemental distribution, the differences lie in the
resolution between ICP-MS, ICP-OES and SIMS. ICP-OES is already applied using acid digestion of
collected individuals for determination of elemental ratios (Milazzo et al. 2014). The application of
SIMS to OA research would enable the analysis of much smaller samples and to examine the response
of individual calcifying organisms in terms of growth and survival (Eichner et al. 2017).

The spatial detection of trace elements on a bulk material surface can be achieved through electron
microscopy (Müller et al. 2011). Analytical electron microscopy (AEM) with energy dispersive X-ray
spectrometry (EDS) and wavelength-dispersive X-ray spectroscopy (WDS) provides data at the
nanometre scale (Newbury 1998). EDS offers an advantage of greater specimen area than the high
resolution method of electron energy loss spectrometry (EELS), which also requires a 10 nm thick
specimen to be prepared. Therefore, EDS is a more efficient and accessible AEM approach for OA
research. Notably, detection levels of AEM-EDS are around 1000 ppm, EELS 10 ppm and structured
illumination microscopy (SIMS) 1 ppm. EDS and WDS both enable the microanalysis of biominerals
and provide additional spatial information of the elemental profile. The cost of EDS is considerably
lower than WDS and has a high acquisition speed. In comparison, the spectral resolution of WDS is
superior to that of EDS. These techniques have been applied to address the question of whether OA
would have an impact on the calcification of shrimp and tubeworm skeletons, in order to understand
the impact on exoskeleton critical function including protective defense against predators (Chan et al.
2012, Taylor et al. 2015). EDS was employed to determine magnesium content in the exoskeleton of
shrimps grown under OA with the finding that increased calcium content with lowered pH resulted in
a greater Mg/Ca ratio (Taylor et al. 2015). Mg/Ca as an environmental indicator of calcite has been
suggested to increase as aragonite saturation decreases (Chan et al. 2012).

Taken together, there has been significant growth in a number of techniques available for quantifying
elements present in liquid and solid materials. Some of the surface techniques such as LA-ICP-MS, and
other analytical electron microscopy (AEM) techniques, such as SIMS, AEM-EDS and AEM-EELS,
have different resolutions and sample preparation requirements which should be considered in the context of experimental objectives. The recent development of MS analytic methods for bioimaging opens opportunities to investigate mineralising tissues at the biomolecule level (Becker et al. 2010). Complementing optical and electron microscopy techniques as discussed in the following section, these tools will enable a better understanding of the mechanism of OA impacts on the processes involved in the production of biominerals. However, these techniques at present have the disadvantages of requiring sample specific standards for calibration, time consuming sample preparation, observation confined to a tiny area of interest and the destructive nature of sample analysis.

Mineral composition analyses by FTIR and XRD

Mineral composition characterisation techniques target the comparison of mineral phases, elemental ratios and amorphous calcium carbonate to clarify the intricate process of biomineralisation (Figure 4). In the context of OA, it is important to understand the process of biomineralisation mechanisms to appreciate how continued growth will be possible under future environmental change.
Figure 4. Schematic representation of highlighted techniques for characterizing mineral composition in biomineralising organisms. Shell power samples are digested prior to mass spectrometry characterisation, e.g. ICR-OES/ICP-MS, for determining elemental ratio or isotopic ratio. Sectional surface of the shell are inspected for elemental ratio mapping using electron microscopy techniques such as SEM-EDS or SEM-WDS; or using mass spectrometry approaches by LA-ICP-MS or LA-ICP-OES. Additionally, a sample of shell powder provides mineral phase indentification using FTIR or XRD, figures modified from Chan et al., (2012). SEM-EBSD, SEM-WDS and Raman spectroscopy are highlighted as techniques to determine the mineral composition and crystallographic orientation in a mussel shell to determine the impacts on shell growth under OA as an alternative to techniques such as ICP-OES or ICP-MS to determine elemental or isotope ratios in biominerals. SEM-EBSD figure
data taken from Fitzer et al., (2014a). Secondary electron images of the crystal structure from an etched (a) and polished (b) sample, the mineral composition can be seen in the phase map where calcite is shown in red and aragonite in green (c). The crystallographic orientation map (d), corresponding pole figures (e) and colour keys (f) are indicated for calcite and aragonite. EBSD uses Kikuchi patterns to identify the mineral phase (g) and the crystallographic orientation (h). Raman mapping figure modified from Chan et al., (2015b). Raman microscopy has been used to provide photomicrographs of younger (a) and older regions (c), of a juvenile tubeworm, phase maps indicate regions of aragonite only (b) and aragonite and calcite (d) in the tube. A Raman spectra (e) of aragonite and calcite has been measured in the same specimen (c).

Fourier-transform infrared (FTIR) spectra can be used to determine the relative quantity of amorphous calcium carbonate from an intensity ratio \(\frac{I_{\text{max} \nu_2}}{I_{\text{max} \nu_4}} \) between the absorption bands. The major disadvantage of the FTIR approach is its semi-quantitative nature; results can only be compared within the same experimental dataset. This method has been adopted in OA research on a marine tube worm where amorphous calcium carbonate content was found to be higher at low pH (Chan et al. 2012, Leung et al. 2017). Chan et al. (2012) suggest that this result indicates the presence of an active shell repair mechanism when animals are counteracting shell weakening by OA. The advantage of FTIR is that it takes as little as 1 mg of mineral sample and so may be applied to larval specimens.

The ratio of calcite and aragonite content, that has implications for the vulnerability of shells and skeletons to OA, can be quantified by X-ray diffraction (XRD). This is an advantage over FTIR, but XRD has its own drawback, i.e. the loss of spatial resolution due to the need for powdered samples. XRD approach has been used to assess shell or exoskeleton growth under OA. Unless containing large amounts of Mg, calcite is considered to be less susceptible to dissolution at lower pH values than aragonite (Ries et al. 2009, Chan et al. 2012). OA relevant changes in thickness of the calcite and aragonite layers was first noted in mussels transplanted into low-pH environments (Hahn et al. 2012). Calcite: aragonite ratios have been shown to change under OA, leading to a thinner and more vulnerable
aragonite layer in mussel shells (Fitzer et al. 2015a). The shell thickness index in comparison to the measured thickness of the aragonite or calcite layers uses the thickness, the length, height and dry mass of the shell and is considered to produce a lower measurement error compared to direct measurement (Freeman and Byers 2006, Naddafi and Rudstam 2014, Fitzer et al. 2015a). The shell thickness index, in comparison to XRD, has an advantage of being non-destructive to the sample, but a disadvantage with a loss in spatial resolution.

Raman spectroscopy

Raman spectroscopy is a non-destructive technique that enables molecular bonds and mineralogical information to be precisely characterised at a submicron resolution. By illuminating a sample with a monochromatic laser beam, a Raman spectrum is generated that contains unique peaks that are diagnostic of mineral polymorphs due to their characteristic Raman shifts (Eisenstein et al. 2016). Structural components, such as calcite, aragonite and collagen, have been identified and mapped with resolution as fine as 1 µm (Eisenstein et al. 2016, Taylor et al. 2016). Advantages of Raman spectroscopy over other spectroscopic methods, such as FTIR, include the improved spatial resolution and the direct relevance of this method for biomineralisation, as well as the potential to examine samples in their native state (Eisenstein et al. 2016, Von Euw et al. 2017). This technique is considered a complementary method to FTIR, and is perhaps more suitable for OA studies. Raman microscope imaging has been applied to OA research to identify the mineral composition and polymorphic forms to assess rates of calcification under increasing pCO_2 in coralline algae and limpets (Kamenos et al. 2013, Langer et al. 2014). For instance, Raman mapping of the shells of limpets from a CO$_2$ vent demonstrated that the polymorph distribution pattern is maintained despite living at low pH (Langer et al. 2014). In coralline algae, although calcification continues under OA, Raman has identified disorder in the molecular position of the carbonate ions which suggests a weakened skeletal structure (Kamenos et al. 2013). These applications were used to assess exoskeleton structural weaknesses which can impact the protective function of the calcified structures under OA.

SEM-EBSD
Electron backscatter diffraction (EBSD) is widely used to determine the crystallographic orientation of biogenic minerals. EBSD provides additional information to precursory SEM imaging of shell dissolution or exoskeletal microstructure as it allows for the examination of microstructure at the individual crystal level. The technique identifies Kikuchi patterns (Kikuchi 1928, Nishikawa and Kikuchi 1928) as scattered electrons are reflected as per Bragg’s law from the crystal lattice onto a phosphorus screen. It was first used to observe the impact of OA on the shell ultrastructure of the mussel *Mytilus galloprovincialis* (Hahn et al. 2012) and was further applied across a broad range of species, including an argonaut (Wolfe et al. 2013) and corals (Fitzer et al., 2014b; Hennige et al., 2015). The effects on crystalline structure identified using this technique in OA research have been used to address the question of how changes in seawater environment can impact the orderly arrangement of shell or exoskeleton structures which has an implication to the animal’s ability to survive.

X-ray microscopy XPEEM – XAS and XANES

An alternative emerging technique for determining the mineral composition of marine skeletons is high-spatial resolution synchrotron X-ray photo emission electron microscopy (XPEEM) combined with X-ray absorption spectroscopy (XAS) (Fitzer et al. 2016). The benefits of the XPEEM and XAS over SEM is the high level of spatial resolution, and the fact that it can detect without the need for an energy filter by measuring the secondary electrons yield as a function of photon energy. This technique can be applied alongside electron backscatter diffraction (EBSD) to identify mineral phases throughout the shell structure (Fitzer et al. 2016). XANES and XPEEM techniques use the principles of X-ray absorption fine structure (XAFS) which interpret the scattering of photo-electrons emitted from an absorbing atom in a structure when excited by high energy photons (Politi et al. 2008, Fitzer et al. 2016). XANES has been used as a tool to examine the phase transformation mechanisms of amorphous calcium carbonate into calcite particularly in sea urchin larval spicules (Politi et al. 2006, Politi et al. 2008, Gong et al. 2012). Recently, XPEEM combined with XAS has been used as a tool to examine amorphous calcium carbonate in mussels reared under OA conditions (Fitzer et al. 2016) showing more induced amorphous calcium carbonate with less crystallographic control over shell formation. This technique
was applied to address the question of OA impact on biomineralisation and shell repair to determine the protective function of the shell under changing environments (Fitzer et al. 2016). The technique requires the embedding and fine-polishing of samples, similar to SEM-EBSD preparation (Politi et al. 2008, Perez-Huerta and Cusack 2009, Fitzer et al. 2016). XANES and XPEEM have the advantage of providing high spatial resolution to locate amorphous calcium carbonate embedded within the shell structure when applied in combination with SEM techniques (Politi et al. 2008). Disadvantages include the high instrumentation cost and lengthy sample preparation time.

AFM

Atomic force microscopy (AFM) provides atomic resolution analysis of material properties. As a type of scanning probe microscopy, AFM scans and interacts with a sample directly using a tip that is connected to a cantilever spring. The vertical deflection and the force-distance curve are recorded by a piezoelectric translator (Butt et al. 2005). In tapping mode, AFM generates fine topographical images with nanometre resolution. The time-dependent relationship between applied pressure (stress) and deformation (strain) represents viscoelastic properties (Butt et al. 1995) enabling the measurement of local mechanical properties.

Easy sample preparation and high resolution are the major advantages of using AFM over conventional microscopy methods (Butt et al. 1995). The typically small interacting surface for AFM must be smooth and homogeneous requiring polished and etched surfaces similar to EBSD sample preparation (Dalbeck et al. 2011). Therefore, AFM complements the observations of SEM-EBSD analysis which can provide high resolution textural data to OA studies (Dalbeck et al. 2011). AFM performed in the presence of an electrolyte solution is possible (Butt et al. 1995), therefore, enabling better biological relevance. In order to obtain comparable regions of interest, correlative SEM or light microscopy data are often helpful to effectively navigate at AFM resolution (Sikes et al. 2000). AFM has yet to be applied to determine the impact of OA on biomineralisation. Once applied, this technique will provide a correlation with EBSD data to address the question of biomineralisation mechanisms in shell growth and hence survival.

FIB-TEM
The finest biological observation have been via transmission electron microscopy (TEM), providing resolutions of nanometres down to below an ångström (Nellist et al. 2004) exceeding ‘super-resolution’ microscopy. In addition, TEM is an important characterisation tool that collects X-ray diffraction with a micrograph enabling subcellular features and location of crystals to be analysed together. A nanofabrication technique using the focused ion beam (FIB) system has emerged as a powerful tool for precise TEM specimen preparation, where milling and cutting of a sample is performed inside an SEM or scanning ion microscopy (SIM) (Titze and Genoud 2016). This preparation approach overcomes technical challenges of manual preparation of ultrathin TEM sections, with the localisation of the region of interest, and reduces the risks of sample loss (Chan et al. 2017).

Suzuki et al. (2011) revealed the details of five microstructures in the limpet shell using FIB-TEM. The FIB technique was used to separate each microstructure in cross section to determine crystal morphology and orientation. The FIB technique is powerful in handling tiny larval or juvenile shells (Yokoo et al. 2011, Chan et al. 2015a, Chan et al. 2017), and reduces costs of analysis time for TEM on samples with poor orientation or an unfocussed area of interest. FIB-TEM ensures a consistent cutting angle at the nanoscale, so providing comparable observation of a larger number of experimental samples.

Depending on institutional resources, fine spatial resolution, long-hour procedures performed using FIB-TEM can be costly in a centralised facility. In summary, FIB-TEM is currently a qualitative observational method, but it has potential to be applied in a more quantitative setting.

Cryo-electron microscopy

In cryo-electron microscopy, biological samples can be visualised by a freeze fracture process which is achieved by rapid freezing of fixed tissue samples by vitrification (Alfredsson 2005). A hydrated sample that is close to the native state can be observed in high resolution without the requirement of destructive conventional preparation procedures for SEM and TEM (Levi-Kalisman et al. 2001, Khalifa et al. 2016, Thompson et al. 2016). Electron microscopy also enables X-ray diffraction characterisation essential for identification of minerals. Ice from humidity in the environment can contaminate the sample,
therefore, samples must be prepared after vitrification (Thompson et al. 2016). Technical disadvantages associated with cryo- methods include the need for stabilising detergents for structure (Singh and Sigworth 2015) which, in addition to its high cost, will make the application of this technique challenging for large scale OA experiments.

Stable isotopes

Biogenic stable isotopes have been used extensively to reconstruct the paleooclimes, in terms of temperature, pH and salinity (Lear et al. 2000, Parkinson et al. 2005, Ghosh et al. 2006, McConnaughey and Gillikin 2008, Martin et al. 2016, Stewart et al. 2016). They can also be used to understand biomineralisation mechanisms of ion transport at the site of calcification (Furla et al. 2000, Rae et al. 2011, Allen et al. 2012, Allison et al. 2014). The detection of Mg, Sr, and Ca, the detection of the isotopes, δ13C, δ18O, 10B and δ11B requires acid digestion prior to mass spectrometry analyses (Krief et al. 2010). Here, we list some of the target isotopes that have promise for OA research.

Quantification of isotopic elements can be applied to detect the consequence of stress on calcification pathways (Rae et al. 2011, Allison et al. 2014, Stewart et al. 2016). Brachiopods, in particular, form their exoskeletons in good isotopic equilibrium with the seawater (Parkinson et al. 2005). Since pH is dependent on two boron species: boric acid (B(OH)$_3$) and the borate ion (B(OH)$_4^-$) (Hemming and Hanson 1992, Stewart et al. 2016, Zhang et al. 2017), the species of boron isotopes found in shells represents the dissolved inorganic carbon (DIC) chemistry of the calcification fluid (Allison et al. 2014). Stable isotope techniques have been applied in OA research to understand the mechanisms of biomineralisation, specifically, whether material is laid down under control by the organism irrespective of the seawater isotopes (Krief et al. 2010). For example, seawater pH impacts the skeletal δ13C and δ18O in corals, but there is an offset in the δ11B between the calcified material and that of seawater suggesting control of biomineralisation by ion-transport enzymes (Krief et al. 2010). This technique addresses the question of calcification mechanism change under OA and whether there is a reduced metabolic incorporation of isotopes through enzyme control, hence reduced growth and survival under OA. The influence of carbonate ion concentration on δ13C and δ18O is still being explored, particularly in foraminifera (Spero et al. 1997).
Isotopic approaches have the disadvantage of requiring a relatively large amount (~2 mg) of biogenic calcium carbonate powder. Sample preparation with micro-milling is time-consuming and can be technically challenging, especially when investigating different polymorphs and seasonal growth bands in smaller specimens (Stewart et al. 2016). Advances in stable isotope techniques will consist of improved ways of separating organics from biominerals, micro milling samples for biomineral powder, and laser ablation methods that increase spatial resolution of measurements (Fietzke et al. 2010, Wall et al. 2016).

Radioactive isotopes

In addition to using 45Ca for estimation of calcification, radioactive isotopes can also contribute to a mechanistic understanding of the calcification process. Furla et al. (2000) used a double radioactive isotope experimental design (14CO$_3$ and 45Ca) to show inorganic carbon transport. Comprehensive measurement of both the DIC species and Ca for calcification was accomplished in terms of net radioactivity by 14Ca and 45Ca (Furla et al. 2000). These data also unraveled the carbonate concentrating mechanisms within coral cells (Furla et al. 2000).

The use of radioactive isotopes (45Ca, 14C) is specific and sensitive to experimental conditions. Moreover, the maintenance of radioactive substances can be challenging. Before adopting the use of radioactive isotopes within an experimental culture, a protocol must be optimised to adequately label specimens and avoid contamination. Therefore, even though the approach is quite well-established in environmental geochemistry (Parkinson et al. 2005, Ghosh et al. 2006, McConnaughey and Gillikin 2008), disadvantages of requiring continual radioactive tracer application and the destructive nature of the sample digestion by acid means that it has yet to be applied more widely in OA studies (Furla et al. 2000).

Cellular biomineralisation mechanisms

The processes by which organisms control the substrate for calcification are complex and can occur internally within tissues, or outside the organism, but both need to modify the seawater chemistry for calcification to take place (Roleda et al. 2012). It is thought that HCO$_3^-$ is the choice of substrate for
biomineralisation, which can be taken directly from seawater or metabolised from CO₂ (Roleda et al. 2012). The mechanisms revolve around producing an abundance of ions and the right conditions to favour the precipitation of CaCO₃ from available Ca²⁺ and CO₃²⁻ (Roleda et al. 2012). An understanding of biomineralisation mechanisms under forecasted OA conditions will require the use of a wide range of techniques (Figure 5) but also working at different levels, from genes to organisms and ecosystems. This can be achieved by taking advantage of established techniques from other disciplines. For example, methods to culture larval sea urchin primary mesenchyme cells facilitates the study of the calcification process in vitro (Basse et al. 2015). Identifying and evaluating the roles of organic molecules in shells is a major topic in biomineralisation as the mechanical properties of shells are highly influenced by their 1% content of organic components. In the context of OA impacts on marine calcifiers, the response of organic molecules provides an insight into cellular mechanisms for the ability to reproduce and develop and can be applied to all marine organisms irrespective of size (Figure 1, schematic of question vs scale). Mechanisms of biomineralisation are largely unresolved and vary from species to species.

Figure 5. Schematic representation of techniques to examine the cellular mechanism of biomineralisation. Techniques with OMICS, optical microscopy are established techniques that could be applied on various tissues and cells to determine the impact of OA on molecular biomineralisation.
Shell protein extraction is achieved by recovering the protein from decalcified shell. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), or 2D gel electrophoresis enables a comparison of protein profiles. In addition, mass spectrometry (MS) also enables the identification of proteins from available databases. As marine organisms studied in OA research are usually not ‘model-organisms’, protein identification is challenging. Protein purification, protein sequencing, and protein digestion, may be required in the identification process (Marxen et al. 2003, Suzuki et al. 2004). When a large protein (more than 30 kDa) needs to be identified, cloning methods can be used to recover the nucleotide sequence for deduction of the protein sequence (Miyamoto et al. 1996, Samata et al. 1999, Suzuki et al. 2009, Suzuki et al. 2011). Many genome and transcriptome databases of calcifying invertebrates generated by next generation sequencing are also available as open resources (Takeuchi et al. 2012, Zhang et al. 2012).

MS is also a promising technique to understand shell proteins. The MS/MS spectra of peptides allow determination of amino acid sequence without the need for a protein sequencer and has become a low cost and high throughput technique. The combination of MS/MS and databases from next generation sequencing is dramatically increasing the efficiency of protein identification (Joubert et al. 2010, Marie et al. 2010, Marie et al. 2011). The potential disadvantage of generating big data from the high throughput process is covered in more detail in the next Section. These techniques have been applied to show the proteome responses of invertebrates grown in OA conditions. For example, the shell matrix proteins of the larval pacific oyster (*Magallana gigas*) were observed to decrease under OA (Harney et al. 2016).

SDS-PAGE and MS offer advantages of low cost and in the case of MS high throughput protein identification to understand why physiological responses may be influenced by ocean acidification. The disadvantages of these techniques include time-consuming sample preparation to extract and purify proteins for analysis and production of big data which can be difficult to interpret.
Insoluble organic components in the shell, such as chitin, are an essential polysaccharide that connects organic matrices and the initial deposition of the mineral (Nakayama et al. 2013); it serves as a scaffold for organic materials during the deposition of minerals. For example, the molluscan periostracum is made of chitin and it serves as a waterproof layer of a calcification compartment. Chitin is commonly found in the forms of α and β-chitin. Crustaceans use α-chitin in their exoskeletons and molluscs use β-chitin in their shells, as such, chitin is an essential additive to greatly improve the mechanical properties of biomaterials. Due to the insoluble and organic nature of chitin, the impact of OA on chitin content is currently unknown. There are many techniques to identify chitin, including X-ray diffraction (Weiner and Traub 1980, Levi-Kalisman et al. 2001, Falini et al. 2003), infra-red (IR) spectroscopy in the fingerprint region (700-1800 cm$^{-1}$) (Pearson et al. 1960), and nuclear magnetic resonance (NMR) or MS detection of the glucosamine hydrochloride after hydrolysis (Nakayama et al. 2013). The analysis of pyrolysis (thermal decomposition of materials in a vacuum) GC-MS is able to identify characteristic chitin decomposition markers (Furuhashi et al. 2009). However, many other contaminants (such as proteins) produce a complex of unknown peaks that make the identification of chitin in biominerals difficult and, in the case of insufficient crystallinity, a clear diffraction pattern may be hard to obtain. Recently, a colorimetric assay of chitin has been developed to quantify chitin (Katano et al. 2016). The workers found that upon complete hydrolysis of chitin in strong acid (5M HCl), characterization of depolymerized glucosamine is possible using colorimetry at the absorbance maximum at 750 nm. The method requires small amount of sample (10 mg), it is low cost, simple and quantitative. However, the detection is robust and cannot distinguish polymorphs and spatial distribution of chitin.

Chitin can be visualised microscopically by calcofluor white which binds strongly to cellulose and chitin, and wheat-germ agglutinin (WGA) which binds to N-acetyl-D-glucosamine and sialic acid (Suzuki et al. 2007). Due to the non-specific nature of calcofluor-white and WGA, more specific detection is accomplished by using chitin-binding domain fused with green fluorescent protein (CBD-GFP) as shown in the larval shell of *Mytilus galloprovincialis* (Weiss and Schönitzer 2006) and the
prismatic layer of *Atrina rigida* (Nudelman et al. 2007). Quantifying the expression of the chitin synthase gene is an alternative approach to measure chitin production (Cummings et al. 2011).

While the role of chitin may be essential in providing a waterproof cover and biomineralisation framework to the shell formation process, the plasticity of chitin synthesis under OA environmental stress has not yet been investigated. Chitin has many important biological roles in a diverse taxonomic group of animal models (Lee et al. 2011), therefore, the detection of chitin could provide valuable information on both the structural and functional responses to OA. The disadvantages of XRD, IR, and pyrolysis NMR or GC-MS techniques for chitin analysis such as the low abundance of organic materials in calcareous structures and therefore time-consuming sample preparation may limit the application of this approach to future OA studies. On the other hand, visualizing chitin with dyes such as calcofluor white and WGA are prone to non-specific reactivity to other molecules than chitin. The more specific CBD-GFP labeling requires bioengineering protocol to express and purify the chitin probe.

OMICS

Omic studies are generating “big data”. However, these data cannot be simply used as proxies of fitness (Feder and Walser 2005). As a consequence, little information can be extracted from purely exploratory studies (e.g. comparisons between two OA scenarios). A more powerful approach involves the analysis of the data to test a hypothesis based on physiological or ecological experiments. For example, De Wit et al. (2016) filtered a large-scale transcriptomic database to select genes following the same pattern identified at the physiological level in copepods exposed to OA (Thor and Dupont 2015, De Wit et al. 2016). The future use of omics to investigate the effects of OA on biomineralisation is promising, especially using the integration of omics technique with other physiological endpoints.

The three main omics approaches to consider are transcriptomics, proteomics and metabolomics. Transcriptomics is a study of mRNA and actively expressed genes, while proteomics investigates the total protein profile, and metabolomics capture the biochemical status of an organism.

Transcriptomic changes can provide insights into genetic pathways involved in calcification by comparison of gene expression, for example at different stages of calcification, or under different
environmental conditions. That is, when applied in a time series, changes in transcriptomes of developing larvae provide useful information relevant to the onset of biomineralisation (Zhang et al. 2012). De Wit et al. (2018) used OA as a tool to delay calcification in early stage of oyster development and using a time series were able to identify genes involved in larval shell calcification (De Wit et al. 2018). Under OA, transcriptomic studies are used to assess the physiological capacity of organisms by studying not just the biomineralisation molecular pathways but also the other related pathways giving a complete picture in understanding the consequences of living in a high CO₂ oceans (Todgham and Hofmann 2009).

Proteomics investigates the total protein profile. Since proteins are the active functional units of an expressed gene, these data are closer to the organism at the functional level and phenotype. Proteomes can be altered by OA, as shown by different calcification protein expression in oysters (Dineshram et al. 2015). The organic matrix proteins that are associated to shell deposition have been profiled in corals (Drake et al. 2013), oysters (Suzuki and Nagasawa 2013), and blue mussels (Suzuki et al. 2011), although this information has not been profiled in the OA context.

In common with the transcriptome, some precautions should be taken during the interpretation of a proteome. The quantity of a protein commonly cannot be directly linked to the fitness of an organism as regulatory post-translational modifications play a key role (Mann and Jensen 2003). This is an essential consideration for the study of shell proteins which are often heavily glycosylated, phosphorylated or tyrosine sulfated as required for calcium binding (Zhang and Zhang 2006).

A major disadvantage of applying OMICS to the study of biomineralisation is the low abundance of about 5% organic content in calcareous structures (Zhang and Zhang 2006). In order to isolate sufficient protein or polysaccharide for analysis, a large amount of shell must be used. In addition, the extraction and purification of the organic content is greatly influenced by decalcification, and the shell can often contain organic impurities (Watabe 1965). Researchers should be aware of technical limitations using different characterisation techniques, for example 2D gels have a lower sensitivity than iTRAQ analysis (Wiese et al. 2007). In addition, the interpretation of OMICS data is highly dependent on genomic information, therefore, it remains as a challenging method for non-model organisms.
When live imaging is conducted, inverted microscopy enables living marine organisms to be fully submersed in seawater during observation (Venn et al. 2011, Stumpp et al. 2012, Tambutté et al. 2015, Chan et al. 2017). In some imaging methods, synthetic ratiometric images are generated by sequential images of the same region of interest. Mobile organisms can be immobilized (e.g. 2-4% agarose seawater or using micropipettes) to enable image acquisition of the region of interest. For longer periods of observation, a perfusion chamber is necessary to remove metabolic waste and allow exchange of aerated experimental seawater with enriched CO₂.

Fluorescent microscopy has been applied to visualise the calcification compartment during mineralisation at a low seawater pH using markers including calcein, alizarin and calcofluor white for in situ analysis of calcification and tracking of calcification as shown for coralline algae (Lewis and Diaz-Pulido 2017). Newly deposited minerals can be quantified from their fluorescent appearance at their respective excitation (Exλ) and emission wavelengths (Emλ), e.g. alizarin: Exλ = 530-560 nm, Emλ = 580 nm; calcein: Exλ = 494 nm, Emλ = 517 nm; calcofluor white: Exλ = 365 nm, Emλ = 435 nm. Calcein is a preferable marker because of its high efficiency, non-invasiveness (Lewis and Diaz-Pulido 2017) and it is relatively low in cost. In addition, the fluorescent region can be isolated and characterised using the techniques described for measuring growth and development in the earlier sections.

The heterogenous distribution of carbon sources, e.g. CO₃²⁻ ions at the calcification site, can be monitored by measuring intracellular pH (de Nooijer et al. 2008, Venn et al. 2011, Venn et al. 2013, Tambutté et al. 2015). Similar to the carbonate dynamics in the ocean, a shift in pH influences the DIC abundance in the biomineralisation compartment, in terms of CO₃²⁻ and HCO₃⁻. As shown in foraminifera, pH of the site of calcification increases during calcification, while the surrounding ambient pH decreases probably through active proton pumping (Toyofuku et al. 2017). A higher pH value facilitates the conversion of CO₂ and HCO₃⁻ to CO₃²⁻ (Toyofuku et al. 2017), and both the CO₃²⁻ concentration and calcium carbonate saturation state can then be calculated (Venn et al. 2011, Venn et al. 2013, Tambutté et al. 2015). Furthermore, it is possible to estimate the amount of emitted proton by
image processing of pH sensitive ratiometric microscopy. Ratiometric fluorescent dyes enable the monitoring of intracellular and extracellular pH (Chan et al. 2015a, Comeau et al. 2017b, Toyofuku et al. 2017). Several pH sensitive dyes are available depending on the tested pH range. When the cell permeable dye SNARF-1 acetoxymethyl ester is excited at a wavelength of 543 nm, the ratio of fluorescence captured at emission wavelengths of 585 ± 10 nm and 640 ± 10 nm shows a linear relationship to intracellular pH (Venn et al. 2013). Similarly, cell impermeable SNARF-1 can be used to measure pH in the calcifying fluid in corals; 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) for intracellular pH of echinoderm larvae (Stumpp et al. 2012) and pyranine for foraminifera (Toyofuku et al. 2017). This technique has been applied to OA to investigate how growth and calcification rates are impacted by increasing pCO2 (Stumpp et al. 2012), where extracellular pH was actively compensated.

More recently, measurement of intracellular pH employs the use of microelectrodes between 10 and 15 µm tip diameter for direct in-tissue measurement (Cai et al. 2016), using pH polymeric membrane microelectrodes (Zhao and Cai 1999), and CO3\(^{2-}\) electrodes (Cai et al. 2016). Using this approach, pH and CO3\(^{2-}\) were observed to sharply increase in the calcifying fluid of various coral species, confirming the presence of H\(^{+}\) pump (Cai et al. 2016). In addition to intracellular pH determination, microelectrodes can be designed to monitor dissolved oxygen and calcium concentration to enable analysis of a wider range of parameters (Glas et al. 2012a, Glas et al. 2012b). The cellular pH imaging techniques have an advantage of high spatial resolution for direct in-tissue measurement, however, the disadvantages include time consuming sample preparation. This includes the challenge that organism immobilization strategies varies and the protocol requires optimization to ensure the organism is capable of generating biominerals. Ratiometric pH probe also requires calibration before the ratios can be converted to pH values.

Physiological inhibitors and stimulators

The use of physiological inhibitors or stimulators is a useful approach to investigate the biochemical pathways and pumps involved with biomineralisation (Basse et al. 2015). How biological pathways may be influenced by specific inhibitors can explain the mechanism of shell formation under OA.
conditions. For example, treatment with adenylyl cyclase inhibitors alleviate the negative effects of OA in Pacific oysters, suggesting the potential mechanism change under OA (Wang et al. 2017). This result confirmed the role of adenosine triphosphate (ATP) generation is essential to support shell production (Pan et al. 2015). Not requiring complete genetic information is greatest advantage of using inhibitors and stimulators to evaluate the mechanisms of biomineralization in a reductionist approach (Toyofuku et al. 2017). However, the choice of inhibitors may be non-specific to a single pathway and its action requires verification by a known physiological end-point.

Combining techniques

The described techniques can be employed individually to answer specific scientific questions to determine the impact of OA on marine biomineralisation. However, it is important to consider combining techniques to address complex scientific questions.

Combining x-ray microscopy techniques

Due to the development of optimum sample preparation for the analysis of a flat surface (Perez-Huerta and Cusack 2009), the output of XPEEM with XAS (Fitzer et al. 2016) and SEM-EBSD (Hahn et al. 2012, Wolfe et al. 2013, Fitzer et al. 2014a, Fitzer et al. 2014b) can be readily compared. This has allowed the influence of OA on both the biomineral structure and composition to be determined for corals (Rodolfo-Metalpa et al. 2011), sea urchins (Bray et al. 2014), and mussels (Melzner et al. 2011). Likewise, the simple mapping of calcite and aragonite is applicable across a wide variety of species including mussels and limpets (Hahn et al. 2012, Langer et al. 2014, Fitzer et al. 2015a). In contrast, comparison of mineral composition between high-resolution microscopy with spectral techniques such as XRD, FT-IR, and XPEEM with XAS is more complex. The use of SEM imaging, and calcite and aragonite thickness by EBSD, or species-specific visual inspection using compound microscopy (Fitzer et al. 2014b), have their merits to examine larger areas of shell erosion. However, to examine the intricate details of biomineralisation and potential changes under OA conditions these methods should be used in conjunction with XRD, FT-IR, XPEEM with XAS, and SEM-EBSD.

Multi-omics data integration
Several -omics approaches can be integrated, i.e. multi-omics (Huang et al. 2017). For example, the mantle transcriptome and shell proteomes were integrated to study the shell formation of the pearl oyster (Joubert et al. 2010, Berland et al. 2011), enabling proteomics data to be analysed without a complete genome. Similarly, proteomics and metabolomics were studied together in oysters (Wei et al. 2015). A more complex multi-omics study examined the genome, transcriptome and proteome in the Pacific oyster (Zhang et al. 2012). Such a multi-omics approach also provided insights on the phosphate biomineralisation in brachiopods (Luo et al. 2015). This is a promising approach in the context of OA to understand the fitness or survival of organisms.

Conclusions: What now for OA research on biomineralisation?
A range of tools are shown in this article to help researchers to determine the impact of OA on biomineralisation mechanisms at physiological and molecular levels, and thus on shell or skeleton structural mechanics. The purpose of this review is to discuss commonly available biomineralisation tools for understanding this one physiological response to ocean acidification. However, organisms have a complex physiological profiles, and it is important to note that biomineralisation is not an isolated process, and not is it the only physiological process that needs to be considered in this context. Given the nature of biomineralisation mechanisms and their complex responses to OA, a variety of physiological, materials science, and crystallography tools are needed to thoroughly understand the biomineralisation process and its vulnerability to OA. This review outlines techniques that can be used to characterise, quantify and monitor the process of biomineralisation in a variety of calcifying marine organisms, especially when they are cultured under OA experimental conditions. It also highlights basic principles and the advantages and disadvantages of established, emerging and future techniques for OA researchers. The key to developing a strategy aimed at better understanding the potential consequences of OA is to define clear questions and hypotheses for testing. This would naturally lead to constrains (e.g. tested species, quantity of material available, size) that, when combined with practicalities (e.g. budget, equipment), will lead to selection of the appropriate experimental approach.

Recently, more attention has been paid to the underlying biological and physiological mechanisms of biomineralisation. For example, tissues and external organic layers can protect the shell from corrosion.
in under-saturated waters (Rodolfo-Metalpa et al. 2011). To address the underlying mechanisms affected by the impacts by OA, various methods need to be combined. For instance, determination of amorphous calcium carbonate is important to characterise mineral choice and relate phase transitions at the earliest stage of biomineral formation. Mechanisms of cellular involvement and specific biomolecules for biomineralisation can be examined using fluorescent microscopy and omics. The interactions of proteins in the extrapallial fluid and shell interface can be understood by applying techniques in isotope labelling and microscopy. It is also crucial to consider the fitness consequences of observed changes. For example, in a prey species, shell strength should be considered in relation to predator behaviour. The combination of established, emerging and future techniques will enable a holistic approach and better understanding of the potential impact of OA on biomineralisation by marine species and consequences for marine calcifiers and associated ecosystems.

Acknowledgement

The authors thank Andrew Mount, P. S. Murphy, Howard Browman and Kaimin Shih for their initial thoughts and input to this review at the 2nd Interdisciplinary Symposium on Ocean Acidification and Climate Change (ISOACC) meeting in Hong Kong December 2016. We also appreciate Sylvie Stambutte and Alexander Venn for their comments and suggestions to this review.

References

Not, C., Thibodeau, B., and Yokoyama, Y. 2018. Incorporation of Mg, Sr, Ba, U, and B in high-Mg calcite benthic foraminifers cultured under controlled pCO2. *Geochemistry, Geophysics, Geosystems* 19:83-98.

Fitzer and Chan et al.

Table 1. Summary of established techniques on Growth and Development to measure calcification and morphology under OA conditions with details of measurements, advantages and disadvantages of each application.

Table 2. Summary of emerging techniques on Mechanical tests to investigate mechanical properties under OA conditions with details of measurements, advantages and disadvantages of each application.

Table 3. Summary of emerging techniques on Mineral composition to investigate mechanical properties under OA conditions with details of measurements, advantages and disadvantages of each application.

Table 4. Summary of emerging techniques on Cellular biomineralization mechanisms to investigate mechanical properties under OA conditions with details of measurements, advantages and disadvantages of each application.
1. Growth and development

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyes - alizarin red and calcein</td>
<td>• Alizarin red stains calcium rich structures a red/light purple colour</td>
<td>• Low cost, non-invasive</td>
<td>• Alizarin red also binds free Ca
• Calcein also binds Ca^{2+}, Mg^{2+}, Zn^{2+}
• Is not compatible with other fluorescence techniques such as internal pH measurement
• No mineral phase information</td>
</tr>
<tr>
<td></td>
<td>• Calcein stains calcium rich structures a fluorescent green colour</td>
<td>• Track shell growth of living organisms during exposure to experiment
• Data comparable to published work
• Dye location can be analysed with advanced characterisation methods</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>• High resolution characterisation
• Ultrastructures of minerals</td>
<td>• Low cost
• Data are comparable
• Provide structural information</td>
<td>• No mineral phase information</td>
</tr>
<tr>
<td>Buoyant weight</td>
<td>• Mineral content determined from submerged weight of organism</td>
<td>• Low cost
• Non-invasive
• More accurate than length or area measurements
• Mineral density changes are reflected in measurement</td>
<td>• Seawater density varies when temperature and salinity change
• Purpose-made setup needed</td>
</tr>
<tr>
<td>Radioactive isotopes</td>
<td>• 45Ca incorporation rate
• 14C incorporation
• Represents mineralisation process during an experiment</td>
<td>• More accurate than length or area measurements
• Synthetic isotopes are specific to the study</td>
<td>• Invasive acid digestion of mineral samples are needed for scintillation measurement
• Requires handling of radioactive substances</td>
</tr>
<tr>
<td>Total alkalinity anomaly technique</td>
<td>• Alkalinity reduction surrounding an organism</td>
<td>• Low cost
• Accurate</td>
<td>• Incubation in individual organism required</td>
</tr>
</tbody>
</table>
2. Mechanical tests - Protective function or ability to survive protection

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-point bending tests</td>
<td>• Elastic modulus
• Fracture toughness</td>
<td>• Mimic predatory attack
• Simple operation
• Low cost</td>
<td>• Requires a tailor-made device
• Test samples are cut into a standard size for testing</td>
</tr>
<tr>
<td>Computed tomography</td>
<td>• Shell thickness
• Shell volume
• Shell density</td>
<td>• 3D visualisation of shell shape for morphometric analysis</td>
<td>• Hard to detect planktonic and larval samples (15 - 1000 μm per pixel)
• Standard density calibrated with bone mineral density (BMD, in g.cm⁻³)</td>
</tr>
<tr>
<td>Finite element analysis</td>
<td>• Visualize structural weakness of a material
 • Provide a numerical model for material properties</td>
<td>• Links nanoindentation data to whole sample measurements
• Takes shell shape changes into account
• Data can be verified by mechanical tests</td>
<td>• Requires computational skills
• Shape information requires simplified experimental data
• FEA Models need experimental verification</td>
</tr>
<tr>
<td>Microindentation</td>
<td>• Compressive force using 4- Vickers tip
• Hardness
• Elasticity Modulus</td>
<td>• Broader Vickers tip is less localised than nanoindentation
• Lower cost than nanoindentation
• Provides microscale spatial resolution</td>
<td>• Localised measurement
• Does not represent shape and mechanical behaviour of the whole structure
• Destructive to the sampling area of the specimen</td>
</tr>
<tr>
<td>Nanoindentation</td>
<td>• Compressive force using Berkovich tip
 • Hardness
 • Elasticity Modulus</td>
<td>• Sharper Berkovich tip enables higher spatial refinement of measurements
 • Provides both hardness and elasticity data in one measurement</td>
<td>• Localised measurement
• Does not represent shape and mechanical behaviour of the whole structure
• Destructive to the sampling area of the specimen</td>
</tr>
</tbody>
</table>
3. Biomineralisation mechanisms to enable growth

Elemental analysis

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Inductively coupled plasma (ICP) spectrometry | • Element to calcium ratios, e.g. Mg/Ca, Sr/Ca
• Analyse acid digested samples | • Quantitative
• Data are comparable
• Coupling with OES, MS or AES provides different sensitivity at various costs | • Destructive sample preparation
• Requires elemental standards
• More sensitive instruments are more costly |
| Laser ablation (LA) | • Element to calcium ratios, e.g. Mg/Ca, Sr/Ca
• Analyse solid samples | • Spatial resolution
• Less destructive than ICP approach
• Data are comparable | • Spatial resolution of > 5 µm, less than SIMS
• Less sensitive than ICP approach |
| Analytical electron microscopy (AEM) with energy dispersive X-ray spectrometry (EDS) | • Element to calcium ratios, e.g. Mg/Ca, Sr/Ca
• Microanalysis provides a compositional map with spatial resolution | • Low cost and accessible
• Spatial resolution
• Non-destructive to specimen surface, therefore can be followed by EBSD, LA-ICP-MS or nanoindentation | • Requires elemental standards
• Detection level at 1000 ppm |
| AEM with wavelength-dispersive X-ray spectroscopy (WDS) | • Moderate cost
• Nanometer-scale resolution | | • More costly than AEM-EDS |
| Structured illumination microscopy (SIMS) | • Spatial resolution of SEM
• Detection sensitivity of 1ppm | | • High cost
• Destructive to the sampling area of the specimen |
<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Electron energy loss spectrometry (EELS) | • 10 ppm detection limit
• High resolution compositional map | • High cost | • Require 10 nm thick samples
• Small region of interest |
| 3. Biomineralisation mechanisms to enable growth (cont.) | Mineral composition analyses | | |
| **Technique** | **Measurement(s)** | **Advantages** | **Disadvantages** |
| Fourier transform infrared spectroscopy (FTIR) | • Intensity ratio \(\frac{I_{\text{max}v_2}}{I_{\text{max}v_4}} \) between the absorption bands
• Identifies the presence of aragonite or calcite | • Low cost
• Provides a comparable measurement of ACC
• Requires ~1 mg of mineral sample | • Semi-quantitative
• No spatial resolution
• Destructive |
| X-ray diffraction (XRD) | • Identifies the presence of aragonite or calcite | • Allows for quantification of calcite and aragonite ratios
• Peak position suggests Mg content
• Powdered sample can be acid-digested to provide elemental data | • Requires more powdered samples than FTIR
• No spatial resolution
• Destructive
• Quantitative measurement requires the addition of CaF\(_2\) as an internal standard |
| Raman spectroscopy | • Identifies the distribution of aragonite or calcite | • Spatial resolution
• Area of calcite and aragonite is quantifiable
• Specimen surface can be analysed by SEM and AEM methods for ultrastructure and elemental contents | • Requires sectional surfaces
• Bleaching is necessary to remove organic contaminants
• Limited spatial resolution |
| SEM-EBSD | • Identifies the distribution of calcite and aragonite | • Allows visual comparison of mineral crystals | • Requires fine polishing |
3. Biomineralisation mechanisms to enable growth (cont.)

Mineral composition analyses (cont.)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray photo emission electron microscopy (XPEEM)</td>
<td>• High-spatial resolution composition map
• Localises and characterises ACC
• Identify mineral phases</td>
<td>• High spatial resolution
• Sample preparation enables SEM observation and SEM-EBSD characterisation</td>
<td>• High cost
• Requires fine polishing
• Time-consuming</td>
</tr>
<tr>
<td>X-ray atomic spectroscopy (XAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray absorption near edge structure (XANES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic force microscopy (AFM)</td>
<td>• Records force-distance curve
• Visualises fine topographical features</td>
<td>• Nanometre resolution
• Simple sample preparation
• Possible to measure hydrated samples in electrolyte solution</td>
<td>• High cost
• Small area of interest
• Time-consuming</td>
</tr>
<tr>
<td>Focused ion beam Transmission electron microscopy FIB-TEM</td>
<td>• Fine spatial resolution
• FIB prepares TEM sections</td>
<td>• Selective region of interest
• High spatial resolution
• Suitable for small samples</td>
<td>• High cost
• Time-consuming
• Small area of interest</td>
</tr>
<tr>
<td>Technique</td>
<td>Measurement(s)</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cryo-electron microscopy</td>
<td>• High resolution study of biological sample after rapid freezing</td>
<td>• High resolution</td>
<td>• High cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provides information on composition and crystallography</td>
<td>• Requires stabilising detergents for structure</td>
</tr>
<tr>
<td>Stable isotopes</td>
<td>• Detection of stable isotopes, e.g. δ^{13}C, δ^{18}O, 10B and δ^{11}B</td>
<td>• Data are comparable</td>
<td>• Destructive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measures changes in metabolic activity in biomineralisation</td>
<td>• Some proxies are not well established</td>
</tr>
<tr>
<td>Radioactive isotopes</td>
<td>• Calcification rate</td>
<td>• Sensitive technique</td>
<td>• Continual spiking of radiotracer required during incubation</td>
</tr>
<tr>
<td></td>
<td>• Labelling with radioactive isotopes, e.g. 45Ca and 14C</td>
<td>• Specific to experimental exposure</td>
<td>• Destructive</td>
</tr>
</tbody>
</table>

4. Cellular biomineralization mechanisms

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS-PAGE and MS</td>
<td>• Characterises shell proteins</td>
<td>• Established protocol for protein identification</td>
<td>• Sensitivity insufficient to detect shell proteins occurring at low quantity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low cost and high throughput of samples</td>
<td>• Protein extraction and purification is time consuming</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Difficult to interpret sequences from non-model marine organisms</td>
</tr>
<tr>
<td>Insoluble organic component analysis using X-ray diffraction (XRD)</td>
<td>• Characteristic spectroscopy correlated to chitin</td>
<td>• Provides evidence on the presence of chitin</td>
<td>• Destructive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Analyses insoluble solid samples</td>
<td>• Sufficient sample is hard to obtain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Information has poor relevance to the cells and tissue associate with chitin</td>
</tr>
<tr>
<td>Technique</td>
<td>Measurement(s)</td>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>OMICS – transcriptomics</td>
<td>mRNA of expressed genes</td>
<td>Assesses the molecular pathways of the organism from expressed genes or proteins</td>
<td>mRNA presence may not represent protein activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides a whole physiological picture</td>
<td>Tissue-specific response</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Costly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Identification of transcripts in a non-model marine species is difficult</td>
</tr>
<tr>
<td>OMICS – proteomics</td>
<td>Total protein profile</td>
<td></td>
<td>Shell proteins occurring at low quantity of 5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High-sensitivity method like iTRAQ is very costly</td>
</tr>
</tbody>
</table>

4. Cellular biomineralization mechanisms (cont.)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Measurement(s)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolysis NMR gas chromatography–mass spectrometry (GC-MS)</td>
<td>Detects decomposition product of chitin after chitinase action</td>
<td>Analyses the digested products</td>
<td>Requires chemical standards of digested products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digested product peaks can be quantified and compared</td>
<td>Protocol optimisation can be time-consuming</td>
</tr>
<tr>
<td>Colorimetric Assay for acid hydrolysate of chitin</td>
<td>Detects decomposition product of chitin after acid hydrolysis</td>
<td>Low cost</td>
<td>Destructive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantitative</td>
<td>Cannot distinguish forms of chitin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple protocol</td>
<td>Spatial information is lost</td>
</tr>
<tr>
<td>Calcofluor-white</td>
<td>Visualises chitin in relation to cells and tissues</td>
<td>Non-destructive to tissues and cells</td>
<td>Also binds to cellulose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low cost</td>
<td>Also binds to N-acetyl-D-glucosamine and sialic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commercially available</td>
<td></td>
</tr>
<tr>
<td>Wheat-germ agglutinin (WGA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitin-binding domain fused with green fluorescent protein (CBD-GFP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-destructive to tissues and cells</td>
<td>Specific to chitin</td>
<td>Requires a time-consuming bioengineering approach to express and purify CBD-GFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1479 1480
<table>
<thead>
<tr>
<th>Cellular pH imaging</th>
<th>Physiological inhibitors and stimulators</th>
<th>Identification of protein in a non-model marine species is difficult</th>
</tr>
</thead>
</table>
| • Intracellular pH indicated by a pH sensitive ratiometric probe
 • Visualises the sites of biomineralisation | • Enables examination of the physiological response of a non-model organism
 • The importance of a biological pathway is evaluated by a specific inhibitor |
 • Examines living organisms
 • High spatial resolution |
 • Not well established and optimisation
 • Ratiometric pH probes require calibration |
 • Applies to non-model organisms |
 • Some inhibitors are not specific to a single pathway
 • Action of inhibitors should be verified by a known physiological measurement |