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Abstract  1 

Various methods have been proposed to identify threshold concentrations of nutrients that would 2 

support good ecological status, but the performance of these methods and the influence of other 3 

stressors on the underlying models have not been fully evaluated.  We used synthetic datasets to 4 

compare the performance of ordinary least squares, logistic and quantile regression, as well as, 5 

categorical methods based on the distribution of nutrient concentrations categorized by biological 6 

status.   The synthetic datasets used differed in their levels of variation between explanatory and 7 

response variables, and were centered at different position along the stressor (nutrient) gradient.  In 8 

order to evaluate the performance of methods in “multiple stressor” situations, another set of 9 

datasets with two stressors were used.Ordinary least squares and logistic regression methods were 10 

the most reliable when predicting the threshold concentration when nutrients were the sole stressor; 11 

however, both had a tendency to underestimate the threshold when a second stressor was present.  12 

In contrast, threshold concentrations produced by categorical methods were strongly influenced by 13 

the level of the stressor (nutrient enrichment, in this case) relative to the threshold they were trying 14 

to predict (good/moderate in this instance).  Although all the methods tested had limitations in the 15 

presence of a second stressor, upper quantiles seemed generally appropriate to establish non-16 

precautionary thresholds.  For example, upper quantiles may be appropriate when establishing 17 

targets for restoration, but not when seeking to minimise deterioration.   Selection of an appropriate 18 

threshold concentration should also attend to the regulatory regime (i.e. policy requirements and 19 

environmental management context) within which it will be used, and the ease of communicating the 20 

principles to managers and stakeholders  .   21 

Key words  22 
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1. Introduction  25 

Legislation such as the Water Framework Directive (WFD: European Union, 2000) offers significant 26 

opportunities to incorporate ecological knowledge into regulatory mechanisms that ensure 27 

sustainable water resources.  A key assumption behind such legislation is that, if reasons for 28 

deterioration of ecosystems can be identified, then appropriate measures can be put in place to 29 

remediate and/or protect against future deterioration.   To this end, a large number of metrics 30 

summarising the response of the aquatic biota have been developed to meet WFD objectives (Birk et 31 

al., 2012) and the position of good and high ecological status boundaries have been harmonised 32 

between Member States (Birk et al., 2013; Poikane et al., 2014, 2015).  In practice, however, the 33 

dynamic nature of ecosystems creates uncertainty in relationships between biology and stressors,  34 

with the consequence that predictions of the benefits of remediation lack precision (Moe et al., 2015; 35 

Prato et al., 2014).  This is widely recognised as a major weakness of WFD implementation (Hering et 36 

al., 2010; 2015; Carvalho et al., 2018).    37 

A good understanding of the relationship between biology and a pressure should, in theory, enable a 38 

regulator to set threshold concentrations beyond which ecological degradation is likely to occur; 39 

however, relationships with stressors such as nutrient enrichment are often weak and confounded by 40 

interactions with other stressors (Page et al., 2012; Harris and Heathwaite, 2012; O’Hare et al., 2018; 41 

Munn et al., 2018).  Consequently, the process of defining thresholds also needs to account for 42 

uncertainty in the relationship between biology and pressure.  43 

A number of methods for setting thresholds for nutrient concentrations have been described.   44 

Broadly speaking, these fall into two types:   45 

● those that assume a continuous response of both explanatory and response variables, from 46 

which a threshold concentration can be inferred using linear regression models.   This is the case 47 
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when ecological status (or other measures of biological condition – e.g. Davies & Jackson, 2006) is 48 

defined as a position along a metric scale;  49 

● those that assume a categorical response of one of these variables, allowing threshold 50 

concentrations to be inferred using a number of approaches, including binomial logistic 51 

regression and methods based on the distribution of pressure values within the class(es) of 52 

interest.   This is the case when ecological status is expressed as one of a number of classes, but 53 

would also be relevant if a particular species or habitat required protection.  Free et al. (2016), for 54 

example, describe the development of nutrient standards to protect the distinctive Chara-55 

dominated communities found in shallow, marl lakes in Ireland, protected under the European 56 

Union’s Habitats Directive (European Community, 1992).  57 

A range of approaches for calculating threshold concentrations, encompassing both of these 58 

strategies, have been described in the literature (Dodds & Oakes, 2004; Free et al., 2016; Hausmann 59 

et al., 2016; Poikane et al., 2019) but, as far as we know, there has been no attempt to compare the 60 

effectiveness of different methods and, importantly, no systematic consideration of the extent to 61 

which the values produced may be confounded in the presence of a second stressor.  This is 62 

important as the biological response to nutrient enrichment in European freshwaters (Phillips et al. 63 

2018), transitional and coastal waters (Salas et al., 2019) is often distorted by the presence of other 64 

stressors, posing difficulties for setting nutrient thresholds that ensure the integrity of aquatic 65 

systems. Recent evidences indicate furthermore that nutrient stress occurs in 71% to 98% of multi-66 

stress situations in Europe’s surface waters (Nõges et al., 2016). The importance of multiple pressures 67 

in shaping communities in aquatic systems is now widely acknowledged (Borja et al., 2011; Nõges et 68 

al., 2016; Hering et al., 2015; Feld et al., 2016) although there are, as yet, no definitive approaches to 69 

setting protective thresholds for constituents of any pressure or stressor “cocktail”.  Multiple 70 

stressors are likely to interact in different ways and their effects can be difficult to predict, as there is 71 
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evidence for additive, synergistic and antagonistic effects of multiple stressors in aquatic ecosystems 72 

depending on the nature of those stressors and the type of ecosystem (e.g. Jackson et al., 2016; 73 

Gieswein et al., 2017; Rodrigues et al., 2018).  74 

Although the WFD requires member states (MS) to establish threshold values for physico-chemical 75 

metrics that support good status there is no requirement for these values, unlike the biological 76 

metrics, to be harmonised.  Given that different methods were used and the inherent uncertainty in 77 

relationships, it is not surprising that a wide range of values are now in use across Europe (Phillips and 78 

Pitt, 2016).  To overcome this and facilitate the use of more uniform threshold values, guidance 79 

supported by a statistical toolkit has been produced (Phillips et al. 2018). This encourages the use of a 80 

variety of approaches and in this paper we apply these approaches to synthetic datasets, designed to 81 

resemble stressor-response relationships between nutrient enrichment and biological community 82 

changes, in order to draw out some general lessons on the suitability of different approaches in 83 

situations where nutrients are the principal stressor shaping biological communities, and also in the 84 

presence of a second stressor.  It is not our intention  to investigate complex effects. Rather, we use 85 

simulated datasets to support identification of data patterns and show sensitivity of commonly used 86 

statistical methods to the presence of unmeasured stressors. 87 

2 Materials and methods  88 

2.1 Datasets  89 

In order to make comparisons between the different methods, a series of synthetic data sets were 90 

produced. Each data set contained 200 random values of total phosphorus (TP) concentration, a 91 

simulated observed Ecological Quality Ratio (EQR) representing overall environmental conditions 92 

where only this single stressor influences the observed EQR, and a second simulated EQR where the 93 

value was determined by a combination of phosphorus and a second unknown stressor that also had 94 

a negative effect on the observed EQR.  Apart from the negative effect of both stressors, the 95 
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synthetic data does not explore the nature of the interaction between the two stressors (i.e. additive, 96 

synergistic or antagonistic, sensu Pigot et al., 2015) as this is also often unknown in real case 97 

scenarios. The only assumption is that where a second stressor is suspected different methods will 98 

show different sensitivities to its presence.  Likewise, the nutrient thresholds derived from the 99 

relationship observed may be more or less reliable or approximate to the “true” value of the 100 

measured stressor depending on the method. 101 

Each data set was generated as follows:   102 

1) A normally distributed random set of 200 total phosphorus (TP) concentrations with a known 103 

mean and standard deviation was created. The distribution of these data was chosen such that the 104 

true EQR would range across the biological gradient from high to moderate status;   105 

2) A “true” EQR was generated from these values, using the regression parameters for a 106 

relationship between log10TP and EQR. (parameters taken from the relationship between TP and 107 

phytoplankton in lakes used during the Central-Baltic GIG lake intercalibration exercise: Phillips et al., 108 

2014):  109 

  EQRTrue = -0.62(Log10 TP) + 1.79.     equation 1  110 

This equation can be re-arranged to determine the “true” TP concentration at the good/moderate 111 

boundary EQR, assumed to be 0.6:   112 

 TP = 10^((0.6 -1.79)/-0.62 = 83 μgL-1     equation 2  113 

3) A simulated observed EQR was then created from TP by adding a normally distributed 114 

random error term (E), which had a mean of 0 and a known standard deviation (Figure 1a).   115 

EQRSimObs = -0.62(Log10 TP) + 1.79 + E     equation 3  116 
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4) Another normally-distributed set of EQR values (EQR2ndPressure) with a fixed mean and 117 

standard deviation) was then generated to represent a hypothetical second stressor together with a 118 

random probability (0-1) that this second stressor occurs at a particular site.   119 

5) A simulated observed EQR (EQRSimObs 2 pressures) resulting from both TP and the 2nd 120 

stressor was calculated by taking the lowest of either the simulated EQR from phosphorus 121 

(EQRSimObs) or the 2nd stressor EQR (EQR2ndPressure) where the probability of the second stressor 122 

was >0.5. Where the probability of the 2nd stressor was ≤ 0.5, the EQR from phosphorus was used. 123 

Scatter plots produced from this approach typically had “wedge-shaped” data clouds, an example of 124 

which is shown in Figure 1b.   125 

To assess the effect of different levels of uncertainty and data that span different levels of stress, ten 126 

replicate data sets were generated with the same mean TP and error standard deviation. The process 127 

was repeated using ten different mean TP values (40, 50, 60, 70, 80 ,90, 100, 110, 120, 130 μgl-1) and 128 

10 different error standard deviations (0.12 – 0.30), representing increased scatter in the true 129 

relationship, to finally produce 1000 data sets for each of the single and two-stressor scenarios, an 130 

example with mean TP of 50 µl-1 and error standard deviation of 0.15 is shown in figure 1.   131 

2.2 Methods for estimating nutrient threshold concentrations  132 

The following methods were used to identify  threshold concentrations of TP corresponding to the 133 

good/moderate status boundary (assumed to be EQR = 0.6):  134 

Ordinary least-squares regression (OLS): The most obvious approach uses a linear regression 135 

between EQR (dependent variable) and log TP (independent variable), with nutrient threshold values 136 

determined from the regression parameters.  137 

Logistic regression: An alternative approach that treats ecological status as a categorical variable 138 

where a logistic model is fitted between categorical data using a binary response, “biology moderate 139 

or worse” = 1 or “biology good or better” = 0 and log TP. Threshold  concentrations are determined to 140 
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be where the probability of being moderate or worse was 0.5.  In the case of two stressors an 141 

additional value was determined at probability of 0.75  142 

Categorical methods: nutrient concentrations associated with a particular ecological status class (e.g. 143 

good ecological status) could also be expressed as a distribution from which an upper quantile might 144 

be chosen to indicate a nutrient concentration above which good status was very unlikely to be 145 

achieved, or a lower quantile below which good status was very likely to be achieved, so long as 146 

nutrients were the main drivers of status. However, the variation inherent in biology-nutrient 147 

relationships means that there will be many instances where lower concentrations of nutrients are 148 

not associated with good status and vice-versa. The risk of misclassification could, therefore, be 149 

reduced by also considering the distribution of nutrient concentrations in the adjacent class 150 

(moderate, in this case), where a lower quantile could be adopted to indicate the nutrient 151 

concentration below which moderate status was unlikely (and good status was likely to be achieved).   152 

Three different approaches were included in these comparisons: average of medians of adjacent 153 

classes; average of adjacent quartiles (75th percentile of “good status” and 25th percentile of 154 

“moderate status”) and the use of the 75th percentile of “good status” alone.  155 

Minimisation of mismatch of classification: An approach that estimates the nutrient threshold value 156 

by minimising the mismatch between status (good or better and moderate or worse) for ecological 157 

status and the stressor. The method calculates the proportion of records where the biological status 158 

is better than the stressor and where it is worse for incremental values of the nutrient threshold. The 159 

nutrient threshold value where these two sets of proportions are equal determines the point at 160 

which there is the lowest mismatch of classifications. To determine this value a bootstrap approach 161 

was used. For each data set 75% of the data were randomly selected and the proportions of mis-162 

classification determined. A loess model was then fitted to these data to determine the nutrient 163 

concentration where the mismatch was equal. This was repeated 50 times and the mean nutrient 164 

concentration determined.  165 
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Linear quantile regression: when the nutrient-biology interactions is confounded by other stressors 166 

or environmental variables, the variance around the mean of the response variable is also a function 167 

of those explanatory variable(s), leading to wedge-shaped distributions. In such cases, the quantile 168 

regression allows different rates of change in the response variable to be predicted along the upper 169 

(in the presence of stressors) or lower (in the presence of mitigating factors) boundary of the 170 

conditional distribution of the data (Cade and Noon, 2003).   The choice of an appropriate quantile to 171 

use is somewhat arbitrary, though more extreme values will have a greater potential to be influenced 172 

by outliers.  We have used the 75th percentile as a compromise that enables upper threshold to be 173 

modelled with a reasonable degree of precaution and confidence.     174 

2.3 Comparison of methods  175 

Each of these methods was applied to the synthetic data sets and the predicted good/moderate 176 

threshold concentrations (assumed to be EQR = 0.6) for each were recorded for comparison with the 177 

"true" threshold concentration defined by equation 2 above. The extent of uncertainty was also 178 

recorded using the coefficient of determination (r2) from the regression between EQRSimObs and TP, 179 

these values were categorised into 5 levels (5 ≥0.6, 4 ≥0.5, 3 ≥0.4, 2 ≥ 0.3, 1 <0.3) to allow the effect 180 

of scatter to be determined.  To assess the influence of the data distribution along the stressor 181 

gradient, results for each of the data sets categorised by mean TP were compared.  When applying 182 

the methods to real datasets, the threshold nutrient at the good to moderate EQR boundary would 183 

be unknown so it would be impossible to determine how a derived threshold relates to the average 184 

TP.  In such cases, the mean EQR could be used so we present results for the synthetic datasets using 185 

the true EQR value determined from the mean TP of the data set using equation 1.  186 

All analyses were performed using R statistical software (R Development Core Team, 2016). Base 187 

statistics were used for all methods except linear quantile regression, which was fitted using the rq 188 
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function from quantreg package (Koenker and Hallock 2001).   Original computer code is available 189 

from the first author on request. 190 

3 Results   191 

3.1 Average differences  192 

A comparison of the range of predicted TP threshold values for the Good-Moderate boundary shows 193 

that ordinary least squares (OLS) regression and binary logistic regression at a probability of 0.5 194 

predicted the smallest range of values (c ± 5 µg TP L-1, Figures 2 and 3). The variability of the 195 

categorical methods was substantially higher (typically ± 15 µg TP L-1), while the minimisation of 196 

mismatch method predicted a range of values that lie between the regression and categorical 197 

methods (±8 µg TP L-1). When TP was treated as a single stressor all methods, except the 75th 198 

percentile of the TP concentration in sites with good- biological status, predicted values that were 199 

centred around the true threshold value (83 μg l- 1 – see equation 2). The 75th percentile predicted 200 

significantly higher values than the other methods (F = 163 p <0.001, Figure 2).   201 

When a second stressor was present (Figure 3) the predicted range of values did not change, but both 202 

linear and logistic regression (at a probability of 0.5), underestimated the true threshold value by 36 203 

µg TP L-1, suggesting that these methods are not appropriate under such circumstances. In contrast 204 

the categorical methods were less influenced; the two averaging approaches (median and adjacent 205 

quartiles) slightly underestimating (-5 µg TP L-1), with the upper 75 percentile closer to the true mean 206 

(+12 µg TP L-1).  The minimisation of mismatch method also underestimated the true threshold, 207 

although less so than was the case for the regression methods (-20 µg TP L-1).  Quantile regression, 208 

using the 0.75 quantile and the logistic regression using a probability of 0.75 provided nutrient 209 

threshold estimates for the good-moderate boundary that were higher than the true threshold (+26 210 

µg TP L-1 and +34 µg TP L-1).  211 
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3.2 Influence of position of data cloud along stressor gradient and at different levels 212 

of variability  213 

For a single stressor neither OLS nor logistic regression (using a probability of 0.5) methods were 214 

significantly influenced by either their uncertainty or position on the stressor gradient (Figure 4 & 215 

Table 1). In contrast, all of the categorical methods and the mismatch approach were significantly 216 

influenced by the level of stressor, under-estimating the true threshold at low exposures (i.e. 217 

predicting a lower nutrient threshold thus more stringent than necessary) and over-estimating at high 218 

pressures (i.e. predicting a higher nutrient threshold thus more relaxed than that required). The 219 

average of adjacent quartiles and the 75th percentile of TP in good-moderate status were the most 220 

sensitive to uncertainty, the minimisation of mismatch the least, but all had a significant interaction 221 

term showing an increasing effect of uncertainty as the stressor level increased. Where a second 222 

stressor was present, a similar pattern was seen (Figure 5 and Table 1), although the effects of 223 

uncertainty and stressor levels were slightly higher. For example, both OLS and logistic regressions (p 224 

= 0.5) predicted boundary values that were significantly affected by both variability and their position 225 

on the stressor gradient when two stressors influenced ecological status, although the effect was 226 

much smaller than for the other methods. Logistic regression predictions using p = 0.75 were 227 

particularly influenced by position on the stressor gradient, overpredicting the true threshold at low 228 

stressor levels.  The predictions using quantile regression (p = 0.75) were not significantly influenced 229 

by stressor level, but were by variability, with higher predictions at high levels of uncertainty.    230 

4 Discussion   231 

Where a single stressor dominates the response of biology, linear regression or binary logistic 232 

regression are the most reliable approaches. Neither are substantially influenced by the mean of the 233 

data set and both are only slightly influenced by scatter in the data. This is unsurprising given that the 234 
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data were generated with normally distributed errors and thus conform to the requirements of 235 

regression models.    236 

Any attempt to develop nutrient thresholds in freshwaters or coastal waters, however, also needs to 237 

be aware that nutrients rarely act in isolation (Vinebrooke et al., 2004; Wagenhoff et al., 2011; 238 

Piggott et al., 2015; Gunderson et al., 2016), particularly in rivers and estuaries, and our analyses 239 

indicate how interactions with a second stressor can confound the face-value relationship between 240 

biology and the stressor of interest.   Consideration of the complex relationships between the 241 

ecological response and stressors acting simultaneously is essential to decide management actions, 242 

because of non-linear and interactive effects of stressors (Brown et al.,2013)  243 

In these situations, neither linear nor logistic regressions are appropriate as the confounding effect of 244 

the second stressor will result in the under estimation of nutrient thresholds. Such data show 245 

heteroscedasticity, with decreasing variance as stressor levels increase, caused by the 2nd stressor 246 

overriding the otherwise low influence of nutrient effects.  The categorical approaches initially appear 247 

to be less influenced by this problem, as on average they make predictions that are clustered around 248 

the true mean. However, unlike the regression methods, they are much more sensitive to the 249 

position of the data cloud on the stressor gradient.  If the data are clustered around the boundary 250 

being predicted (the good/moderate boundary, EQR = 0.6, in our study), they are the least sensitive 251 

to the effect of a 2nd pressure.  However if the data are centred below or above the boundary of 252 

interest, they are likely to under- and overpredict, respectively, with the threshold error increasing as 253 

uncertainty increases. The least influenced was the minimisation of mismatch method, but all the 254 

approaches, other than those seeking to describe the behaviour of the upper distributions of the 255 

data, are likely to underestimate threshold values due to the influence of other stressors.     256 

The best solution to this problem would be to develop a more complex model that could account for 257 

additional pressures; however, a lack of reliable data and the complexity of modelling make this 258 
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impractical (Feld et al., 2016 Duarte et al., 2009). Whilst the combined effect of multiple stressors was 259 

previously assumed to be additive , this is not always the case in ecological systems, where 260 

antagonistic and synergistic interactions may dominate (e.g. Crain et al., 2008; Jackson et al., 2016; 261 

Gieswein et al., 2017; Munn et al., 2018; Rodrigues et al., 2018).  262 

An alternative approach would be to fit an upper quantile, which  identifies an upper surface to the 263 

relationship between EQR and nutrient concentration.  The problem with this approach is that it 264 

needs to consider the uncertainty in the relationship between EQR and phosphorus. Our simulations 265 

show that quantile regression predicts higher values as uncertainty increases.  As the uncertainty of 266 

the true relationship between nutrient and EQR decreases, a clearer upper boundary emerges, with 267 

the upper quantile that is modelled to determine a threshold value approaching, or better reflecting, 268 

the true effect of the single stressor.  On the other hand, it does indicate the highest values of a 269 

physicochemical parameter that is consistent with good status (Müller et al., 2017).  Beyond this 270 

point, nutrients are likely to exert an effect regardless of the presence of other stressors.   271 

There is no ‘correct’ quantile, and one should inspect the distribution of quantiles within the 272 

particular range of interest (Koenker and Hallock, 2001). Higher quantiles offer greater chance that 273 

the true response to nutrient stressor is being captured but with the risk that the regression line is 274 

anchored by fewer, and more extreme, records at any level of pressure (Koenker, 2011).  This 275 

problem is particularly acute with small datasets.   In practice, the 75th percentile offers a balance 276 

between precaution and statistical robustness when dealing with medium-size datasets, although 277 

our simulations suggest that even this value may be too high, over predicting at all levels of pressure.     278 

Choosing an upper probability value with logistic regression is a similar approach, potentially allowing 279 

threshold values to be determined when a second pressure is present despite any confounding 280 

effects. However, again it is difficult to determine the appropriate probability to use. The selection of 281 
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probability should obey fit-for-purpose criteria, for which several classification measures exist that 282 

can be used as support (Fielding and Bell, 1997).   283 

 284 

Taylor et al. (2018) advocate a combination of spatial, temporal and experimental approaches in 285 

order to characterise the response of biota to nutrient enrichment whilst, at the same time, 286 

recognising that comprehensive study designs can become prohibitively expensive.   Their study was 287 

limited to a single group of biota, diatoms, whilst we would advocate the examination of the 288 

response of different ecosystem components to enhance the insights (Robertson et al, 2006).  289 

Teichert et al. (2016), by contrast, used a random forest algorithms to detect the dominant stressors 290 

in estuaries.  At the heart of these approaches, however, lie datasets that capture the spatial and/or 291 

temporal variation in assemblages along a strong nutrient gradient and it is also important that 292 

statistical analysis of such datasets are both robust and easy to communicate to non-specialist 293 

managers and stakeholders.     294 

In practice, however, such approaches are a necessary element when developing such thresholds 295 

because they offer the most straightforward means of capturing the range of uncertainty associated 296 

with the water body type under investigation. It is, however, important to validate thresholds using 297 

independent sources of evidence.   The use of experimental systems (Bowes et al., 2012; McCall et al., 298 

2017; Taylor et al., 2018;) is one means of doing this, but other options are also available (e.g. Free et 299 

al., 2016).     300 

5 Conclusions  301 

Our simulations suggest that, where there is a strong stressor-response relationship between 302 

nutrients and ecological status, any of the tested modelling methods, with the exception of the 303 

threshold derived from the 75th percentile of nutrient concentration in sites with good ecological 304 

status, are likely to give reliable estimates of nutrient concentrations that are associated with the 305 
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ecological good-moderate boundary. Of these, OLS or logistic regression are the most reliable, while 306 

the minimisation of mismatch method is perhaps the easiest to communicate to managers. This is 307 

likely to be the situation for lakes where the dominance of the algal response to nutrients is clear.  308 

In rivers, estuaries and coastal waters however, multiple stressors are common; here the assumed 309 

robust regression approaches may be strongly influenced by stressors other than nutrients and there 310 

is a risk that threshold values that are lower than needed may be generated, in effect penalizing 311 

nutrients for impacts caused by other stressors.  Such situations can be identified from wedge 312 

shaped scatter plots and from plots of model residuals and it is important that these are carefully 313 

considered before the results of modelling are translated to regulatory regimes.  314 

Where there is evidence of multiple stressors, quantile regression or the use of logistic regression 315 

with nutrient threshold concentrations are determined using a quantile or a probability greater than 316 

0.5 have potential. However, the selection of an appropriate quantile remains an unresolved issue.  317 

Supporting chemical element thresholds values determined for different EQR categories are unlikely 318 

to be precautionary as, by their nature, they seek to minimise false positives, i.e. effect detection 319 

when there is no effect.  Such boundaries may be appropriate when establishing targets for 320 

restoration, but less so when seeking to minimise deterioration.  321 

Eutrophication is a complex issue (Dodds, 2006; O’Hare et al., 2018) but, for strategic planning and 322 

high-level overviews, there are still benefits in knowing threshold values beyond which consequences 323 

can be expected.  Understanding the challenges involved in deriving such targets does, at least, 324 

enable regulators to interpret results, and combine various strands of evidence in to make robust 325 

decisions.  326 
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List of Tables  1 

Table 1 Analysis of variance table showing the influence of variability (r2 category) and position of 2 

data cloud (mean TP) on TP thresholds predicted for good ecological status using the different 3 

methods applied to synthetic data set. Significant F values shown in bold.  4 

Method   Data set  Variability   Position data 

cloud (mean TP) 
Interaction  

     F  p  F  p  F  p  

OLS regression   single stressor  3.5  0.06  0.362  0.548  0.332  0.564  

 
  two stressors  50.8  <0.001  29.4  <0.001   2.9  0.09  

Ave. median   single stressor  3.8  0.051  7731  <0.001  312.2  <0.001  

   two stressors  4.1  0.044  8572.1  <0.001  173.7  <0.001  

Ave. quartile   single stressor  53.5  <0.001  53.5  <0.001  6091.7  <0.001  

   two stressors 117.6  <0.001  6807.7  <0.001  146.2  <0.001  

75th percentile   single stressor  578.2  <0.001  3149  <0.001  239.7  <0.001  

   two stressors 512  <0.001  3062.1  <0.001  203.5  <0.001  

Mismatch   single stressor 0.2  0.651  2178.1  <0.001  219.1  <0.001  

 
  two stressors 0.1  0.803  4069.3  <0.001  48.5  <0.001  

Logistic regression (p=0.5)  single stressor  1.2  0.277  0.059  0.809  0.617  0.432  

  two stressors 279.1  <0.001  75.2  <0.001  0.565  0.452  

Logistic regression  

(p=0.75)  

single stressor 36.5  <0.001  113.5  <0.001  1.6  0.209  

Quantile regression  two stressors 272.9  <0.001  1.3  0.251  0.342  0.559  
(p=0.75)  5 
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Figures 1 

 2 

Figure 1. Typical scatter plots showing relationships between simulated EQR and total phosphorus 3 

for a) single stressor gradient of phosphorus, b) combined stressor gradient of phosphorus and a 4 

second pressure.  (Data were for a mean TP of 50 µgl-1 and an error standard deviation of 0.15) 5 

 6 

Figure 2. Range of TP concentrations at the good/moderate threshold predicted by the different 7 

methods. (In this and subsequent figures the dotted line shows the true threshold concentration 8 

(83ug L-1)).   9 



 

26  

  

 10 

Figure 3. Range of TP concentrations at the good/moderate threshold predicted in the presence of 11 

a second pressure (“wedge-shaped” data).   12 
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 13 

Figure 4 Range of TP concentrations at the good/moderate threshold predicted by each of the 14 

methods using simulated data with a single stressor (TP). Boxes grouped by position of the data 15 

cloud, characterised by the true EQR calculated using equation 1 from the mean TP of data set and 16 

arranged (coloured) by variability of the relationship between the simulated TP and EQR (r2). (for 17 

clarity only 4 of the 10 different stressor levels are shown (40,60,90,130 µgL-1 ) ). Dashed line 18 

represents the true mean phosphorus threshold. 19 
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 20 

Figure 5 Range of TP concentrations at the good/moderate threshold predicted by each of the 21 

methods using simulated data with a stressor (TP) and an additional second unknown stressor. 22 

Boxes grouped by position of the data cloud, characterised by the true EQR calculated using 23 
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equation 1 from the mean TP of data set and arranged (coloured) by variability of the relationship 24 

between the simulated TP and EQR (r2). (for clarity only 4 of the 10 different pressure categories 25 

are shown (40,60,90,130 µgL-1)). Dashed line represents the true mean phosphorus threshold. 26 

 27 

 28 


