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Abstract  22 

Europe is undergoing significant forest expansion due to the abandonment of rural areas 23 

driven by economic and demographic changes. Recently established forests provide key 24 

ecosystem services such as habitat provision and increased carbon stocks. However, we 25 

lack understanding of whether past land use might alter their resilience to climate 26 

change compared with long-established forests. Forests established in former 27 

agricultural areas may benefit from land use legacies resulting in higher fertility, yet 28 

such a benefit might turn into a disadvantage if it involves changes in functional 29 

attributes that lower their ability to cope with negative climatic events (e.g. droughts). 30 

Here we examined whether recently (post 1956) and long-established (pre 1956) beech 31 

forests in Catalonia (NE Spain) differ in their growth patterns, wood density, sensitivity 32 

to climate and response to extreme climatic events. Our results indicate higher growth 33 

(32%) and lower wood density (3%) in trees from recently established forests, even 34 

when controlling for tree age and competition. In addition, recently established forests 35 

showed a higher sensitivity to Standardised Precipitation-Evapotranspiration Index 36 

(SPEI), precipitation and temperature and to extreme negative and positive climatic 37 

events. In particularly wet years, recently established forests show twice the number of 38 

positive pointer years than long-established forests. Compensatory growth during 39 

positive years in recently established forests, may be driving the similar or even higher 40 

recovery and resilience detected after drought episodes. Nevertheless, the higher 41 

climatic sensitivity of the recently established forests, together with their greater growth 42 

and lower wood density indicates that they may be particularly vulnerable to future 43 

droughts. Such enhanced vulnerability might question their ability to contribute to 44 

carbon sequestration in the long term and emphasises the need to account for land use 45 

legacies to better predict future forest function as climate changes.   46 
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1. Introduction  52 

The last decade (from 2008 to 2017) was the world’s warmest, with global 53 

average temperatures increasing at approximately 0.2ºC per decade above pre-industrial 54 

levels (EEA, 2017). In Europe, temperatures have risen above the global average and 55 

climate models project further increases in temperature exceeding global average 56 

projections over the 21st Century (EEA, 2017). In Southern Europe, the strongest 57 

warming and decrease of precipitation is projected to occur in summer, together with 58 

more frequent extreme heat waves and heavy precipitation events by 2100 (EEA, 2017). 59 

Mitigation actions are vital to limit global warming of 1.5°C above pre-industrial levels 60 

over the next decades (Masson-Delmotte et al., 2018). Land use and land-use change is 61 

considered a critical feature of almost all mitigation pathways for the next decades 62 

(Masson-Delmotte et al., 2018). For instance, the terrestrial carbon sink since the 1990s, 63 

only from world’s re-growing forests, equalled 24% of cumulative fossil carbon 64 

emissions (Pan et al., 2011). However, it is uncertain whether this accelerated trajectory 65 

of C sink will be sustained in the future.  66 

In temperate forests, the increasing carbon sink detected during recent  years has 67 

been attributed to a transition recovery from past land use and natural disturbances 68 

(Thom et al., 2018). Thus, in Europe the recent forest expansion is taking place mainly 69 

on former agricultural lands as a consequence of the widespread abandonment of rural 70 

landscapes (Keenan, 2015). New forests established in former agricultural lands can 71 

show enhanced tree growth due to the legacies of the previous land-use (Gerstner et al., 72 

2014; Lambin and Meyfroidt, 2011; Leuschner et al., 2014). In comparison to forests 73 

with a continuous land-use history, former agricultural soils tend to be deeper, more 74 

basic, have higher N and P content and mineralization rates (Compton and Boone, 2000; 75 

Fraterrigo et al., 2005), include a larger biomass of bacteria (Fichtner et al., 2014) and a 76 



 
 

 

greater general decomposer activity (Freschet et al., 2014). Ultimately, these 77 

characteristics may result in a positive and accelerated feedback between the 78 

belowground and the aerial component leading to higher growth and productivity, e.g. 79 

35% greater plant biomass (Freschet et al., 2014) or 25% higher growth (Vilà-Cabrera 80 

et al., 2017). On the other hand, the initial advantage of higher growth might become a 81 

disadvantage if it is accompanied by changes in functional traits. Changes in functional 82 

traits can constrain the ability of trees to face unfavourable climatic conditions, such as 83 

a reduction in wood density (i.e. greater number and area of conductive vessels) and in 84 

water use efficiency. Indeed, lower wood density is associated with higher susceptibility 85 

to drought and mortality responses (Greenwood et al., 2017). Lower wood density also 86 

involves less resistance to wind forces (Anten and Schieving, 2010; Putz et al., 1983), 87 

pathogen attacks (Augspurger, 1984), cavitation (because it’s associated with larger 88 

vessel diameter; Lambers et al., 2008) and implies less carbon storage for a given stock 89 

of standing volume (Zeller et al., 2017). For example, Pretzsch et al., (2018) reported 90 

faster stand and tree growth since 1870 in Europe for several dominant tree species. 91 

However, this faster growth rate was associated with 8-12% decrease in wood density, 92 

particularly on fertile sites  (Pretzsch et al., 2018). Similarly, nitrogen fertilization 93 

experiments have demonstrated a reduction in wood density with enhanced nitrogen 94 

supplies for tree species (e.g. Cao et al., 2008; Mäkinen et al., 2002). These examples 95 

imply that the effects of land use legacies in trees growing in recently established forests 96 

may result in differences in functional attributes in comparison to more continuously 97 

forested areas, potentially involving a different sensitivity to climate, and particularly to 98 

extreme climatic events (e.g. drought episodes). Up to now, differences in the response 99 

of forests to adverse climatic events has been mostly analysed from the perspective of 100 

the previous climatic conditions experienced (‘climate legacy effects’, Lloret and 101 



 
 

 

Kitzberger, 2018). Thus, it has been often reported that populations living in more 102 

favourable climatic conditions would be more affected by adverse events than 103 

conspecifics that had experienced harsher climates (Lloret and Kitzberger, 2018). In 104 

fact, climatic legacies could contribute to explain why populations living in climatically 105 

marginal areas of a species distribution can be more resistant to negative climatic events 106 

than those in the core (see Cavin and Jump, 2017). Very few studies have addressed the 107 

potential interactions among land use legacies and climate sensitivity (but see Mausolf 108 

et al., 2018), although it is well known that soil nutrients and physical soil properties 109 

can influence the growth sensitivity of temperate tree species (Lévesque et al., 2016).  110 

We sought to determine whether recently established beech (Fagus sylvatica L.) 111 

forests present differences in growth, wood density and climatic sensitivity, especially 112 

when subject to extreme events, when compared to forests with a continuous land-use 113 

history. Beech is one of the most abundant and extensively distributed broadleaf trees in 114 

Europe (Ellenberg et al., 2010). This species is highly vulnerable to drought and 115 

consequently it is expected to retreat from its current southern distribution limit 116 

(Zimmermann et al., 2015). In fact, some studies have shown a decline in beech growth 117 

in marginal distributional areas (Jump et al., 2007, 2006; Piovesan et al., 2008), 118 

accompanied by the replacement by other more drought tolerant tree species (Peñuelas 119 

et al., 2007; Zimmermann et al., 2015). In addition, tree populations within the species’ 120 

range can be affected differently by regional extreme events due to variation of local 121 

climatic conditions or past history (Hampe and Petit, 2005). Populations at the southern 122 

edge of distribution of F. sylvatica can be found in Northern Spain, where it occupies 123 

8667 km2 according to the Spanish Forest Inventory with almost 22% of the forest 124 

surface established after 1950 (Vilà-Cabrera et al., 2017). Interestingly, this forest 125 

expansion is occurring in a region where ongoing changes in climatic conditions are 126 



 
 

 

predicted to result in its decline, raising the question of whether recently established 127 

forests will cope with climate change in a similar way to long-established forests. 128 

Consequently, these Southern Fagus sylvatica populations provide an important 129 

opportunity to determine the response of growth and functional traits of recently 130 

established forests to extreme climatic events. We hypothesise that 1) recently 131 

established forests should show higher annual growth due to improved soil conditions 132 

resulting from former agricultural or pasture land-use. 2) higher growth will be 133 

accompanied by the production of lower density wood and 3) will result in a higher 134 

sensitivity to climate and a poorer performance under extreme climatic events that 135 

exacerbate limiting factors for the species, such as droughts. Ultimately, our results will 136 

improve our understanding of whether beech forests established in former agricultural 137 

areas will help the maintain of this species at low latitudes of its geographical 138 

distribution. Alternatively, under harsher climatic scenarios, the positive effect of 139 

forests growing in former agricultural areas could be transient, even predisposing such 140 

forests to faster future decline. 141 

 142 

2. Methods 143 

2.1 Study area and sampling design 144 

This research was conducted in Catalonia, NE Spain, where Fagus sylvatica forests 145 

occur at the south western (rear-edge) of this species distribution in Europe (Hultén and 146 

Fries, 1986). In this area, detailed cartography of land use changes is available for the 147 

second half of the twentieth century (Fig. 1).  148 
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 153 

Figure 1. Natural distribution area of Fagus sylvatica distribution in Europe according 154 

to EUFORGEN (Pott, 2000; left panel) and location of the recently (light green) and 155 

long-established (dark green) beech forests in the study region (right panel). White and 156 

red circles in the right panel indicate the location of the studied recently and long-157 

established forest patches, respectively (see Fig. S1 for details of patch selection). 158 

 159 

Land-use change was identified by combining two land cover maps 160 

(http://www.creaf.uab.cat/mcsc) obtained through photo-interpretation of 1956-1957 161 

and 2005 orthoimages (Başnou et al., 2013). Current forest patches established in 162 

cropland/pastures abandoned after 1956 were considered as ‘recently established 163 

forests’, while forests that already existed in 1956, entailing a longer forest history, 164 

were classified as ‘long-established forests’. Notice that these two categories were not 165 

defined by the stand age, but by the age of the land use (see for similar criteria Mausolf 166 

et al., 2018). In fact, the two forest types could have a similar stand age and 167 



 
 

 

physiognomy if long-established forests had been disturbed (e.g. logged) around the 50s 168 

(Fig. S1). After field validation of the orthoimage photointerpretation, we selected six 169 

patches of long-established forest and twelve patches of recently established forests in 170 

similar topographic conditions. Maximum distance among patches was 45 km across an 171 

elevation gradient from 831 to 1452 m asl (Fig. 1). From November 2017 to February 172 

2018, 30 trees were randomly selected and geolocated per patch (511 trees were 173 

included in the final analyses after discarding 29 trees with unreadable cores). Since one 174 

of the main differences between trees growing in recently vs. long-established forests 175 

could be their nutritional status owing to the positive land use legacies of previous 176 

cropland/pastures (i.e. natural or artificial manuring; see Fraterrigo et al., 2005; Mausolf 177 

et al., 2018), we previously analysed N content and δ15N in a random sample of 10 fully 178 

sun-exposed leaves per tree as a proxy of nutrient availability (Aerts and Chapin, 1999). 179 

The measurement of δ15N can provide evidence of the N source used by plants, with 180 

more positive values expected in trees growing in former agricultural soils as a 181 

consequence of past manuring or cattle raising (Treasure et al., 2016). After drying to 182 

constant weight at 60º, all leaves per tree were pooled and ground and N and δ15N were 183 

analysed at the UC Davis Stable Isotope Facility (Univ. California, Davis, USA). 184 

ANOVA tests were applied to test for differences in N and δ15N between type of forests. 185 

 186 

2.2 Tree growth and wood density measurements 187 

Two increment cores were extracted per tree using a Pressler increment borer (46 mm) 188 

at 50 cm above the ground level, to enable a more accurate estimation of tree age. Cores 189 

were labelled and brought to the laboratory for subsequent analyses of tree-ring width 190 

and wood density. Owing to the time-consuming nature of the analytical process, we 191 

only determined wood density in a random sub-sample of 284 trees corresponding to 5 192 



 
 

 

recently and 5 long-established forest patches. Wood density (g cm-3) was calculated 193 

using one of the two cores per tree as the dry weight of the core divided by its volume, 194 

following Williamson and Wiemann (2010). Cores were first oven dried for at least two 195 

hours at a temperature of 102ºC and weighed to obtain the dry weight. Then, volume 196 

was obtained by Archimedes’ principle which is a reliable measurement for irregularly 197 

shaped samples (Archimedes, 2009). 198 

Once wood density was measured, cores were air dried, mounted on wood 199 

supports, and sanded until rings were clearly visible with a stereomicroscope. For the 200 

dendrochronological analyses, we used 935 cores from 511 trees from the 6 recently and 201 

12 long-established forest patches. The two cores from the same tree were visually 202 

crossdated with a stereomicroscope, scanned at 1600 d.p.i and ring widths measured to 203 

an accuracy of 0.001 mm using the software CooRecorder v9.3 (Cybis Elektronik, 204 

2018). Cross-dating of individual series was checked using CooRecorder and 205 

COFECHA programs (Holmes, 1983). Whenever the pith was not reached in the core, 206 

we estimated the distance from the innermost measured ring to the pith of the tree with 207 

the software CooRecorder. Cambial age was also adjusted by adding the number of 208 

rings to the pith estimated with CooRecorder, when none of the cores from a tree 209 

reached the pith. Finally tree-ring width series were converted to basal area increment 210 

(BAI) measurements (mm2 year-1) using the R package ‘dplR’ (Bunn, 2008). For 211 

climate-growth analyses, tree-ring width series were individually detrended with cubic 212 

smoothing splines of 30 years to remove non-climatic growth trends related to the 213 

increase in tree age and size (Cook and Kairiukstis, 1990). All tree-level indexed ring-214 

width series within recently or long-established forests were averaged to form a 215 

chronology per type of forest by using a bi-weight robust mean. Average interseries 216 

correlation and mean sensitivity were determined for each chronology with ‘dplR’. 217 



 
 

 

 218 

2.3 Forest structure and competition indices 219 

In order to assess whether differences in competition in recently vs. long-established 220 

forests influenced growth patterns, we calculated competition indices in a subsample of 221 

140 focal trees (69 and 71 for recently and long-established forests, respectively). This 222 

sampling included a minimum of three focal trees per patch from a range of ages 223 

between 45 and 61 years. This range of ages was selected to avoid biases in subsequent 224 

analyses due to tree age differences found between the two forest types (Fig. S2).  225 

Neighbouring trees to the focal F. sylvatica individuals, including other tree species 226 

(e.g. Buxus sempervirens L., Quercus humilis Mill., Corylus avellana L. and Juniperus 227 

communis L.) were counted in circular subplots of 8 m of radius. Diameter at breast 228 

height (DBH) of all trees (including the focal tree) larger than 5 cm DBH was measured 229 

to calculate the basal area. To calculate the competition indices, we used a modification 230 

of the index by Rozas and Fernández Prieto (2000), based on Lorimer (1983) and 231 

defined as:  232 

𝐶𝐼 =∑
𝐵𝐴𝑗

𝐵𝐴𝑖

𝑛

𝑗=1

 233 

Where CI is the competition index, BAi is the basal area of the focal tree i, and BAj is the 234 

basal area of neighbouring trees j. In addition, tree density (trees ha-1) and basal area 235 

(m2 ha-1) was determined for each of the 18 forest patches. ANOVA tests were applied 236 

to test for differences in tree density, basal area and mean DBH and mean raw ring 237 

width between type of forests. 238 

 239 

2.4 Climate data 240 



 
 

 

We used monthly mean temperature and precipitation sum for the period 1950–2016 241 

from the homogenized and quality-checked E-OBS v.17.0 dataset available on a 0.25º 242 

grid (Haylock et al., 2008) from the KNMI Climate Explorer (http://climexp.knmi.nl/). 243 

To assess drought severity at each location, the Standardised Precipitation-244 

Evapotranspiration Index (SPEI) was calculated using the R package ‘SPEI’ (Vicente-245 

Serrano et al., 2010) for a time scale of 1 month based on input data from E-OBS 246 

v.17.0.  247 

Our study plots are spatially distributed across four different E-OBS v.17.0 grid 248 

cells and total annual precipitation and mean annual temperature range from 734 to 810 249 

and 10.8 to 12ºC, respectively. We averaged the climate data from these four grid cells 250 

of 0.25º spatial resolution for subsequent analyses of climate sensitivity of study trees. 251 

We then used the R package ‘treeclim’ (Zang and Biondi, 2015) to run Pearson 252 

correlation analyses between monthly SPEI, precipitation and temperature data 253 

(averaged for the four grid cells of climate data for the period 1950-2016) and the mean 254 

tree-ring chronologies built for recently and long-established forests for the maximum 255 

overlapping period (Table S1). A bootstrapping procedure was used to test for 256 

significant correlations at P < 0.05 (Zang and Biondi, 2015). 257 

These climate-growth analyses revealed that F. sylvatica forests showed the 258 

highest response in growth during the months of June and July (see section 3). 259 

Consequently, we focused on averaged June-July climate data for subsequent analyses 260 

of climate sensitivity. To determine if climate variability is increasing over time in the 261 

study area, we employed thirty-one years running variation for June-July SPEI, 262 

precipitation and temperature data for the period 1950-2016. We also ran linear 263 

regression models to determine if there is a significant rate of increase or decrease of 264 



 
 

 

June-July precipitation and temperature from 1950 to 2016 in the study area 265 

(significance level was set at P<0.05).  266 

 267 

2.5 Events and pointer years 268 

Event years are defined as abrupt growth changes in individual tree-ring samples 269 

(Schweingruber et al., 1990). To identify event years, we used the normalization in a 270 

moving window method following Cropper (1979) and Schweingruber et al. (1990). 271 

Annual ring width values for each individual tree were transformed into Cropper values 272 

(Cropper, 1979) by using a 3 year window. A 13-year weighted low-pass filter (Fritts, 273 

1976) was applied to tree-ring series prior to the calculation of event and pointer years. 274 

This filter improves the detection of event and pointer years in complacent series, and 275 

has little effect in sensitive series (Cropper, 1979). At the tree level, we identified a 276 

negative (positive) event year when there is a significant decrease (increase) in growth 277 

in the Cropper values.  278 

A pointer year occurs when a higher proportion of tree-ring series from a group 279 

show the same trend in a specific year (Schweingruber et al., 1990). The threshold in the 280 

proportion of tree-ring series to identify a particular year as a pointer year is species and 281 

site dependent. For instance, for coniferous trees a threshold value of 75% is often set 282 

(e.g. Alfaro-Sánchez et al., 2018), whereas for deciduous trees, such as our target 283 

species, Fagus sylvatica, lower threshold values are often considered to obtain a 284 

reasonable number of pointer years, e.g Cavin and Jump (2017). Here, we set a 285 

threshold value of 50% following Cavin and Jump (2017). Then, negative and positive 286 

pointer years were identified when ≥ 50% of the tree-ring series within a patch 287 

presented an abrupt change in growth in a particular year; i.e. negative and positive 288 

event years. 289 



 
 

 

Pointer years can be associated with climatic and non-climatic events, such as 290 

droughts or wildfires, respectively. Here we linked pointer years to extreme climatic 291 

events, including extremely dry, wet, warm and cold years defined as the 90th or 10th 292 

percentile values of the June-July SPEI, precipitation and temperature time series. The 293 

period from 1970 to 2010 was used for the identification of pointer years. This period 294 

covered a representative number of trees per patch and type of forest (after applying the 295 

13-year low pass filter that truncates the tree-ring time series by 6 years at both ends). 296 

Subsequently, pointer years were compared to June-July SPEI, precipitation and 297 

temperature values, and classed as climatic-linked pointer years when the negative 298 

(positive) pointer year fell below the 10th or 90th percentiles (above the 90th or 10th 299 

percentiles) of the June-July precipitation or temperature climate time series during that 300 

year, respectively.  301 

 302 

2.6 Resilience components 303 

The resilience components were calculated at the patch level for the climate-linked 304 

pointer years with the R package ‘pointRes’ (van der Maaten-Theunissen et al., 2015) 305 

following Lloret et al. (2011). The resilience components evaluated the recovery, 306 

resistance and resilience of tree growth, here detrended growth values. To calculate the 307 

resilience components, we considered a time window of 3 years before and after the 308 

climate-linked pointer years. Therefore, the resistance index was calculated as the ratio 309 

between the growth during the climate-linked pointer year and the averaged growth of 310 

the 3 previous years. The recovery index was calculated as the ratio between the 311 

averaged growth during the 3 years following the climate-linked pointer year and the 312 

growth during that pointer year. Finally, the resilience index was calculated as the ratio 313 

between the averaged growth during the 3 years following the climate-linked pointer 314 



 
 

 

year and the averaged growth during the 3 years before the pointer year. ANOVA tests 315 

were applied to test for differences in the resilience components between type of forests. 316 

 317 

2.7 Climate sensitivity, wood density and growth models 318 

The effects of forest type on the climate sensitivity of trees, wood density and growth 319 

(BAI) were tested using Linear Mixed Effects Models (LMEMs; (Zuur, 2009). Two 320 

LMEMs were performed for every response variable. The first one included all trees 321 

sampled and the second one controlled any tree age effect by considering the range of 322 

ages well represented in both recently and long-established forests, i.e. trees from 45 to 323 

61 years (Fig. S2), hereafter referred to as ‘the comparable age subset’. Hence, we 324 

focused on the results obtained using the comparable age subset and placed the analysis 325 

carried out with all the sampled trees in the Supplementary material.  326 

In order to study climate sensitivity, we used as the independent variable for the 327 

LMEMs the slope coefficients obtained in linear regression models between detrended 328 

ring-width series and June-July SPEI values at the tree level (the climatic variable 329 

showing the highest correlation with tree growth in our study sites).  330 

In the slope and wood density statistical models (LMEM or LM), the predictor 331 

variables were: forest type, tree age, tree density obtained at the patch level (for all 332 

sampled trees) or CI (for the comparable age subset between 45 and 61 years), tree 333 

elevation (the elevation at which each tree is found), mean growth (only for the wood 334 

density models) and the second order interactions among the factor type of forest and 335 

the remaining variables. The patch was included in all the models as a random effect 336 

(LMEM), with the exception of the WD models using the comparable age subset, where 337 

the linear model (LM) showed a lower AIC and higher adjusted R2. The ‘lme4’ package 338 



 
 

 

was used to fit the slope and wood density linear mixed effects models with the function 339 

‘lmer’ (Bates et al., 2015). 340 

The effects of type of forest on growth (BAI) across the first 61 years of the life 341 

of the trees (the period of time that trees from both type of forests shared in common) 342 

were tested using LMEMs. The initial set of variables tested in the BAI LMEMs 343 

included: forest type, tree density at the patch level (for all sampled trees) or CI (for the 344 

comparable age subset between 45 and 61 years), June-July SPEI, and individual tree 345 

variables such as the year of the tree life (considering only the first 61 years), tree 346 

elevation, and the second order interactions among these variables and the factor type of 347 

forest. We included the tree code as a random effect to account for the repeated 348 

measures across an individual. A first-order autocorrelation structure (AR1) was also 349 

included in the LMEMs to control for the temporal autocorrelation of BAI measures. 350 

BAI, tree density and CI variables were transformed with a natural logarithm to 351 

conform to normality. The influence of age across the first 61 years of the life of the 352 

trees on BAI was modelled with a natural cubic spline with a B-spline basis with 5 353 

equally spaced knots. The ‘nlme’ package was used to fit the BAI linear mixed effects 354 

models with the function ‘lme’ (Pinheiro et al., 2018). The predictor variables were 355 

standardized to eliminate differences in scale measurements.  356 

The best model for each response variable, i.e. slope, wood density and BAI, 357 

was chosen in a two-step procedure. First we identified the predictor variables with a 358 

significant ecological or biological interest for the response variables by selecting the 359 

LMEM or LM with the lowest AIC (Akaike Information Criterion), among sets of 360 

alternative models fitted by maximum likelihood (for the LMEMs), and removing all 361 

terms that were not significant according to likelihood ratio tests. Then, we tested 362 

whether the variable of interest, type of forest, and its interaction with the remaining 363 



 
 

 

variables improved the previous selected models in terms of AIC. We followed this 364 

procedure to avoid possible collinearity effects of the variable type of forest with other 365 

predictor variables such as the tree age. The final LMEMs were fitted using the 366 

restricted maximum likelihood (REML) method (Zuur, 2009). We calculated marginal 367 

(i.e. the proportion of variance explained by fixed effects) and conditional (i.e. the 368 

proportion of variance explained by fixed and random effects) R2 for the LMEMs with 369 

the ‘MuMIn’ R package (Barton, 2018).  370 

 371 

3. Results 372 

Mean tree age was significantly higher in long-established than in recently 373 

established forests (65.2 ± 1.3 vs. 37.8± 0.6 years, respectively). Yet recently and long-374 

established forests showed similar forest structural characteristics, since no significant 375 

differences were found in tree density, DBH and basal area (Table S1a). However, trees 376 

in recently established forests have significantly higher N content and more positive leaf 377 

δ15N values than long-established forests (2.74 ± 0.03 vs. 2.46 ± 0.02 % and -3.14 ± 378 

0.09 vs. -5.76 ± 0.08 ‰, respectively, Table S1a).  379 

 380 

3.1 Climate sensitivity 381 

Climate-growth Pearson correlations indicate that both types of forests are highly 382 

sensitive to June-July (summer) conditions. However, recently established forests 383 

displayed higher correlation values than long-established ones for the three climate 384 

variables analysed: SPEI, precipitation and temperature (Fig. 2). This result is in line 385 

with the higher mean sensitivity and higher interseries correlation found in the recently 386 

established forests (Table S1b).  387 

 388 



 
 

 

 389 

 390 

 391 

Figure 2. Climate-growth relationships for recently (a) and long-established (b) forests. 392 

SPEI, precipitation and temperature variables are considered for the period 1950-2016. 393 

Previous and current year months are indicated in lowercase letters and uppercase 394 

letters, respectively. The label 'SPEI 1' indicates that SPEI was calculated for a 395 

timescale of 1 month, which gave higher correlations than timescales of 3, 6 and 12 396 

months. 397 

 398 

The study area has recorded an increase in summer (June-July) SPEI, 399 

precipitation and temperature variability through time, and successive extreme wetter 400 

and warmer summers since the early 1980s (Fig. S3). A significant increase in summer 401 



 
 

 

temperature of 0.18˚C per decade and an increase (although not significant) in summer 402 

precipitation of 5.6 mm, has also been recorded for the period 1950-2017 (Fig. 3).  403 

 404 

  405 

 406 

 407 

Figure 3. Basal area increment (BAI) chronologies for recently and long-established 408 

forests (green and grey lines, respectively) vs. June-July precipitation (a) or June-July 409 

temperature (b) time series for the period 1950-2016. Only the comparable age subset of 410 

trees between 45 and 61 years is considered. Green (pink) bars indicate extremely wet 411 

or relatively cool (extremely dry or warm) summers, as those with June-July 412 

precipitation and temperatures values above (below) the average plus (minus) 2 times 413 

the standard deviation of the June-July climate time series. 414 

 415 

For the two types of forests, the drought years 1991 and 2006 (one of the 416 

warmest years on record since 1950s) appeared as negative pointer years. Interestingly, 417 

the recently established forests presented twice the number of positive pointer years (i.e. 418 



 
 

 

years with a significant response to exceptional precipitation) compared to long-419 

established forests (Fig. 4).  420 

 421 

 422 

 423 

 424 

Figure 4. Climatic-linked negative (upper panels) and positive (lower panels) pointer 425 

years for recently (a) and long-established forests (b). Red (green) bars denote negative 426 

(positive) pointer years where more than 50% of the trees responded with a significant 427 

decreased in growth. Positive pointer years in recent forests but absent in long-428 

established ones are indicated in light green. 429 

 430 

In response to these pointer years, recently established forests presented 431 

significant higher recovery, resistance and resilience values only for the negative pointer 432 

year of 1991 (recovery and resilience, Fig. 5).  433 

 434 



 
 

 

 435 

 436 

Figure 5. Mean ± SE recovery, resistance and resilience values for the negative (red 437 

characters) or positive (green characters) pointer years identified in both, recently (dark 438 

green bars) and long-established (grey bars) forests (see Fig. 4). Asterisks denote 439 

significant differences among type of forests.  440 

 441 

The higher climatic sensitivity of recently established forests was also confirmed 442 

by the significantly higher slope coefficient, obtained in linear regression models 443 

between detrended ring-width series and June-July SPEI, both when using all sampled 444 

trees (Table S2, Fig. S3a) or the comparable age subset between 45 and 61 years (Table 445 

1, Fig. 6a). In addition, climate sensitivity of growth increased with tree age in both type 446 

of forests, when using the comparable age subset (Table 1). 447 

 448 

Table 1. LMEM and LM results for the effects of type of forest (recently or long-449 

established), tree age and tree density on the slope and wood density (WD) variables, 450 

respectively. The slope coefficient was obtained in linear regression models between 451 

detrended ring-width series and June-July SPEI. Only the comparable age subset 452 

between 45 and 61 years is considered. Tree age and tree density were scaled in the 453 

models. The R2 
adj and R2 due to fixed (R2 

m) and due to fixed and random effects (R2 c) 454 

is also provided. Significance of the p values is indicated by: ***P<0.001; **P<0.01 or 455 

*P<0.05. The level type of forest: recently established is included in the intercept. n.a. 456 

not applied 457 

 458 

 459 

 460 



 
 

 

 
Slope 

  
 WD 

  
 

Fixed effects Estimate SE t value p value Estimate SE t value p value 

(Intercept) -0.010 0.06 -0.17 0.862 0.506 0.016 30.88 <0.001*** 

Type of forest: Long-established -0.044 0.020 -2.21 <0.05* 0.014 0.003 4.46 <0.001*** 

Tree age 0.0027 0.0011 2.46 <0.05* 0.0010 0.0003 3.04 <0.01** 

Tree density n.a.    -0.0036 0.0015 -2.46 <0.05* 

Random effects Std. Dev        

Patch 0.03        

Residual 0.06        

R2 
m / R2 

adj 0.10    0.32    

R2 c 0.31     
  

 

 461 

 462 

3.2 Wood density  463 

The LMEM and LM results revealed a significant difference in wood density between 464 

type of forests, i.e, higher wood density (3%) in long-established forests (Fig. 6b, Table 465 

1) and a negative effect of tree density, both when using all sampled trees or the 466 

comparable age subset (Table S2,1). Tree age also exhibited a positive effect on WD 467 

when the comparable age subset was analysed, i.e. wood density increases with tree age 468 

(Table 1).  469 

 470 

 471 



 
 

 

 472 

 473 

 474 

Figure 6.  Boxplots displaying slope coefficients obtained in linear regression models 475 

between detrended growth values and June-July SPEI (a), wood density (WD, g cm-3; b) 476 

and log-transformed BAI (c) differences between type of forest (recently or long-477 

established). Lowercase coloured letters indicate significant differences found between 478 

type of forests (See Tables 1-2). Basal area increment (BAI) predictions across the first 479 

61 years of the life of the trees for recently (green line) and long-established (grey line) 480 

forests (d). The observed BAI values are indicated with green and grey circles, for 481 

recently and long-established forests, respectively. Only the comparable age subset 482 

between 45 and 61 years is considered.   483 

 484 

3.3 Tree growth 485 

Recently established forests displayed significant higher mean raw ring width (32%) 486 

than the long-established forests (Table S1b) and LMEMs indicated that during the first 487 

61 years of the trees’ lifetime (i.e. the time period covered by both recently or long-488 

established forests), trees growing in recently established forests also presented higher 489 

growth (BAI) rates, when using all the sampled trees (Table S3) and even when 490 

comparing a similar range of ages (Table 2, Fig. 6c-d).  491 

 492 



 
 

 

 493 

Table 2. Results of basal area increment (BAI) using the comparable age subset, from 494 

45 to 61 years. Age is the year of the life of the tree. The R2 due to fixed (R2 
m) and due 495 

to fixed and random effects (R2 c) of each selected model is also provided. Significance 496 

of the p values is indicated by: ***P<0.001; **P<0.01 or **P<0.05.  497 

 498 

 499 

 
BAI 

  
 

Fixed effects Estimate SE t value p value 

(Intercept) 4.52 0.17 26.3 <0.001*** 

Age (0-10) 2.77 0.12 22.5 <0.001*** 

Age (10-20) 3.41 0.14 24.5 <0.001*** 

Age (20-30) 3.38 0.13 25.5 <0.001*** 

Age (30-40) 3.06 0.12 25.0 <0.001*** 

Age (40-50) 5.33 0.24 22.3 <0.001*** 

Age (50-60) 2.34 0.15 15.3 <0.001*** 

Type of forest: Long-established -0.24 0.09 -2.8 <0.01** 

Competition index (CI) -0.47 0.05 -10.2 <0.001*** 

Jun-July SPEI 0.103 0.004 23.5 <0.001*** 

Random effects Std. Dev    

Tree 0.39    

Residual 0.69    

R2 
m 0.57 

  
 

R2 c 0.67    

 500 

 501 

Both LMEM BAI models presented a high explained variation; i.e. the LMEM 502 

using all the range of ages explained 41% of the variation (Table S3) whereas the model 503 

that accounted only for the trees between 45 and 61 years explained 57% of the 504 

variation (Table 2). Favourable June-July SPEI conditions exerted a positive influence 505 

on both growth LMEMs (Table 2; Table S3).  506 

The LMEM that included all range of ages showed that tree elevation also 507 

exerted a positive influence on growth for both types of forests. Growth in the long-508 

established forests was also less sensitive to climatic conditions, as reflected by the 509 

negative interaction between type of forest and June-July SPEI conditions (Table S3). 510 



 
 

 

For the LMEM that used the comparable age subset, between 45 and 61 years, we 511 

additionally included as a predictor variable a competition index calculated at the 512 

individual level for that selection of trees. This competition index was significant in the 513 

LMEM, showing a negative effect of tree competition on growth in both types of forests 514 

(Table 2).  515 

 516 

4. Discussion 517 

This study stresses that recently established forests are more sensitive to climate. To the 518 

best of our knowledge, our study is the first to highlight the importance that positive 519 

climatic events may have in buffering the negative effects of drought episodes. In 520 

addition, we noticed that the particular distribution of negative and positive climatic 521 

extreme events can be crucial for forecasting the effects of climate change on forests, 522 

particularly when conclusions about vulnerability are inferred only from resilience 523 

components (sensu Lloret et al. 2011) across large geographical gradients.  524 

In agreement with our first hypothesis, recently established beech forests grew 525 

more than long-established ones even when controlling for tree age, i.e. running the 526 

analyses with the common subset of trees aged between 45 and 61 years (Fig. 3, 6). For 527 

this subset of trees, our analyses indicate that the recently established forests grew some 528 

32% (in terms of mean raw ring width) more than long-established forests. Lower tree 529 

competition during tree establishment might be invoked as a potential cause benefiting 530 

trees growing in recently established forests. However, several pieces of evidence cast 531 

doubts on this effect. First, no significant differences were found in patch structure 532 

among the two types of forests, either in tree density or in basal area (Table S1). 533 

Furthermore, competition at the individual level (CI) was included in the models and 534 

although, as expected, it negatively affected tree growth (e.g. Zeller et al., 2017), no 535 



 
 

 

significant interaction between CI index and the type of forest was observed. Second, 536 

during the first years after establishment, growth was very similar in the two forest 537 

types (i.e. see the period 1960-1970 in Fig. 3) and this trend persisted until some 538 

unusual wet years occurred in the late 70s. In fact, recently established beech forests 539 

only start demonstrating a clear advantage in their growth in recent decades when 540 

negative, but also the majority of positive-climatic extreme years have occurred (from 541 

the 90s onwards, see Fig. 3a).  542 

These results, coupled with the higher N content observed in tree leaves in 543 

recently established forests, suggest that legacies from a former agricultural or pastoral 544 

use might be the main factor favouring a faster growth of trees in recently established 545 

forests (see also Mausolf et al., 2018). Interestingly, the fact that differences in tree 546 

growth between forest types become particularly high during wet years, is in line with 547 

the paramount importance of water availability for nutrient uptake in Mediterranean 548 

mountain ecosystems (Matías et al., 2011; He and Dijkstra, 2014). Thus, it is during 549 

wetter years when the advantage of recently established forests, established in more 550 

fertile soil, can be maximized. Furthermore, we cannot discard that due to this higher 551 

soil fertility, recently established forests are obtaining an additional benefit in 552 

comparison to long-established ones, from the overall positive physiological effects of 553 

warming (see Fig. 3b), extension of the vegetative season and rising atmospheric CO2, 554 

reported for European forests during recent decades (Churkina et al., 2010; Pretzsch et 555 

al., 2018). 556 

Our second hypothesis was also confirmed with trees in recently established 557 

forests showing a reduction in wood density of c.a. 3%, even after restricting the 558 

analysis to the common 45-61 age class. This result is likely associated with the higher 559 

growth detected in these recently established forests, which is also in line with previous 560 



 
 

 

studies for beech in Central Europe (Pretzsch et al., 2018). However, a less pronounced 561 

reduction in wood density was found in our study area, 3%, compared to the reduction 562 

of 11% found by Pretzsch et al. (2018), possibly because of the different methodologies 563 

used for wood density determination or in tree age (older trees in Pretzsch et al., 2018). 564 

Reduced wood density implies a higher vulnerability to drought-induced cavitation 565 

(Hacke et al., 2001) for the recently established forests, since low wood density is often 566 

associated with wider vessels (Eilmann et al., 2014), that are more prone to suffer 567 

cavitation at negative xylem pressures during drought episodes (Anderegg et al., 2015; 568 

Hacke et al., 2001; Jump et al., 2017). Due to the decrease in mechanical stability, lower 569 

wood density is also associated with less resistance to other disturbances such as wind 570 

(Anten and Schieving, 2010) and pathogens (Augspurger, 1984), i.e., reduced stiffness 571 

and strength (weaker wood in Pretzsch and Rais, 2016) and it implies less C 572 

accumulation for similar tree volume (Zeller et al., 2017). 573 

In our research, wood density also increased with tree age and decreased with 574 

tree density. This positive relationship between wood density and tree age has been 575 

previously reported (Diaconu et al., 2016) and attributed to the duraminization (or 576 

heartwood formation) process, i.e. the chemical maturation of wood that increases the 577 

density of the tree-rings over time (Bontemps et al., 2013).  578 

In addition to differences in wood density, attention should be paid to the 579 

consequences of a potential oversizing of canopies in trees growing in recently 580 

established forests during their larger growth response in wetter years (Fig. 3a) for their 581 

future vulnerability to increasing drought. A strong and positive relationship has been 582 

reported between tree growth, mediated by favourable environmental conditions, and 583 

canopy development and productivity (Fernández-Martínez et al., 2015), but also the 584 

more negative effects that drought may have for larger trees for example due to the 585 



 
 

 

higher evaporative demand of their larger crowns (Bennett et al., 2015; Jump et al., 586 

2017). 587 

Both forest types showed a drought sensitive response of growth, i.e, positive 588 

correlations with summer precipitation and SPEI and negative correlations with summer 589 

temperature. This general pattern of climate-growth relationships is in agreement with 590 

previous studies covering a latitudinal gradient in Western Europe that included our 591 

study area located at the climatic margin of the species (Cavin and Jump, 2017). 592 

However, climate-growth correlations and the slope coefficients between detrended 593 

growth series and June-July SPEI values confirmed our third hypothesis that recently 594 

established forests were more sensitive than long-established forests to climate (summer 595 

conditions). As for other tree species, intraspecific differences in climate sensitivity in 596 

beech have been reported to stem from genotypic differentiation or phenotypic plasticity 597 

(Nielsen and Jørgensen, 2003; Rose et al., 2009). Preliminary results suggests the lack 598 

of genetic differences among recently and long-established beech forest in our study 599 

area (M. Mayol, unpublished results), as might be expected from the moderate 600 

geographical scale covered and the wind-pollination habit of this species (see Leonardi 601 

and Menozzi, 1996). Aside from genotypic differences, past climate legacies (Lloret and 602 

Kitzberger, 2018) or land use legacies (von Oheimb et al., 2014) have also been 603 

identified as important influences on the current sensitivity of tree species to climate. 604 

Historical climate legacies have been one of the most invoked causes to explain the 605 

greater vulnerability to extreme events of climatic-core populations in comparison to 606 

climatic-marginal ones (Clark et al., 2016; Jump et al., 2017; Rose et al., 2009), 607 

although the geographical and temporal scale of our study does not support this 608 

explanation. Rather, our results suggest the combination of higher growth and lower 609 

wood density in recently established forests to be responsible of their higher sensitivity 610 



 
 

 

to climate. This finding is in agreement with previous studies that have stressed the role 611 

that land use legacies play in determining differences in tree sensitivity to climate 612 

(Mausolf et al., 2018; von Oheimb et al., 2014). As for our study area, Mausolf et al. 613 

(2018) also observed that recently established Central European beech forests were 614 

more sensitive to climatic variations than forest with a continuous land use history. 615 

Ultimately, this higher sensitivity to climate of trees established in richer soils from 616 

former agricultural areas agrees with the findings of Lévesque et al., (2016) who 617 

detected higher growth sensitivity in beech trees growing on richer soils in a study that 618 

followed a gradient of different soil properties in Central Europe. 619 

Despite the observed higher climatic sensitivity of recently established beech 620 

forests, they showed a similar or even higher recovery, resistance and resilience 621 

capacity than long-established forests when challenged with drought events. These 622 

results disagree with the findings of Mausolf et al. (2018) for Northern Germany, where 623 

the authors detected higher growth reductions under drought and less resistance in 624 

recently than in long-established beech forests. Divergences might arise from 625 

methodological differences among these studies, such as differences in tree age of 626 

recently established forests (100-150 vs. 61 yrs, respectively,) or the length of the series 627 

used to explore the link between land-use legacies and climate sensitivity (1994-2013 628 

vs. 1956-2017, respectively). In addition, other local characteristics (e.g. forestry 629 

practices, historic climatic legacies) may lead to divergent results among distant 630 

latitudinal points. However, it should also be taken into account that recovery and 631 

resilience indices rely on the climatic conditions after the studied event. For instance, 632 

we found a recovery value around 1.5 after the drought event of 2006 which can be 633 

associated to the extremely rainy years of 2008 and 2009 that fall in the 3 years range of 634 

the resilience components calculations (Fig. 3a, 5). The fact that most severe drought 635 



 
 

 

events in our study area were followed by extremely wet years (Fig. 3a), and that 636 

recently established forests experienced twice the positive pointer years than long-637 

established ones (Fig. 4), may help to explain the divergence in the response of recently 638 

established beech forests to drought between Mausolf et al. (2018) and the results 639 

presented here.  640 

Indeed, our results strongly suggest that the decrease in growth during negative 641 

climatic events is probably overcompensated by a large increase in rainy years, 642 

explaining why the recently established forests show a strong response to drought years 643 

despite their higher climate sensitivity. Furthermore, the relevance of favourable years 644 

diminishing the negative impacts of drought in our marginal-climate beech forests, is in 645 

line with the evidence of highly locally variable drought-linked growth decline in this 646 

dry range-edge beech populations, particularly for the youngest forests (Cavin and 647 

Jump, 2017) or the lack of changes in growth after drought episodes observed for beech 648 

forests in the Pyrenees (Gazol et al., 2018).  649 

 650 

5. Conclusions 651 

During the 20th Century, Europe has experienced substantial forest expansion because 652 

of the widespread abandonment of rural landscapes, a trend expected to continue in the 653 

future (Keenan, 2015). These recently established forests are already having a pivotal 654 

role in providing ecosystem services such as habitat supply, landscape defragmentation 655 

and increased net primary production and terrestrial carbon stocks (Bonan, 2008), while 656 

contributing to compensation of fossil carbon emission (Pan et al., 2011, Vilà-Cabrera 657 

et al. 2017). Based on our findings, the greater growth of recently established forests 658 

resulting from agricultural and pastoral land abandonment can contribute significantly 659 

to these services. However, previous studies highlighted the role of enhanced growth 660 



 
 

 

during climatically more favourable periods in substantially elevating risk of dieback 661 

during subsequent drought (Jump et al., 2017), and the greater drought vulnerability of 662 

trees with lower wood density (Greenwood et al., 2017).  Therefore, greater growth in 663 

combination with changes in functional traits (i.e. lower wood density) and their higher 664 

sensitivity to climate pose significant risks of vulnerability of recently established 665 

forests when coupled with the projections of a strong decrease of summer precipitation 666 

by 2100 across southern Europe (EEA, 2017). With the projected increase in aridity for 667 

our study region during the next decades, there is a significant risk that these recently 668 

established forests might be more negatively impacted by future drought than forests 669 

with more continuous land-use history. Therefore, the ability of recently established 670 

forests to contribute to carbon sequestration and other ecosystem services in the long 671 

term could be threatened. Given these risks, better understanding of the function and 672 

dynamics of forests established following land abandonment is essential to better 673 

predict their response to the climates of the future.  674 
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Supplementary Figures 945 

 946 

 947 

 948 

 949 

Figure S1. Orthoimages and descriptive pictures from recently and long-established 950 

forests in 1956 and 2017-2018.  951 

 952 

  953 

1956 2017 2018 

a. Recently established forest 

1956 2017 2018 

b. Long-established forest 



 
 

 

 954 

 955 

 956 

Figure S2. Difference on tree ages in mean growth for both type of forests. Red dashed 957 

lines indicate the comparable age subset between 45 and 61 years.   958 
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 960 

 961 

 962 

Figure S3. Thirty-one years running variation for June-July SPEI (a) precipitation (b) 963 

and temperature (c) derived from E-OBS v.17.0 dataset for the period 1950-2016 and 964 

averaged over the four 0.25° spatial resolution grids covering the study region (2.125-965 

2.625 E and 41.125-43.375 N). Dashed lines represent the trend obtained in linear 966 

regression models (significant at P<0.05 in (a) and (b)).    967 
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Supplementary Tables 969 

Table S1. Structural characteristics for recently and long-established forests. Mean ± SE 970 

of tree age, tree density, DBH, basal area (BA), leaf nitrogen content and δ15N values 971 

(a). Tree-ring statistics for Expressed Population signal (EPS) values above 0.85 for 972 

long-established forests, long-established forests younger than 62 years and recently 973 

established forests, and mean ± SE raw tree-ring width and basal area increment (BAI, 974 

b). Asterisks denote significant differences among type of forests for these variables. 975 

a.            

 Tree age  
(years) 

Tree density 
(trees·ha-1) 

DBH 
(cm) 

BA 
(m2·ha-1) 

N content 
(%) 

Leaf δ15N 
(‰) 

Elevation 
(m) 

Type of forest mean SE mean SE mean SE mean SE mean SE mean SE range 

Long-established 65.2* 1.3 1413 36 19.6 0.5 29.7 0.4 2.46 0.02 -3.14 0.09 831-1333 

Recently established 37.8 0.6 1662 56 18.5 0.3 31.3 0.6 2.74 0.03 -5.76 0.08 1027-1452 

 976 

 977 

 978 

  979 

     b.       
 Raw ring width 

(mm) 
BAI  

(mm2·year-1) 

Type of forest Period n trees n cores  EPS 
Interseries 
correlation 

Mean 
sensitivity 

mean SE mean SE 

Long-established 1917-2017 179 318 0.98 0.47 0.20 1.50 0.010 558 6 

Long-established < 62 yrs 1959-2017 84 155 0.97 0.50 0.20 1.78 0.017 645 12 

Recently established 1960-2017 332 617 0.99 0.52 0.30 2.35* 0.013 806* 8 



 
 

 

Table S2. LMEMs results for the predictive variable slope (obtained from the linear 980 

regression models between detrended growth values and June-July SPEI) and wood 981 

density (WD) using all range of ages. Tree density was scaled in the models. The R2 due 982 

to fixed (R2 
m) and due to fixed and random effects (R2 c) of each selected model is also 983 

provided. Significance of the p values is indicated by: ***P<0.001; **P<0.01 or 984 

**P<0.05. 985 

 986 

 
Slope 

 
 

 
WD 

  
 

Fixed effects Estimate SE t value p value Estimate SE t value p value 

(Intercept) 0.135 0.010 14.25 <0.001*** 0.5528 0.0024 7.10 <0.001*** 

Type of forest: Long-established -0.045 0.016 -2.75 <0.05* 0.018 0.003 6.96 <0.01** 

Tree density n.a.    -0.0064 0.0017 7.13 <0.01** 

Random effects Std. Dev    Std. Dev    

Patch 0.03    0.004    

Residual 0.06    0.016    

R2 
m 0.09    0.28    

R2 c 0.29    0.33 
  

 

987 



 
 

 

Table S3. Results of the LMEMs selected to study basal area increment (BAI) using all 988 

range of ages. In the models, age is the year of the life of the tree. Type of forest is a 989 

categorical variable to distinguish between recently and long-established forests. BAI 990 

and tree density variables were log-transformed to conform normality and tree elevation 991 

was scaled. The R2 due to fixed (R2 
m) and due to fixed and random effects (R2 c) of 992 

each selected model is also provided. Significance of the p values is indicated by: 993 

***P<0.001; **P<0.01 or **P<0.05.  994 

 995 

  BAI 
  

 

  Estimate SE t value p value 

(Intercept) 3.58 0.07 54.5 <0.001*** 

Age (0-10) 2.86 0.07 42.4 <0.001*** 

Age (10-20) 3.34 0.08 41.2 <0.001*** 

Age (20-30) 3.27 0.09 38.1 <0.001*** 

Age (30-40) 2.94 0.10 29.4 <0.001*** 

Age (40-50) 5.35 0.15 36.5 <0.001*** 

Age (50-60) 2.22 0.14 16.1 <0.001*** 

Type of forest: Long-established -0.46 0.09 -5.0 <0.001*** 

Tree elevation 0.14 0.04 3.7 <0.001*** 

Jun-July SPEI 0.127 0.003 39.2 <0.001*** 

Type of forest: Long-established × Jun-July SPEI -0.030 0.007 -4.5 <0.001*** 

R2 
m 0.41    

R2 c 0.69    

 996 

 997 




