A THESIS ENTITLED

EXPRESSION AND INTERACTIONS OF CYTOSKELETAL ELEMENTS AND
SPHINGOLIPIDS IN THE DIFFERENTIATION OF MYELIN-FORMING CELLS IN THE
VERTEBRATE NERVOUS SYSTEM

PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOCHEMISTRY
IN THE
DEPARTMENT OF BIOLOGICAL AND MOLECULAR SCIENCES
UNIVERSITY OF STIRLING

BY
DEMETRIUS ANASTASIYOU VOUYIOUKLIS B.Sc. (STIRLING)

SEPTEMBER 1992
DEDICATION

To Karen, Gary and Simon
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>Adenosine 2'-monophosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine 5'-triphosphate</td>
</tr>
<tr>
<td>BFA</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic fibroblast growth factor</td>
</tr>
<tr>
<td>BHT</td>
<td>2,6-Di-tert-butyl-p-cresol</td>
</tr>
<tr>
<td>BODIPY</td>
<td>Boron dipyrromethene difluoride</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C5-DMB-Cer</td>
<td>N-[5(5,7-dimethyl borondipyrromethene difluoride)-1-pentanoyl] D-erythro sphingosine</td>
</tr>
<tr>
<td>C6-NBD-Cer</td>
<td>N-[7-(4nitrobenzo-2-oxa-1,3-diazole)]-6-aminocaproyl-D-erythro sphingosine</td>
</tr>
<tr>
<td>cAMP</td>
<td>Adenosine 3',5'-cyclic monophosphate</td>
</tr>
<tr>
<td>Cb</td>
<td>Cerebroside</td>
</tr>
<tr>
<td>Cer</td>
<td>Ceramide</td>
</tr>
<tr>
<td>CHL</td>
<td>Chinese hamster lung</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CMP</td>
<td>Cytidine 5'-monophosphate</td>
</tr>
<tr>
<td>CNP</td>
<td>2',3'-Cyclic nucleotide 3'-phosphohydrolase</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSK</td>
<td>Cytoskeleton</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3'-Diaminobenzidine</td>
</tr>
<tr>
<td>DF-BSA</td>
<td>Defatted bovine serum albumin</td>
</tr>
<tr>
<td>DMA</td>
<td>Dimethylacetal</td>
</tr>
<tr>
<td>DMB</td>
<td>5,7-dimethyl boron dipyrromethene difluoride</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle's medium</td>
</tr>
<tr>
<td>DMPG</td>
<td>Dimyristoylphosphatidylglycerol</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DTAF</td>
<td>Dichlorotriazinylamino fluorescein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>E...</td>
<td>Embryonic day ...</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol-bis(β-aminopropyl ether) N,N,N',N'-tetraacetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>F-actin</td>
<td>Filamentous actin</td>
</tr>
<tr>
<td>FA</td>
<td>Fatty acid</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescent activated cell sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>G7</td>
<td>Sialagalactosylceramide</td>
</tr>
<tr>
<td>GalC</td>
<td>Galactocerebroside</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
</tr>
<tr>
<td>GM1</td>
<td>Monosialogalactosylceramide</td>
</tr>
<tr>
<td>GM4</td>
<td>Sialagalactosylceramide</td>
</tr>
<tr>
<td>GMP</td>
<td>Guanosine 5'-monophosphate</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycophosphatidylinositol</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine 5'-triphosphate</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's balanced salt solution</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine- N'-2-ethanesulphonic acid</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High performance thin layer chromatography</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human umbilical vein endothelial cell</td>
</tr>
<tr>
<td>IHU</td>
<td>Immunoglobulin homology unit</td>
</tr>
<tr>
<td>INA</td>
<td>5-[^125]I lodoanthyl-1-azide</td>
</tr>
<tr>
<td>jdp</td>
<td>Jimpy</td>
</tr>
<tr>
<td>jdpmsd</td>
<td>Myelin synthesis deficient</td>
</tr>
<tr>
<td>LacC</td>
<td>Lactosylcerebroside</td>
</tr>
<tr>
<td>LM1</td>
<td>Sialosyl-lactotetraosylceramide</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MAG</td>
<td>Myelin-associated glycoprotein</td>
</tr>
<tr>
<td>Man II</td>
<td>Mannosidase II</td>
</tr>
<tr>
<td>MAP</td>
<td>Microtubule-associated protein</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin basic protein</td>
</tr>
<tr>
<td>MDCK</td>
<td>Madin Darby canine kidney</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule organizing centre</td>
</tr>
<tr>
<td>MVB</td>
<td>Multivesicular body</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NBD</td>
<td>4-chloro-7-nitrobenz-1,3-diazole</td>
</tr>
<tr>
<td>NCAM</td>
<td>Neural cell adhesion molecule</td>
</tr>
<tr>
<td>NFM</td>
<td>Neurofilament</td>
</tr>
<tr>
<td>NP-A</td>
<td>Niemann-Pick Type A</td>
</tr>
<tr>
<td>O-2A</td>
<td>Oligodendrocyte-type 2 astrocyte</td>
</tr>
<tr>
<td>P...</td>
<td>Postnatal day...</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PC</td>
<td>Phosphatidylcholine</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet derived growth factor</td>
</tr>
<tr>
<td>PDMP</td>
<td>1-phenyl-2-(decanoylamino)-3-morpholino-1-propanol</td>
</tr>
<tr>
<td>PE</td>
<td>Phosphatidylethanolamine</td>
</tr>
<tr>
<td>PI</td>
<td>Phosphatidylinositol</td>
</tr>
<tr>
<td>PIPES</td>
<td>Piperazine-N',N'-bis[ethanesulphonic acid]</td>
</tr>
<tr>
<td>PLAP</td>
<td>Placental alkaline phosphatase</td>
</tr>
<tr>
<td>PLP</td>
<td>Proteolipid protein</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulphonyl fluoride</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>PS</td>
<td>Phosphatidylserine</td>
</tr>
<tr>
<td>PIK1</td>
<td>Rat kangaroo kidney</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>qk</td>
<td>Quaking</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RER</td>
<td>Rough endoplasmic reticulum</td>
</tr>
<tr>
<td>rsh</td>
<td>Rumpshaker</td>
</tr>
<tr>
<td>SAT</td>
<td>Sialyltransferase</td>
</tr>
<tr>
<td>SDS PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>shi</td>
<td>Shiverer</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyelin</td>
</tr>
<tr>
<td>SRP</td>
<td>Signal recognition particle</td>
</tr>
<tr>
<td>TI</td>
<td>Transterrin</td>
</tr>
<tr>
<td>TGN</td>
<td>trans- Golgi network</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TLCK</td>
<td>Tosyl lysyl chloromethyl ketone (Na-p-tosyl-L-lysine methyl ester)</td>
</tr>
<tr>
<td>TPPase</td>
<td>Thiamine pyrophosphatase</td>
</tr>
<tr>
<td>tr</td>
<td>Trembler</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethylrhodamine B isothiocyanate</td>
</tr>
<tr>
<td>tw</td>
<td>Twitcher</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine 5′-diphosphate</td>
</tr>
<tr>
<td>UMP</td>
<td>Uridine 5′-monophosphate</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>WGA</td>
<td>Wheat germ agglutinin</td>
</tr>
<tr>
<td>wt</td>
<td>Wild type</td>
</tr>
</tbody>
</table>
ABSTRACT

A tissue culture system was developed and characterized, which permitted the biochemical and immunocytochemical analysis of the differentiation of oligodendrocytes from their progenitors. Three facets of this differentiation process were investigated.

1. The microtubule-associated protein MAP1B was shown to be expressed immediately before terminal differentiation. Since inhibition of MAP1B synthesis caused the thinning and retraction of oligodendrocyte processes, MAP1B appears to stabilize the extension of myelin processes during myelination.

2. Galactocerebroside (GalC) is a characteristic lipid of differentiated oligodendrocytes and is abundant in the myelin membrane, therefore the biosynthesis and trafficking of GalC was studied using fluorescently labeled ceramides and brefeldin A (BFA). The metabolic fate of labeled ceramides was related to their sites of accumulation in the Golgi network and was shown to be influenced by the reorganization of the secretory pathway in response to BFA.

3. The possible role of sphingolipid and protein interaction with the cytoskeleton in myelination during development was investigated in cultured cells and purified myelin. Sphingolipids are enriched in cytoskeletons copurifying with CNS and PNS myelin and GalC co-distributes with oligodendrocyte cytoskeletal proteins during development. Incubations with fluorescent sphingolipids confirmed the ability of sphingolipids to interact with the cytoskeleton, but suggested that association probably depends on acyl chain composition. The importance of sphingolipids in myelin assembly was emphasized by their marked reduction in the hypomyelinating mutant rumpshaker (rsh).

Myelin-associated glycoprotein (MAG) associates with mature oligodendrocyte cytoskeletons, colocalizing with microtubules. MAG interacts with microtubules and early isoforms of myelin basic protein (MBP) in the myelin cytoskeleton at early stages of myelination. microfilaments and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) become associated with the cytoskeleton as myelination proceeds. Cytoskeletal myelin proteins (except CNP2) are underphosphorylated compared to detergent-soluble forms, indicating that cytoskeletal association may either restrain phosphorylation or characterize specific subsets of myelin proteins.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>1</td>
</tr>
<tr>
<td>Dedication</td>
<td>2</td>
</tr>
<tr>
<td>Abbreviations used in this thesis</td>
<td>3</td>
</tr>
<tr>
<td>Abstract</td>
<td>7</td>
</tr>
<tr>
<td>Contents</td>
<td>9</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 MYELIN

i. Historical aspects

ii. CNS myelin

iii. PNS myelin

1.2 MYELIN-FORMING CELLS IN THE CNS

i. Antibody markers

ii. In vitro studies

a) A2B5\(^{+}\) O4\(^{-}\) cells (O-2A progenitors)

b) O4\(^{+}\) GalC\(^{-}\) cells (Preoligodendrocytes)

c) O4\(^{+}\) GalC\(^{+}\) cells (Oligodendrocytes)

iii. Factors involved in proliferation and development

iv. In vivo studies

a) O-2A progenitors

b) Oligodendrocytes

1.3 MYELIN PROTEINS

i. PLP and DM20

a) Structure

b) Biosynthesis

c) Posttranslational modifications

ii. The MBPs

a) Structure

b) Biosynthesis

c) Posttranslational modifications

iii. The CNPs

a) Enzymic reactions

b) Biosynthesis

c) Posttranslational modifications

iv. The MAG polypeptides
1.4 MYELIN LIPID METABOLISM AND MEMBRANE TRAFFIC

I. Myelin lipids

Myelin sphingolipids

II. The secretory pathway

III. The use of Brefeldin A in studies of cellular metabolism and traffic

IV. Fluorescent lipid probes

a) 4-chloro-7-nitrobenz-1,3-diazole (NBD) lipids

b) 5,7-dimethyl boron dipyrromethene difluoride (DMB) lipids

V. Sphingolipid biosynthesis and traffic

a) Ceramides

b) Products of ceramide metabolism

1.5 THE CYTOSKELETON

I. Cytoskeletal components in non-myelin forming cells

a) Proteins

b) Lipids

II. The membrane-associated cytoskeleton of CNS myelin

III. The oligodendrocytic cytoskeleton

1.6 The rumpshaker (rasl) mouse

1.7AIMS OF THIS STUDY

2. MATERIALS AND METHODS

2.1 Antibodies

I. Sources and dilutions
ii. Monoclonal antibodies from hybridoma cell lines 80

2.2 Cell cultures 82
i. Isolation of O-2A progenitors and differentiation to oligodendrocytes 82
ii. Schwann Cell Cultures 83

2.3 Batch screening of fetal calf serum (FCS) 85

2.4 Indirect Immunofluorescence 85

2.5 Incubations with antisense oligonucleotides 86

2.6 Fluorescent lipids 87
i. Preparation of C6-NBD-Cer and C5-DMB-Cer / BSA complexes 87
ii. Incubations with C6-NBD- or C5-DMB-Cer / BSA complexes 87

a) Live cells 87
b) Fixed cells 88

2.7 Iodination of transferrin and measurement of exocytosis in oligodendrocytes 88

2.8 Preparation of 8nm gold / BSA complexes 89

2.9 Electron microscopy 89
i. Localization of MBP and MAP1B in oligodendrocytes 90
ii. Immunoperoxidase staining of the TGN 90
iii. Detection of fluorescent lipids 91

2.10 Protein estimation 92

2.11 Myelin 92
i. Isolation 92
ii. Protein phosphorylation 93
iii. Protein deglycosylation 94
iv. Extraction with non-ionic detergent 94

2.12 Protein detection 95
i. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 95
ii. Western blotting 95

2.13 LIPID ANALYSIS 96
i. Lipid extraction 96
ii. Lipid class analysis 96
a) Phospholipid 96
b) Sulfatides 97
c) Cerebrosides 97
d) Cholesterol 98
iii. Fatty acid analysis 98
iv. Fluorescent lipid analysis 99

3 ESTABLISHMENT AND CHARACTERIZATION OF A PRIMARY CULTURE SYSTEM FOR GLIA OF THE O-2A LINEAGE DERIVED FROM BRAIN 102

3.1 Introduction 103
3.2 Results 105
3.3 Discussion 109

4 MICROTBULE-ASSOCIATED PROTEIN MAP1B IN GLIA: ROLE IN STABILIZING THE MORPHOLOGY OF DIFFERENTIATED OLIGODENDROCYTES 111

4.1 Introduction 112
4.2 Results 113
4.3 Discussion 124

5 METABOLISM AND TRAFFIC OF FLUORESCENT SPHINGOLIPIDS IN OLIGODENDROCYTES 126

5.1 Introduction 127
5.2 Results 130
5.3 Discussion 156

6 THE ASSOCIATION OF SPHINGOLIPIDS WITH CYTOSKELETONS 161

6.1 Introduction 162
6.2 Results 164
6.3 Discussion 178
7. THE ASSOCIATION OF MYELIN PROTEINS WITH THE CYTOSKELETON DURING DEVELOPMENT

7.1 Introduction
7.2 Results
7.3 Discussion

8. PHOSPHORYLATION OF CYTOSKELETALLY-ASSOCIATED PROTEINS IN MYELIN

8.1 Introduction
8.2 Results
8.3 Discussion

9. MYELIN AND ITS ASSOCIATED CYTOSKELETON: A COMPARATIVE STUDY OF THE PROTEIN AND LIPID COMPOSITIONS IN WILD TYPE (wt) AND RUMPSHAKER (rsh) MOUSE.

9.1 Introduction
9.2 Results
9.3 Discussion

10. CONCLUSIONS AND FUTURE DIRECTIONS

10.1 Culture systems for glial cells
10.2 MAP1B in the CNS
10.3 Sphingolipid metabolism and transport
10.4 Sphingolipids in association with cytoskeletons
10.5 The association of proteins with cytoskeletons during development
10.6 Protein phosphorylation and association with cytoskeletons
10.7 Myelin mutants and the cytoskeleton

REFERENCES

ACKNOWLEDGEMENTS
Introduction
1.1 MYELIN

I. Historical aspects

The presence of a sheath surrounding nerve fibres in the vertebrate nervous system was initially reported by Virchow (1854). Following the advent of improved histological techniques and polarization microscopy, Ranvier (1871) showed that the myelin sheath was segmented and he established the involvement of the segmented junctions of this membrane (nodes of Ranvier) in saltatory conduction, which is the specialized form of impulse conduction found in myelinating axons.

Most of the early myelin work was performed on peripheral nervous system (PNS) tissue due to its experimental accessibility when compared to the central nervous system (CNS). The observations of Schmitt and co-workers (1935) and Schmitt and Bear (1939) established that myelin is a concentric, layered structure consisting of a single repeating unit. Using electron microscopy Sjöstrand (1949) and Fernandez-Moran (1950) confirmed the multilamellar nature of myelin and Geren and Smitt (1954) showed that the formation of myelin was due to the spiraling of the membrane around the neuronal axon to form the compact sheath. The configuration of CNS myelin was subsequently shown to be similar to that of PNS myelin (Maturana, 1960, Peters, 1960).

II. CNS myelin

Myelination in the CNS commences when the diameter of axons has reached approximately 1 μm, which is somewhat later than in the PNS (Raine, 1984). Bunge et al., (1981) showed that an oligodendrocyte can myelinate multiple axonal segments by extending many shovel-shaped myelin processes (Fig 1). When studied by electron microscopy, CNS myelin is initially to be seen wrapped loosely around an axonal segment when it forms a loose cup, one lip of which (the future “inner tongue”) will work its way underneath the other. The multilamellar structure is formed by further rotation of the inner tongue around the axon and at the same time the cytoplasm between layers is compressed to a continuous thin strip.
Fig. 1 A diagramatic representation of myelinating oligodendrocytes

Oligodendroglial soma attached to numerous myelin sheaths unfolded to varying degrees to demonstrate the enormous surface area they occupy. Note also the displacement of oligodendrocyte cytoplasm to narrow ridges in the flattened sheath of myelin. (From Raine, 1984).
(Schmidt-Lanterman incisures), which marks the initiation of compaction. When compaction is complete the layers appear fused, forming a single major dense line between the cytoplasmic surfaces of the membrane and an intraperiod line resulting from the close apposition of the outer leaflets. The major morphological features of a myelinated axon are shown in Fig. 2.

III. PNS myelin

Schwann cells are responsible for myelination in the PNS. Although CNS and PNS myelin differ in their origins, timing of appearance and ultrastructure, they function similarly. Early work on the lipid composition revealed differences only in proportions but not in species and it seemed possible that this would also be true for the protein constituents. The advent of SDS-PAGE revealed that although CNS and PNS myelin have many proteins in common, the relative proportions of the proteins vary and PNS myelin has at least one additional major protein.
Fig. 2 Diagram of CNS myelination

An oligodendrocyte cell body is attached to three internodes of myelin, one of which is seen in section to demonstrate the lamellar arrangement of the myelin sheath.

a, axon; n, node; pm, plasma membrane; im, inner mesaxon; cy, cytoplasm; ol, outer loop;
r, ridge formed by outer loop; c, connection to oligodendroglial cell body (g).

MYELIN-FORMING CELLS IN THE CNS

In the past, most studies on myelin-forming cells were carried out in vivo (reviewed by Wood and Bunge, 1984). However, the study of cell lineage and development in vitro has been facilitated by the production of highly specific monoclonal antibodies reacting with molecules characteristic of each developmental stage, better methods for the isolation and culturing of highly purified glial cell populations, the purification of polypeptide growth factors and the cloning and characterization of the genes especially expressed in glial cells. These studies led to the discovery of the oligodendrocyte-type 2 astrocyte (O-2A) bipotential progenitor cell which can, under appropriate conditions, give rise to either oligodendrocytes or Type-2 astrocytes in vitro (Raff et al., 1983). The other major glial cell type in the CNS is the Type-1 astrocyte, which is believed to be derived from a different progenitor (Raff, 1989).

1. Antibody markers

Several monoclonal antibodies (mAbs) that can recognize oligodendrocytes and their progenitors have been described. The mAb A2B5 binds a tetraganglioside present in O-2A progenitors and neurons (Eisenbarth et al., 1979) as well as Type-2 astrocytes (Raff, 1989), therefore labeling of cells from areas other than the optic nerve, which contains glial cells only, is difficult to assign. Antibodies recognizing the intermediate filament protein vimentin stain O-2A progenitors from the optic nerve intracellularly (Raff et al., 1983). NSP4 recognizes a family of glycoproteins on the surface of O-2A cells (Frenich-Constant et al., 1988; Behar et al., 1988) and antibodies to G03 ganglioside label O-2A progenitors both in vivo and in vitro (Levine and Goldman, 1988a; Norton and Farooq, 1989).

O4 (Sommer and Schachner, 1981; Schachner et al., 1981) recognizes sulfatide (galactocerebroside-3-sulfate), seminolipide and an unknown antigen in rodent CNS (Bansal et al., 1989; Godfrey et al., 1989) and labels a more advanced developmental stage of proliferating O-2A progenitors. 007, another rat monoclonal antibody reacting strongly with sulfatide, is also thought to recognize developmentally advanced proliferating O-2A progenitors (Benjamins et al., 1987).
Differentiating O-2A progenitors express myelin-specific lipids and proteins. The most widely used antibodies against galactocerebroside (GalC), a lipid characteristic of oligodendrocytes and myelin in the CNS, are O1 (Sommer and Schachner, 1981; Schachner et al., 1981) and R-mAb (Ranquet et al., 1982). O1 and R-mAb not only recognize GalC but another two and four lipid antigens, respectively, however R-mAb recognizes an additional unknown antigen (Bansal et al., 1990). Therefore, O1 may be a better antibody against GalC, as the other two lipids that it recognizes (monogalactosyldiglyceride and psychosine) are normally minor components in oligodendrocytes.

Several antibodies against myelin-specific proteins have been described.

Most of the antibodies used for studying cells of the O-2A lineage in the CNS, with the exception of A2B5, have also been used with Schwann cells in the PNS (Jessen and Mirsky, 1991).

II. In vitro studies

a) A2B5+ O4- cells (O-2A progenitors)

Time-lapse microcinematography studies suggest that A2B5+ O4- cells are migratory. At embryonic day 16 (E16) O-2A progenitors are found in cultures from brain but not from optic nerve, which suggests that these cells move into the optic nerve during later life (for review see Raff, 1999). Although O-2A progenitors from brain have been isolated to high purity and characterized by several laboratories (McKinnon et al., 1990; Levi et al., 1991, Louis et al., 1992), most of the recent knowledge about O-2A progenitors has originated from studies on optic nerve.

Wolswijk and Noble (1989) have identified two distinct precursor populations, the O-2APerinatal and O2-Aadult progenitors in young and mature optic nerve cultures, respectively. O-2APerinatal and O2-Aadult progenitor cells differ in morphology (bipolar versus multipolar), average cell cycle time (18h versus 65h), average rate of migration (21mm h⁻¹ versus 4mm h⁻¹), time course of differentiation (3d versus 7d) and antigenic phenotype (O4- vimentin+ versus O4+ vimentin⁻). Further characterization of O2-Aadult progenitor cells (Wren et al., 1992) showed that they behave like a population of stem cells and are derived from a sub-population of O-2APerinatal progenitors.
b) O4⁺ GalC⁻ cells (Prooligodendrocytes)

Cells in cultures from early postnatal mouse cerebellum were labeled with the O1 antibody and subjected to complement-dependent immunocytolysis (Sommer and Schachner, 1982); the remaining (viable) cells could be immunolabeled with the O4 antibody and differentiated to GalC⁺ oligodendrocytes. In similar cultures, cells with several processes that were stained with the 007 monoclonal antibody were GalC⁻; these cells were actively proliferating committed oligodendrocyte progenitors (Skoff and Knapp, 1991). These studies showed that in culture, developmentally advanced progenitors with the potential to differentiate to oligodendrocytes co-exist with oligodendrocytes.

The O4⁺ progenitor cell defines a transitional intermediate between the O-2A cell and the GalC⁺ oligodendrocyte and is the earliest cell type in the cortical oligodendrocyte cell lineage (Gard and Pleffler, 1989, 1990). Therefore, O4 is the earliest surface marker restricted to cells destined to become oligodendrocytes in the CNS and these cells are also known as preoligodendrocytes.

Gard and Pleffler (1989), who termed the O4⁺ GalC⁻ cells preoligodendrocytes, showed that in their culture system only 80% of the preoligodendrocyte population differentiated to O4⁺ GalC⁺ cells and there always existed a quiescent population of O4⁺ GalC⁻ cells. When this is considered in combination with the findings of Wren et al., (1992) it raises the possibility that in adult CNS populations of O-2Aadult progenitors and O4⁺ GalC⁻ preoligodendrocytes may co-exist with mature oligodendrocytes; these two types of progenitors may have roles in cell replenishment, myelin repair and remyelination.

Preoligodendrocytes retain a high developmental plasticity and under appropriate culture conditions can either differentiate to oligodendrocytes or de-differentiate to O-2A progenitors and further divide, or become astrocytes (Aloisi et al., 1988; Trotter and Schachner, 1989). Gard and Pleffler, (1990) using bromodeoxyuridine incorporation into newly synthesized DNA, showed that in rat brain the A2B5⁺ O4⁺, O4⁺ GalC⁻ and O4⁺ GalC⁺ cell phenotypes emerge in sequence and only the first two are proliferative. The emergence of GalC at the cell surface in oligodendrocytes may mark their withdrawal from the cell cycle.

22
c) O4⁺ GaIC⁺ cells (Oligodendrocytes)

In the absence of fetal calf serum (FCS) most cells in an optic nerve culture system develop to oligodendrocytes (Raff et al., 1983). Miller et al. (1985) used an in vitro system that totally excluded neurons and showed that in the rat optic nerve the three types of macroglial cells develop in a strict sequence: Type-1 astrocytes appear first at E18, oligodendrocytes at birth and Type-2 astrocytes between P7 and P10; they further demonstrated that O-2A progenitors give rise to either oligodendrocytes or Type-2 astrocytes (see further), whereas a totally different progenitor cell gives rise to Type-1 astrocytes.

The almost simultaneous appearance of GaIC (Raff et al., 1978), and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) (Bansal and Pfeiffer, 1985) and eventual loss of A2B5 by cultured O4⁺ GaIC⁺ cells correspond to the second phase of oligodendrocyte maturation for cells cultured from cerebral cortex. Morphologically, these differentiating cells are characterized by increases in cell size and in the number and diameter of their processes. It is not yet known for certain whether the appearance of CNP and GaIC coincides with the cessation of proliferative activity for preoligodendrocytes in culture (Gard and Pfeiffer, 1989) or whether these cells can, under appropriate conditions, de-differentiate and, following cell division, produce new myelinating oligodendrocytes (Wood and Bunge 1991). However, various in situ studies using postnatal rodent brain and optic nerve have suggested that oligodendrocytes containing GaIC and sulfatide are proliferative (for review see Skoff and Knapp, 1991).

Dubois-Dalq et al. (1986) have characterized the maturation stages for cultured oligodendrocytes derived from either brain or optic nerve on the basis of the sequential appearance and translocation of myelin-associated glycoprotein (MAG), proteolipid protein (PLP) and myelin basic protein (MBP) from the cell body to the processes. MAG appears first and its transport to the processes is an early event; PLP remains associated with the cell body for some time, while MBP is transported to the cell processes after MAG but before PLP.

A summary diagram of the known routes of O-2A progenitor cell differentiation in vitro is presented in Fig. 3.
Fig. 3. Current views on the differentiation of cells of the O-2A lineage

Cells of the O-2A lineage arise as tripotential progenitors that may divide in the presence of basic Fibroblast Growth Factor (bFGF) or Platelet Derived Growth Factor (PDGF) or differentiate to either oligodendrocytes or astrocytes, depending on the concentration of foetal cell serum (FCS). Perinatal O-2A progenitors destined to become oligodendrocytes in the presence of low concentrations of FCS undergo a limited number of divisions, acquire an intermediate phenotype called the O4+ preoligodendrocyte and finally differentiate to oligodendrocytes. O-2A progenitors in adult animals are derived from perinatal O-2A progenitors and divide asymmetrically, giving rise to their own progeny and oligodendrocytes. Under appropriate conditions, oligodendrocytes may be able to de-differentiate by following the differentiation pathway in reverse (dashed arrows).
III. Factors Involved in Proliferation and Development

Although in vivo studies are of use in providing information regarding the loci, general timetable of differentiation and descriptive aspects of development and function of oligodendrocytes, until the last decade little was known about the different factors that influence the expansion of the progenitor cell population and oligodendrocyte differentiation.

Developments in cell culture techniques allowed the growth of oligodendrocytes (McCarthy and de Vellis, 1980; Lisak et al., 1981) and their progenitors from either brain or optic nerve (McKinnon et al., 1990; Wolswijk et al., 1991 and others) in high purity. These techniques have yielded considerable information concerning the factors controlling O-2A progenitor proliferation, differentiation and development. O-2A development appears very complex as it is under the control of multiple growth and differentiation factors, the effects of which are only beginning to emerge.

O-2A proliferation in vitro is affected by a growth factor produced by the type of glial fibrillary acidic protein positive (GFAP+) astrocytes not expressing gangliosides recognized by A2B5 (Type-1 astrocytes, Raff, 1989). Wolswijk et al., (1991) demonstrated that platelet derived growth factor (PDGF) was secreted by Type 1 astrocytes and was mitogenic for both O-2A progenitor and O-2A adult progenitors; furthermore, when either of these O-2A progenitors were treated with PDGF, they retained their respective phenotypes and other characteristics. Bügel et al., (1990) showed that cooperation between two mitogens, basic fibroblast growth factor (bFGF) and PDGF was able to promote continuous self renewal and inhibit differentiation of O-2A progenitor cells from optic nerve to oligodendrocytes. McKinnon et al., (1990) demonstrated that bFGF stimulated the proliferation of brain-derived O-2A progenitors and modulated the PDGF-driven pathway of oligodendrocyte development by inducing PDGF receptors on the cell surface.

Insulin and insulin growth factors appear to influence oligodendrocyte development by promoting cell proliferation and by influencing the differentiation choice of uncommitted progenitors to the oligodendrocytic phenotype. By acting in this manner, these regulatory peptides and cyclic AMP (cAMP) increase the overall synthesis and accumulation of myelin, although cAMP does not affect lineage decisions (reviewed by McMorris et al., 1990).
Neuronally derived factors may act in concert with other growth factors to expand the population of O-2A progenitors (Levine, 1989) and appear to be particularly mitogenic for O4+ GalC pre-oligodendrocytes (Gard and Pfeiffer, 1990). Preferential differentiation of brain O-2A cells to oligodendrocytes is achieved by growth to high densities and is unrelated to the total number of cultured cells, whereas O-2A progenitors seeded at low densities differentiate to Type-2 astrocytes (Levi et al., 1991). Additionally, medium conditioned by high-density subcultures of O-2A cells contains high-molecular weight (>30 kDa) non-mitogenic factor(s), which are capable of inducing differentiation of O-2A cells to oligodendrocytes, with preferential differentiation of O-2A progenitors to oligodendrocytes occurring for cells seeded at either high or low densities. Differentiation to oligodendrocytes may therefore be triggered by direct homotypic interactions and be additionally dependent on the secretion of short range autocrine or paracrine factors by O-2A progenitors.

iv. In vivo studies

a) O-2A progenitors

Beginning at around E16, O-2A progenitor cells were first detected with anti-QD3 in the subventricular zone (Levine and Goldman, 1988a).

There is circumstantial evidence to suggest that the O-2A progenitors do not develop from the neuroepithelial cells of the optic stalk but instead migrate into the developing optic nerve from the brain. In support of this proposed migratory behavior, O-2A cells have been shown to be able to journey substantial distances into normal CNS tissue either from CNS transplants in vivo or CNS explants in vitro (for reviews see Raff, 1989, Dubois-Dalcq and Armstrong, 1991). As they migrate into white matter, QD3+ cells lose QD3 and start to express GalC. CNP and MBP within two days; interestingly Type-2 astrocytes (QD3+ GFAP+) could not be identified in situ in cerebrum or cerebellum, while this cell type was readily identified in vitro (Curtis et al., 1988).

Isolated cortical O-2A progenitors differentiate on a time schedule in vivo that approximates the time schedule of myelogenetic activity observed in vivo (Gard and Pfeiffer, 1989). Although O-2A progenitors were not found in optic nerve after one month, O-2A progenitors persisted for up to a year in vivo and it was proposed that O-2A progenitors...
progenitors may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment through adult life (Wren et al., 1992).

Although cultured O-2A cells from optic nerve (Raff et al., 1983) and brain (McKinnon et al., 1990; Hardy and Reynolds, 1991) have the potential to generate either oligodendrocytes in the absence of FCS or Type-2 astrocytes in the presence of 10-20% FCS (Raff, 1989), it is still unclear whether these progenitors become other than oligodendrocytes in vivo (Skoff, 1992). What is also unknown is whether the O-2A lineage represents the only route for the generation of oligodendrocytes in the neonatal CNS. Williams et al., (1991) using a retroviral vector (Price, 1987) identified a bipotential progenitor with the ability to generate both neurons and oligodendrocytes in the cerebral cortex. This suggests that neurons and glia of the O-2A lineage probably arise from the same progenitor cell in the CNS, as was previously suggested by others (for review see Cameron and Pakic, 1991).

b) Oligodendrocytes

Robertson (1899), experimenting with silver impregnation of CNS tissue, provided the first demonstration of oligodendrocytes by describing “small branching cells of very characteristic aspect distributed throughout the white matter of brain.” Ramon y Cajal (1913) described “a third element” in addition to astrocytes and neurons in CNS cells and another Spanish histologist, del Rio Hortega (1919) showed that this third element comprised oligodendroglia and microglia, which originated from the neuroectoderm and mesoderm, respectively. The genesis of oligodendrocytes in vivo was initially studied morphologically by the use of electron microscopy. These studies were coupled with others where dividing cells were labeled with [3H]-thymidine and their developmental fate was followed by autoradiography (reviewed by Polak et al., 1982).

Oligodendrocytes mainly develop during postnatal life and this is related to myelination in the different parts of the CNS. Cells from the subventricular layer, a CNS area consisting of immature cells, migrate to various locations in the brain prior to differentiation (Sturrock, 1982; Paterson, 1983). The in vivo sequence of oligodendrocyte differentiation is in the following order: subventricular cells, glioblasts, oligodendroblasts, light oligodendrocytes, medium oligodendrocytes and finally dark oligodendrocytes. The formation of light
oligodendrocytes corresponds to the period of rapid myelination; these cells are the largest in
the developmental series, with cytoplasm rich in organelles and microtubules, suggestive of
high metabolic activity (Federoff, 1985). Maturation into medium and dark oligodendrocytes
takes a further one and three weeks, respectively, and the dark cells have dense nuclei and
cytoplasm and are less metabolically active than their light and medium counterparts.

As mature oligodendrocytes are in intimate contact with myelinated axons, their
replacement must involve considerable disturbance to the glial-axon spatial arrangement and
it would be reasonable to expect that the turnover in the population of dark oligodendrocytes
in the CNS is rather slow (Sturrock, 1985). Indeed, autoradiographic data indicate that in
adult mice the oligodendroglial turnover time is between one and two years (Imamoto et al.,
1978; Kaplan and Hinds, 1980), which is considerably slower than that of astrocytes
(Peterson, 1983).

Due to the high degree of heterogeneity of differentiating O-2A cells in the CNS that
probably results in different rates of myelination in different areas, it is still unclear to what
extent cultured oligodendrocytes resemble their in vivo counterparts. Although
oligodendrocyte cultures from the optic nerve have the advantages of high purity and
approximately synchronous differentiation, they are not thought to be representative of the
situation in brain, where myelination proceeds along a caudorostral gradient, occurring at
different times and rates among, and within, tracts and cortical areas (Skoff et al., 1976), on
the other hand, well characterized cultures from cerebral hemispheres may represent more
realistic models of O-2A progenitor differentiation and metabolic activity in vivo. Long-term
survival and synthesis of myelin-like membrane by cultured oligodendrocytes from rat cortex
was achieved by growing highly purified cell populations on a substratum derived from lysed
glia, FCS and high concentrations of transferin (Rome et al., 1986). Under these conditions,
a myelin-like membrane was produced following a similar developmental pattern to that
observed in vivo and the membrane had the structural characteristics of loosely compacted
CNS myelin.

The proliferative and differentiation routes for CNS glial cells are rather complex, as spatial
and topographic considerations must be taken into account in addition to the variety of
growth and differentiation factors present in CNS tissue (reviewed by Dubois-Dalq and
Armstrong, 1991). Comparative in vivo and in vitro studies of cells cultured from specific CNS areas may be the way to further clarify O-2A lineage and development in the medium term.
1.3 MYELIN PROTEINS

The oligodendrocyte-specific proteins PLP, MBP, CNP and the MAG make up approximately 80% of the total CNS myelin protein (Eylar, 1972). CNP, MBP and MAG are present in both CNS and PNS myelin, although MBP is found at a lower level of expression in PNS myelin. Po is unique to PNS myelin and PLP and DM20 were once thought to be unique to CNS myelin until Puckett et al., (1987) showed that Schwann cells express PLP at very low levels and Agrawal and Agrawal, (1991) further demonstrated that PLP as well as DM20 are present in Schwann cells and PNS myelin, albeit at much reduced levels compared with CNS myelin. The putative disposition of the major myelin proteins within the sheath is shown in Fig 4 and the main structural features of these proteins will be discussed.

1. PLP and DM20

PLP is the major integral protein of the CNS myelin sheath and in some species it represents as much as 50% of the total myelin protein. Folch and Lees (1961) coined the term proteolipid to describe proteins which were soluble in organic solvents but insoluble in water, even when devoid of their non-covalently associated complex lipid. PLP was the only myelin protein found in chloroform-methanol extracts of bovine brain white matter (Cambi et al., 1983).

a) Structure

PLP is extremely hydrophobic and models constructed on the basis of sequencing data suggest that this protein may form three transmembrane segments traversing the bilayer, with a highly charged domain on the extracellular side and random loops in the intracellular space (Laursen et al., 1984, Fig 4). However, on the basis of immunocytochemical labeling of oligodendrocytes by residue-specific antibodies, Hudson et al., (1989) have suggested a very different model, postulating only two transmembrane domains, with the remainder of the molecule exposed at the extracellular face. PLP is highly conserved across species, rat and
Fig. 4. Molecular organization of myelin

A schematic cross-section of myelinated axons in the CNS and the PNS (upper centre). The myelin sheath is simplified to illustrate the detailed structure of compacted layers (lower left) and how the CNs and PNS polypeptides are inserted in the putative membrane (lower right).

N and C: amino and carboxy termini, respectively. IHU: immunoglobulin homology unit. Note the presence of a single IHU in Po and five IHUs in MAG.

(From Lemke, 1988)
human PLP (each 276 amino acids) are identical and such strong conservation implies that
the structure of PLP is very important for its function (Lemke, 1988).

b) Biosynthesis
Transcription of the single rat PLP gene begins postnatally coincident with the onset of
myelination; the MW of the mature polypeptide as determined from the amino acid sequence
of cDNA clones is 30.0 kDa (Milner et al., 1986; Nalamith et al., 1985).

DM20, a protein with a MW of 28.5 kDa, is a product of the same gene as PLP but is found
in smaller quantities in CNS myelin (Lee and Brostoff, 1984). DM20 is expressed prior to
PLP in various species (Gardiner and Macklin, 1986; Van Dorsselaer, 1987; Kronquist et al.,
1987) but as development proceeds, PLP becomes the most abundant of the two. DM20 is
the product of an alternatively spliced mRNA which lacks the coding region for residues 116-
181 (Nave et al., 1987); a secondary splice site within the third exon of the PLP gene is
utilized for DM20 synthesis, which is a much less common mechanism than the widespread
process of independent exon splicing (Diehl et al., 1985).

Le Vins et al. (1990) have established that in rat, PLP and DM20 mRNAs have essentially
identical developmental profiles postnatally, although the DM20 mRNA is expressed at lower
levels than the PLP mRNA. This may mean that the mechanism responsible for altering the
PLP/DM20 protein ratio during development occurs posttranscriptionally.

PLP is not synthesized as a precursor, since the primary translation product is the same
size as the mature protein (Colman et al., 1982). In vitro experiments suggest that PLP is
synthesized on bound polysomes, inserts into the rough endoplasmic reticulum (RER) in a
signal recognition particle (SRP)-dependent manner and is subsequently transported through
the Golgi apparatus to the plasma membrane (Colman et al., 1982).

Recent evidence (Tirmett et al., 1992) showing that the DM20 mRNA is present in 10 d old
rat embryos at specific areas of the developing brain, suggests that some of the products of
the PLP/DM20 gene may have additional roles during the compartmentalization and
differentiation of the neural tube. Another report (Ikenaka et al., 1992) suggests that since
DM20 mRNA was detected by the polymerase chain reaction (PCR) in mouse brain at E11,
DM20 cannot be a product of oligodendrocytes alone; indeed, DM20 mRNA was produced
by all the cells of the nervous system, including glia, and in peripheral sciatic nerve.

c) Posttranslational modifications

PLP is posttranslationally acylated on at least one residue (188) and acquires two molecules of palmitate per polypeptide chain. Bizzozero and Lees (1968) have identified palmitoyl-CoA as the lipid donor in purified myelin. It is now known that fatty acylation is widespread amongst membrane proteins (Schmidt, 1983). Shlesinger, (1992) has proposed that such covalent attachment may ensure that the appropriate fatty acid is located in the correct position adjacent to the transmembrane segment of the protein in the bilayer. Attached lipid may be necessary for maintaining the lipid-protein interactions which, for a structure as specialized as CNS myelin, must be of paramount importance. Interestingly, PLP (and DM20) are not acylated in Schwann cells or PNS myelin (Agrawal and Agrawal, 1991).

II. The MBPs

This protein family consists of highly charged extrinsic membrane proteins localized on the cytoplasmic face of the myelin membrane, where they form the major dense line of compact myelin (Fig. 4). The MBPs constitute approximately 30 and 10% of the total CNS and PNS myelin protein, respectively.

In rodents four MBPs sharing common amino acid sequence with MWs of 21.5, 18.5, 17.0 and 14.0 kDa were initially identified (Barbarese et al., 1977). The 21.5 and 17.0 kDa species are the least abundant in mature myelin. Newman et al., (1987) identified a fifth MBP (17.0 kDa) by the use of cDNA cloning; this variant is expressed at a much lower level than the 17.0 kDa MBP mentioned above. It has also been suggested that rat brain may contain a 23.0 kDa MBP which appears to be translated from a mRNA not coding for any of the other forms of MBP (Agrawal et al., 1986).

a) Structure

Although the MBPs are not as highly conserved as PLP and DM20, there nevertheless
appears to be considerable sequence homology between the MBPs from different species; for instance, there is 90% conservation between the bovine and rat MBPs. Sequence examination via the available cDNA and genomic clones (de Ferras et al., 1985) showed that there are no cysteinyl residues in MBPs, therefore these proteins have no capacity to form intramolecular disulfide bridges. However, although the MBPs essentially form random coils in solution, there do exist regions of localized structure; MBP assumes highly ordered conformations in organic solvent mixtures and upon binding to lipid bilayers (Stoner, 1984). Most of the ordered conformation of the MBPs is in the form of overlapping β-turns forming a pleated sheet and Stoner (1984) proposed that the folding of MBP arises from a hairpin structure.

The isoelectric points of the MBPs are >10. In MBP, 12 lysyl and 19 arginyl residues are randomly distributed along the polypeptide chain (Lees and Brostoff, 1984) and are oriented in a way that favors interaction with the phospholipids of the cytoplasmic face of myelin. In this respect, the MBPs may primarily function in compressing the cytoplasmic space to form compact myelin.

A portion of the MBP molecule may be partially embedded in the membrane via the covalent linking of Ser-54 with polyphosphoinositide (Chang et al., 1988), the last notion however has been challenged when shown that the 4 mol% stoichiometry of inositol with MBP rules out a covalent lipid linkage as a general mechanism for attachment of this protein to membrane. Sankaram et al. (1989a) utilized chemical binding assays and spin-label electron spin resonance spectroscopy to show that the electrostatic interaction of MBP with membrane bilayers formed by the acidic lipid dimyristoylphosphatidylglycerol (DMPG) was obligatory for binding and that MBP could partially penetrate the bilayer. The same workers also showed that when MBP is incubated with different lipid mixtures, phosphatidylserine, one of the two major negatively charged lipids of myelin, is bound by MBP with high specificity.

MBP contains a single Trp residue, which is thought to serve as the focal point for the known encephalitogenic properties of this protein. Sankaram et al. (1989b) cleaved the MBP molecule at the Trp residue and studied the interactions of the 12.6 kDa (N-terminal) and 9.8 kDa (C-terminal) fragments with bilayers of DMPG. Their results suggested that the
principal sites of interaction of the MBP molecule with the lipid bilayer were at least partly located in the 12.8 kDa fragment and that the Trp residue must be important for the structural and functional properties of intact MBP.

b) Biosynthesis

In rodents the 32kb MBP gene is made up of seven exons, alternate splicing of which gives rise to each individual polypeptide. Mentalberry et al. (1986) have shown that this gene is also responsible for the expression of the (same) MBPs in PNS myelin.

Transcription of the MBP gene begins during the first postnatal week in the CNS and PNS (Roussel and Nussbaum, 1981, Jessen and Mirsky, 1991). Zeller et al. (1985) used purified oligodendrocytes from different regions of the CNS and showed that cells from the spinal cord expressed MBP prior to those from mid-brain or brain hemispheres, thus correlating the in vitro expression of MBP to that observed in vivo.

There is evidence for control of MBP synthesis at the level of transcription. Thyroid hormone (T3) was shown to increase MBP mRNA levels by an unknown mechanism (Shanker et al., 1987) and Bologna et al. (1988) showed that the production of MBP is controlled by a soluble neuronal factor. Further support for the influence of neurons on myelin protein synthesis in the CNS has been provided by Macklin et al. (1988) who demonstrated that MBP and PLP mRNA levels increase fourfold when oligodendrocytes are co-cultured with spinal cord neurons. In contrast to oligodendrocytes, where the presence of neurons is not essential for the initiation of transcription of myelin proteins, neuron-Schwann cell interactions are essential for the activation of myelin protein synthesis in Schwann cells (Jessen and Mirsky, 1991).

The levels of the 21.5 and 17.0 kDa MBP polypeptides decrease relative to the levels of the 18.5 and 14.0 kDa species between P15 and P60 in rat (Barbarese et al., 1978). Carson et al. (1983) have proposed that the 21.5 and 17.0 kDa MBPs may play a more important role in the early stages of myelin wrapping, since they are relatively abundant at that time.

In situ hybridisation has shown that MBP mRNAs are segregated within the peripheral regions of the oligodendrocyte and close to the sites of myelin assembly (Trapp et al., 1988). When oligodendrocytes are grown in culture, MBP can initially be detected at the cell body
but when the cell matures MBP is also found in the thick processes and membrane sheets, where it is in close association with microtubules (Wilson and Brophy, 1989). Colman et al. (1982) were the first to show conclusively that the MBPs are synthesized on free polysomes, by isolating rat brain RNA from free or bound polysomes and using it to program a wheatgerm translation system. These authors suggested that segregation of MBP mRNAs into the peripheral myelinating regions of the oligodendrocyte prevents the highly charged MBPs from associating non-specifically with intracellular membranes. Gillespie et al. (1990a) demonstrated that in oligodendrocytes from rabbit spinal cord, MBP is also synthesized on free polysomes.

c) Posttranslational modifications

A number of enzymes found in compact myelin use MBP as substrate and the products of these reactions are highly modified MBP molecules. The posttranslational modifications of MBP include acetylation, methylation and phosphorylation (Moscarello, 1990) which gives rise to charge heterogeneity.

MBP was shown to be acetylated on the N-terminal alanine in all species examined so far. Methylation on Arg-106 increases during active myelination (Crang and Jachobaan, 1993) and decreases as the animal matures (Chandekar et al., 1986), suggesting that MBP methylation may have a role during myelination.

The microheterogeneity of MBP was first demonstrated by Martenson et al. (1969) who resolved MBP into multiple bands on urea gels pH 10.6. The source of charge microheterogeneity was ascribed to deamidation, phosphorylation and loss of C-terminal arginine. Continuous in vivo alteration in the structure of the MBP molecule through microheterogeneity generated in situ is a possibility which may influence the structure of myelin.

The in vivo phosphorylation of MBP is a very rapid event with a turnover rate of minutes (Dee Jardin and Morell, 1963), but only a small percentage of the total MBP is found in the phosphorylated form in vivo (Martenson et al., 1963). MBP phosphorylation has also been demonstrated in vitro (Kobayashi, 1964). Although the exact role of MBP phosphorylation is unknown, it has been proposed that when MBP is in a phosphorylated form compact myelin
may be transiently destabilized, causing a reversible separation of the apposed cytoplasmic faces (the major dense line) at specific areas (Turner et al., 1984). This would suggest a possible regulatory role for endogenous myelin phosphatases such as PL2, which was discovered by Yang et al., (1987). The regulation of MBP phosphorylation/dephosphorylation events in vivo may create flexibility in the structure of myelin and make this membrane a more dynamic structure.

III. The CNPs

CNPs (EC 3.1.4.37), once referred to as the Wolfgam (Wolfgam and Koloriki, 1988) doublet from SDS-PAGE studies (Waalhfeldt and Malotka, 1980) are not unique to the nervous system. CNPs were initially reported in spleen, pancreas, thymus and brain and they have since been found in lymphoid tissue (Sprinkle et al., 1985), adrenal medulla (Tirell and Cottee, 1986) and circulating blood lymphocytes (Bernier et al., 1987). CNP activity is highest in the corpus callosum, an area of the brain characterized by its high myelin content (Kurthara and Takahashi, 1973). Although the association of CNP with myelin was known for some time, purification required drastic solubilization procedures such as detergent pre-treatment steps (Wells and Sprinkle, 1981) in order to release this enzyme from its strong binding to the membrane.

CNP is expressed exclusively by oligodendroglia in the CNS and is not present in compact myelin, but is concentrated within specific regions of the oligodendrocyte and myelin internode (Trapp et al., 1988). Recent in vitro evidence suggests that CNP may have an active role during oligodendroglial process extension via its strong interaction with filamentous actin (F-actin), as CNP and F-actin disappear concomitantly from the cell extremities upon maturation (Wells and Brophy, 1989).

Two CNP polypeptides are found in myelin, CNP1 and CNP2. Cloning of CNP1 from rat brain (Bernier et al., 1987) and CNP2 from bovine brain (Vogel and Thompsoon, 1987) has yielded MWs of 44,875 and 45,592 Da, respectively. Kinetic studies (Matthew et al., 1980) did not reveal any significant differences between the CNPs from the CNS and PNS, but a monoclonal antibody raised by Fujishiro et al., (1986) recognized CNP in the CNS only.
indicating that the molecular differences between the CNPs from CNS and PNS do not significantly affect its catalytic site. The relative amounts of myelin CNP1 and CNP2 vary between species, but CNP1 is in greatest abundance in the myelin of all animals studied with the exception of bovine myelin. Electrophoresis of the native enzyme under non-denaturing conditions places the Mr of CNP at approximately 100 kDa, suggesting a dimeric structure (Sprinkle et al., 1980). Kurthara et al., (1988) were able to detect a third form of CNP with an apparent SDS-PAGE Mr of 45.0 kDa.

a) Enzymic reactions
CNP catalyses the hydrolysis of 2'-3'-cyclic nucleotides to form 2'-nucleotides and Sheedlo et al., (1984) have shown that only the 2'-isomer is formed. CNP from CNS myelin has a very high specific activity when hydrolyzing 2',3'-cyclic AMP (approximately 1,000·4,400 μmoles/min/mg protein) as well as 2',3'-cyclic-GMP, -CMP and -UMP whereas CNP from sciatic nerve is far less active (Kurthara and Tsukada, 1987).

The in vivo substrate(s) and physiological role(s) of CNP are not known. 2', 3'-cyclic nucleotides are enzymatic RNA breakdown products that do not accumulate in cells (Olafson et al., 1969) and although their hydrolysis is by no means confined to CNP, this is the only CNS and PNS enzyme with the capacity to produce 2'-nucleotides. Takahashi, (1961) proposed the hydrolysis of 2'-nucleotides by a nucleotide phosphomonoesterase and Nakamura et al., (1979) as well as Vogel and Thompson, (1966) have purified this enzyme from brain.

CNP may be involved in RNA metabolism (Sprinkle et al., 1987), as this enzyme has been shown to have an additional 5'-polynucleotide kinase activity. Therefore, CNP displays two of the three known activities of RNA ligases: 5'-polynucleotide kinase, 2',3'-cyclic phosphodiesterase and ligase (Pick and Hurwitz, 1986, Phizicky and Abelson 1986). Nevertheless, at the present time CNP is an enigmatic, if abundant, enzyme of myelin and oligodendrocytes.

b) Biosynthesis
Bernier et al., (1987) have shown that in rat thymus a single mRNA species codes for both
forms of CNP and Kurihara et al., (1988) demonstrated that alternative splicing of exon 1 of the CNP gene results in the generation of a second mRNA from the gene in mouse brain, which accounts for CNP1 and CNP2.

Karin and Waehneldt, (1985) had suggested that CNP is synthesized on free polysomes because labeled CNP was found to accumulate rapidly in rat optic nerve myelin after its synthesis, monensin, a drug that stops transport from the Golgi apparatus to the plasma membrane, had no effect on the appearance of CNP in myelin. Gillespie et al., (1990b) investigated the site of synthesis of CNP in rat brain and their combined data on the rapid kinetics of incorporation of CNPs into the oligodendroglial plasma membrane and in vitro translation of RNA isolated from free and bound polysomes, suggested that synthesis of CNP must occur on free polysomes as was previously shown for MBP (Colman et al., 1982; Gillespie et al., 1990a). Gillespie et al., (1990b) also showed that in contrast to MBP mRNAs which are enriched in actively myelinating processes, CNP mRNAs are not enriched in the myelin-associated pool of RNA and suggested that the CNPs probably associate with the cytoplasmic surface of the oligodendrocyte plasma membrane through interactions with membrane-bound receptors.

c) Posttranslational modifications

Most of the acidic amino acids of CNPs are amidated, giving these enzymes isoelectric points of 8.5-9.0. CNP2 in CNS myelin only is the only myelin protein known to be phosphorylated in a cAMP-dependent manner by an endogenous myelin kinase (Bradbury and Thompson, 1984) and Ser-74, Ser-177 and Ser-305 have been proposed as possible phosphorylation sites (Vogel and Thompson, 1987). Bernard et al., (1987) have identified a CNP sequence that is homologous to cyclic nucleotide binding sites from other proteins. The rate of CNP phosphorylation in vivo is rapid, suggesting that reversible CNP phosphorylation may have a physiological role in myelin (Bradbury et al., 1984). CNP can be palmitoylated in vitro, but the extent to which this occurs in vivo and the contribution of this modification to the binding properties of CNP remain unknown (Agrawal et al., 1990a). CNP is isoprenylated by a mevalonic acid derivative in cultured Cg glioma cells (Braun et al., 1991) and isoprenylation as well as palmitoylation may explain why although >80% of the CNP is synthesized on free
polysomes in oligodendrocytes (Gillespie et al., 1990) and CNP has no apparent transmembrane or other strongly hydrophobic domains (Bernier et al., 1987). CNP associates readily with membranes.

iv. The MAG polypeptides

MAG is a relatively minor component of CNS myelin, comprising approximately 1% of the total sheath protein (Quartas et al., 1972); this protein can be detected at the earliest stages of myelination, before any of the major myelin proteins are detectably expressed (Trapp et al., 1981). Lectin-binding, periodate-Schiff staining and fucose incorporation have revealed multiple CNS myelin glycoproteins (Poduslo and Brown, 1975) but MAG is the most abundant and best characterized.

Glycoproteins related to the immunoglobulin gene superfamily mediate cell surface adhesion among neural cell types and are thought to play a key role in the development of the CNS (Cunningham, 1987). MAG is member of this gene superfamily (Poltorak, 1987) and is expressed on the surface of oligodendrocytes in the CNS. Additionally, MAG has considerable sequence homology with well-characterized cell adhesion molecules such as the neural cell adhesion molecule (NCAM), L1 and I-CAM (Edelman, 1984; Willams, 1988).

a) Structure

Two MAG polypeptides designated large (L-MAG) and small (S-MAG) have been identified (Lai et al., 1987; Salzer et al., 1987) but as MAG consists of approximately 30% N-linked carbohydrate, the two polypeptides comigrate as a wide band with an approximate Mr of 100,000 kDa in SDS-PAGE. Deglycosylated L-MAG and S-MAG have MWs of 88,900 and 64,000 kDa, respectively (Quartas et al., 1983). An analysis of the deduced MAG amino acid sequences has suggested potential structure-function correlates (Salzer et al., 1987). Both MAG isoforms are predicted to have in common a large, extracellularly disposed amino-terminal segment and a single transmembrane segment (Fig. 4) but they differ in their carboxy-terminal, presumptive cytoplasmic sequences. The extracellular segment contains five immunoglobulin homology units (IMUs, a term coined by Hunkapiller and Hood in 1986)
and this portion of MAG is believed to mediate binding to the axon.

Also present in the ectodomain of MAG is the tripeptide recognition sequence Arg-Gly-Asp, which is a frequent determinant of the binding of cell recognition and extracellular matrix molecules. Such molecules are known to bind integrins, a family of heterodimeric surface receptors (Johnson et al., 1989) and it is possible that MAG may bind to axons in a similar fashion, thus linking myelin and the neuronal surface.

The role of MAG in axon-Schwann cell interactions leading to myelination has been further elucidated by experiments in which cultured Schwann cells were initially infected with recombinant viruses expressing MAG sense or antisense RNA and subsequently induced to myelinate by coculturing with neurons (Owens and Bunge, 1991). Electron microscopy revealed that the cells expressing RNA in the antisense orientation to MAG mRNA failed to segregate large axons and initiate a myelin spiral, despite having formed the basal lamina that normally triggers Schwann cell differentiation; cells expressing RNA in the sense orientation myelinated normally. These observations suggested that MAG may be the critical Schwann cell component induced by neural interaction which initiates peripheral myelination.

b) Biosynthesis

cDNAs for both MAG isoforms have been isolated and characterized; the MAG mRNAs are encoded by a single gene whose primary transcript is alternatively spliced (Lai et al., 1987; Salzer et al., 1987). Frail and Brown, (1984) showed that the mRNA for each MAG polypeptide is developmentally regulated. L-MAG mRNA appears before S-MAG mRNA and remains the dominant mRNA species during active myelination but as the rate of myelination decreases, S-MAG mRNA becomes the dominant species. It has been consistently observed that in rats, glycosylated MAG in immature myelin has a higher apparent molecular mass than in mature myelin and this developmental shift has also been observed in gerbils, and hamsters, but not in mice (Campagnoni, 1988). However, as it has never been shown that the MAG apoprotein ratios change during development, the possibility exists that posttranscriptional and posttranslational regulation may determine the levels of L- and S-MAG in vivo.

In cultured oligodendrocytes MBP and MAG appear 5-7 days postnatally followed by PLP
1-2 days later (Dubois-Dalcq et al., 1986). MAG appears in oligodendrogial processes well before MBP, suggesting that early MAG transport to the cell periphery may be important for myelin-axon interactions, as was previously proposed (Trapp et al., 1984; Bunge, 1991). The MAG polypeptides are type 1 integral membrane proteins and their precursors have identifiable signal peptidase cleavage sites.

c) Posttranslational modifications

The sugar moieties present in MAG are N-acetylg glucosamine, mannose, galactose, N-acetylneuraminic (sialic) acid and fucose (34, 23, 20, 18 and 5% respectively) (Quarles et al., 1983). MAG is sulfated, most probably on the sugar residues.

The IHUs in MAG are linked by disulfide bridges and a cysteine within the lipid bilayer in MAG is posttranslationally palmitylated (Pedzara et al., 1990).

cDNA sequencing showed that there are four potential sites for L-MAG phosphorylation: one by calcium/calmodulin dependent protein kinases, two by protein kinase C and one by tyrosine kinase (Salter et al., 1987; Lai et al., 1987), but only the calcium/calmodulin dependent protein kinase site is available in S-MAG. Edwards et al., (1989) had stated that in the CNS only the cytoplasmic domain of L-MAG was phosphorylated both in vivo and in vitro. A later report by Afar et al., (1990) showed that although L-MAG phosphorylation occurs on serine, threonine and tyrosine residues, CNS S-MAG is also phosphorylated in vivo but only on serine residues. The in vivo phosphorylation of the main PNS myelin MAG species (S-MAG) was shown to occur on a serine residue (Agrawal et al., 1990a). This supports the findings of Afar et al., (1990) and suggests that S-MAG may be phosphorylated by similar mechanisms in both CNS and PNS myelin.

v. \(P_o \)

\(P_o \) accounts for approximately 50% of the total PNS myelin protein. \(P_o \) is a transmembrane glycoprotein and the deglycosylated polypeptide has a MW of 24.9 kDa (D'Urso et al., 1990) while the glycosylated form has a MW of 28.5 kDa.
a) Structure

P_0 is highly conserved (Saavedra et al., 1989) and its distribution is restricted to compact myelin layers. X-Ray diffraction studies have led to the belief that P_0 acts as a "structural cement" in order to bring in close apposition both the cytoplasmic and the extracellular faces of PNS myelin (Lemke and Axel, 1985). Transfection of HeLa cells (not normally expressing P_0) with P_0 cDNA showed that transfectants made substantial contact with their non-transfected counterparts (D'Urso et al., 1990), strengthening the notion that P_0 is an adhesion molecule. Filbin et al., (1990) also transfected Chinese hamster ovary cells with a plasmid containing P_0 cDNA and examined the aggregation properties of transfectants in suspension; such cells formed desmosomes and aggregated via homophilic interactions of the extracellular domains of P_0, whereas non-transfected cells did not. These experiments led to the hypothesis that the extracellular leaflets of PNS myelin may be held together by homophilic interactions of P_0 molecules, involving this protein in myelin compaction.

As in the MBPs, the cytoplasmic domain of P_0 is extremely basic. MBPs in PNS myelin constitute only 5-15% of the total protein and the basic portion of P_0 has been proposed to replace the function of MBP in at least one MBP mutant (see further).

b) Biosynthesis

Analysis of the intron-exon organization of P_0 shows that this protein resembles a primordial cell-cell adhesion molecule that must have arisen very early in metazoan evolution and given rise to the immunoglobulin gene superfamily (Williams, 1987). In the P_0 gene, the sequence encoding the extracellular immunoglobulin-related domains is split into two exons of similar structure and length (Lemke et al., 1988); this gene is highly conserved and its structure conforms to predictions made for members of the immunoglobulin gene superfamily (Amzel and Poljak, 1979).

P_0 inserts into the RER in a SRP-dependent manner and is transported through Golgi to the plasma membrane, as is PLP. The cleaved amino-terminal signal sequence in P_0 is followed by a relatively hydrophobic extracellular domain, a single membrane-spanning domain and a very basic intracellular domain (Lemke and Axel, 1985; D'Urso et al., 1990; Fig. 4).
c) Posttranslational modifications

The posttranslational modifications of P₀ include glycosylation, phosphorylation, acylation and sulfation (Everly et al., 1973; Wiggins and Morell, 1980; Matthieu et al., 1975). Suzuki et al. (1990) have suggested that phosphorylation of P₀, which is mainly via calcium/calmodulin-dependent protein kinase II, may be important for the maintenance of the major dense line in PNS myelin. All the phosphorylation sites of P₀ are present at the cytoplasmic surface.
1.4 MYELIN LIPID METABOLISM AND MEMBRANE TRAFFIC

I. Myelin lipids

Myelin is a very unusual biological membrane in that it has a very high lipid to protein ratio. It comprises approximately 25% of the dry weight of brain in mature rat (35% in human) and 40% of total brain lipid. In order of abundance, the main lipids of myelin are cholesterol, GalC and ethanolamine plasmalogens. GalC and sulfatide are not myelin-specific lipids but are much more abundant in myelin than in other membranes.

CNS and PNS myelin differ less in their lipid compositions (Table 1) than their protein compositions. The main quantitative differences between CNS and PNS myelin lipids are in the sphingolipids. PNS myelin from different species contains less galactolipid and considerably more of the phospholipid sphingomyelin (SM) than CNS myelin (Norton and Cammer, 1984). In contrast to CNS myelin, the amounts of SM and phosphatidylethanolamine (PE) are similar in PNS tissue.

Myelin sphingolipids

All sphingolipids possess the long chain amino alcohol sphingosine backbone and, after phosphoglycerides, are the second major class of lipids in animal membranes. In rat CNS myelin, the concentration of sphingolipids is directly proportional to the amount of myelin present (Norton and Cammer, 1984).

Sphingomyelin

Sphingomyelin (SM) is synthesized by direct transfer of the phosphorylcholine headgroup from phosphatidylcholine (PC) to ceramide (Cer) by the enzyme ceramide phosphatidylcholine phosphocholine transferase (sphingomyelin synthase; Kishimoto, 1983). Studies using highly purified brain and liver membrane fractions (Malgal, 1985; Maurice, 1989) have revealed a second pathway of SM biosynthesis in these tissues. This involves the transfer of phosphatidylethanolamine from PE to Cer, followed by methylation; although this second pathway is minor, it may be of high importance in brain that has a high PE content. As SM does not flip-flop due to its highly polar head group (van Meer et al., 1987), its exclusive localization on the exoplasmic leaflet must be established during biosynthesis.
Table 1. The lipid compositions of mature human CNS and PNS myelin.

Individual lipid classes are expressed as percentages of total phospholipid.
*: Primary ethanolamine plasmalogen. #: Included with phosphatidylserine

(From Norton and Cammer, 1984)

<table>
<thead>
<tr>
<th>Component</th>
<th>CNS</th>
<th>% of dry weight</th>
<th>PNS</th>
<th>% of dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>30.0</td>
<td></td>
<td>28.7</td>
<td></td>
</tr>
<tr>
<td>Lipid</td>
<td>70.0</td>
<td></td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>% of lipid weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>28.4</td>
<td></td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Tot. Galactolipid</td>
<td>27.8</td>
<td></td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>Tot. Phospholipid</td>
<td>43.8</td>
<td></td>
<td>54.9</td>
<td></td>
</tr>
<tr>
<td>Ethanolamine*</td>
<td>43.2</td>
<td></td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Choline</td>
<td>26.0</td>
<td></td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>11.1</td>
<td></td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>Inositol</td>
<td>1.4</td>
<td></td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>Sphingomyelin</td>
<td>18.3</td>
<td></td>
<td>33.0</td>
<td></td>
</tr>
</tbody>
</table>
Myelin phospholipids are enriched in long chain fatty acids. SM contains large amounts of 24:1, 18:0 and 24:0, which are synthesized by chain elongation of fatty acids such as palmitic acid (16:0) and oleic acid (18:1) (Boyer, 1983). However, the function of long chain fatty acids in myelin is not clear (also see under The Secretory Pathway).

Galactocerebroside

Myelin GaIC is synthesized from UDP-Gal and Cer by the action of the enzyme UDP-galactose galactosyltransferase. Sulfatide is formed from GaIC by cerebroside sulfotransferase by transfer of sulfate from phosphoadenosine phosphosulfate to GaIC, and both enzymes require "boundary lipids" (mainly phospholipids) for activation (Boyer, 1983). The work of Brammer (1984) showed that brain GaIC is formed from UDP-Glu and Cer following the epimerisation of UDP-Glu to UDP-Gal (via the action of UDP-galactose-4′-epimerase), rather than by synthesis of UDP-Gal from GaIC and UDP-Glu. The interconversion of the two UDP-hexoses requires nicotinamide adenine dinucleotide (NAD) and proceeds via a 4-keto intermediate.

Myelin galactolipids are also enriched in long chain saturated and monoenoic fatty acids, mainly C18-C28. The presence of long chain fatty acids in myelin lipids is thought to be important in membrane compaction and maintenance. Brain Cer can be divided into those with α-hydroxy fatty acids and those with non-hydroxy fatty acids. Brain hydroxy fatty acids are derived directly from their corresponding non-hydroxy counterparts and it is thought that microsomal enzymes are responsible for supplying the fatty acid moieties to sphingolipids.

The structures of typical myelin Cer, GaIC and SM are shown in Fig. 5.

Gangliosides

Myelin also contains small (0.2%) but significant amounts of gangliosides. Monosialoganglioside (GM1), which was shown to be the functional receptor of the cholera toxin by direct activation of adenylate cyclase in murine neuroblastoma cells (Gonatas et al., 1983), is found amongst many species and is enriched in myelin. Myelin and the oligodendrocytes of higher primates and birds uniquely contain sialogangliosylceramide (GM4 or G7). Gangliosides are believed to have functions in cell-cell recognition, communication and growth in vitro (Bremer et al., 1984) and it is possible
Fig. 5. The structure of the major sphingolipids of myelin-forming cells.

Ceramide is the precursor of sphingomyelin and galactocerebroside and these sphingolipids are formed via different metabolic pathways. Galactocerebroside can be further converted to sulfatide by the addition of $-\text{SO}_3^-$ at the $-\text{OH}$ of galactose that is marked by the asterisk.
that these sphingolipids may have specific functions in myelin in vivo (Wiegandt, 1982). Sung et al. (1991) have shown that exogenous GM3 ganglioside stimulates process formation and glycoprotein release by cultured bovine oligodendrocytes. PNS myelin also contains gangliosides (Lede

II. The secretory pathway

Discovered by Camillo Golgi in 1898, the Golgi apparatus has long fascinated cytologists because of its distinct morphology, comprising flat cisternae which form characteristic ‘stacks’ that are interconnected by cis- and trans- dictions. In addition, numerous small membranous vesicles are usually found associated with this organelle. At least four Golgi subcompartments, the cis-, medial-, trans-Golgi and the trans-Golgi network (TGN), an extensive tubulovesicular structure, can be identified by electron microscopy. The cis-compartment is situated closest to the nucleus and the trans-elements are the most distant.

The Golgi apparatus is currently attracting a lot of attention because of its central role in directing protein traffic within cells (Rothman and Orci, 1990; Hopkins, 1992; Lobel et al., 1989). The general pathway for the transport of secretory proteins from their site of synthesis to the cell surface involves at least three crucial sorting and translocation steps (for review see Hopkins, 1992): initially, proteins are inserted into the lumen of the ER via the signal peptide/SPR/receptor system (Blobel and Dobberstein, 1975). The second step from the ER to the Golgi is far less understood but it is known to be highly regulated. Finally, the TGN is the site where proteins are sorted to the plasma membrane or lysosomes (Bruder and Rogers, 1985, Sossin et al., 1990).

Work in several laboratories has suggested that sphingolipids may be sorted coordinately
with proteins through the Golgi (Simons and van Meer, 1988; Simons and Wandinger-Ness 1990; Rosenwald et al., 1992). A recent report (Barthol et al., 1991) suggests that in leek seedlings, where transport of newly synthesized lipids and fatty acids from the ER is via bulk transport (without sorting), phospholipids containing fatty acids with chain length of more than 16 carbon atoms are transported preferentially through the Golgi apparatus. This result, together with the inability of the plasma membrane to synthesize long-chain fatty acids, leads to the hypothesis of a sorting function of the Golgi, based on fatty acid chain length. It is then possible that myelin proteins and sphingolipids that contain long chain fatty acids (such as sphingomyelin) may be cotransported and sorted through the Golgi en route to myelin.

Fig. 6 shows a model depicting traffic through the different Golgi compartments. The TGN also participates in retrieval and re-utilization of plasma membrane components internalized by endocytosis, such as mannose-6-phosphate and transferrin receptors (Duncan and Kornfeld, 1988) and probably also sphingolipids (Kok et al., 1989).

III. The use of Brefeldin A in studies of cellular metabolism and traffic

Metabolic inhibitors permit the detailed study of key metabolic events via the disruption of particular steps in the pathway. For example, the ionophore monensin has multiple intracellular effects but is most remarkable for blocking the intracellular transport of secretory glycoproteins, acting somewhere between the proximal and distal regions of the Golgi (Tartakoff, 1983).

The formation and localization of the Golgi complex appears to involve the direct or indirect interaction of this organelle with microtubules. Indeed, Golgi organization is lost during mitosis, when the depolymerisation of microtubules causes the breakdown of this complex into small, dispersed clusters (Lucocq and Warren, 1987). Understanding how Golgi structure is determined and maintained and how this structure relates to function is a fundamental problem in cell biology. Pharmacologic perturbation has provided a lot of information regarding Golgi structure / function correlates. Drugs such as colchicine and nocodazole that disrupt microtubule organization, result in the fragmentation and dispersion
Fig. 5. Model for protein synthesis at the endoplasmic reticulum (ER) and sorting at the trans-Golgi network (TGN). (Adapted from Griffiths and Simons, 1988).
of the Golgi apparatus (Krais, 1990). Although microtubule-perturbing agents fragment the Golgi, they do not abrogate the identity of this organelle as a distinct entity (Ho et al., 1989), nor do they affect its function (Rogalski et al., 1984). In contrast, the ability of Brefeldin A (BFA) to cause loss of the Golgi complex as an identifiable entity has added a new dimension to our ability to perturb this organelle.

BFA is a heterocyclic lactone produced by several fungi (Ham et al., 1963; Fig. 7a) which dramatically alters Golgi structure (Fujii et al., 1988). BFA effectively stops secretion from the ER and causes the redistribution of Golgi proteins into the ER (Misumi et al., 1986; Lippincott-Schwartz et al., 1989a; Dora et al., 1989). Morphological changes in the Golgi apparatus are seen within minutes after the addition of BFA in vivo and in vitro; initially the cis-tubular structure is lost and is replaced by swollen vacuoles that give rise to long tubulovesicular extensions, throughout which Golgi membrane and content are delivered to the ER. With continued BFA treatment no recognizable Golgi structures are seen in the cell (Lippincott-Schwartz et al., 1990). Disruption of the Golgi is accompanied by cessation of anterograde transport from the ER/Golgi fused system to more peripheral organelles.

The earliest known effect of BFA is the dissociation of the 110 kDa cytoplasmically oriented coat protein β-cop from the Golgi peripheral membrane within 30s (Donaldson et al., 1990). The effect of BFA on the formation of a continuous tubular network between these two organelles might be explained if the role of β-cop is to prevent fusion of Golgi and ER membranes (Ord. et al., 1991). Pelham (1991) proposed that formation of long tubular structures emanating from the Golgi and fusing with the ER can probably be explained by the effect of BFA in unmasking the microtubule motor attachment sites that are normally covered by coat proteins such as β-cop. In this scenario, microtubule-linked motors would carry uncoated Golgi tubules in a retrograde direction (i.e. from the Golgi to the ER) and due to the absence of coating proteins, vesicles would fail to pinch in and participate in anterograde transport, causing the eventual fusion of the ER with the Golgi. The formation of the TGN/endosomal system is also thought to occur by the extension of tubular structures that emanate from the TGN and proceed along microtubules to fuse with lysosomes (Wood et al., 1991). However, the deytrosynthesized microtubule network, comprising stable microtubules colocalizing with the Golgi in several cell lines, may be unaffected (Burgess et al., 1990).
FHür# 7b Proposed model for the effect of BFA on organelle pathways of the central vacuolar system

BFA causes the formation of tubular processes mediating membrane transport. Gross mixing of membrane does not occur, rather, organelar components seem to fuse and mix with distinct homotypic membrane systems. Thus, as shown in the bottom panel, Golgi stacks appear to fuse and mix with the recycling ER/cis-Golgi network (CGN) tubule system, while the trans-Golgi network (TGN) appears to fuse and mix with the recycling endosomal tubule system in BFA-treated cells. Lysosomes apparently remain apart from these two mutually exclusive homotypic membrane systems. Thus, according to this model, BFA interferes with the heterotypic membrane transport pathways (see top panel) that in control cells connect homotypic membrane systems to each other (After Lippincott-Schwartz et al., 1991a)

Figure 7a. The structure of Brefeldin A (BFA)
It is now known that BFA affects not only fusion of the cis-, medial- and trans-Golgi complex with the ER, but also of the endosomal system with the TGN. When the endosomal system of Madin Darby canine kidney (MDCK) cells was perturbed by BFA, early endosomes formed a tubular network and endocytosis, recycling of receptors to the cell surface and degradation of endocytosed material continued as before. In rat cells treated with BFA the endosome-TGN system collapsed into the centrosome region, probably driven by the motors that mediate the normal movement of endosomal material to the vicinity of the Golgi apparatus. A summary of the known effects of BFA is presented in Fig. 7b. BFA action is species- and probably cell-specific and in rat and bovine cells both the TGN/endosomal and ER/cis-, medial- and trans-Golgi systems are affected, while in canine (MDCK) and rat kangaroo kidney (PtK1) cells the Golgi/ER system is BFA-resistant while the TGN/endosomal system remains sensitive (Wood et al., 1991; Lippincott-Schwartz et al., 1991b; Hunziker et al., 1991). This means that BFA has at least one more site of action than was originally thought and shows that each cell type must be investigated for its particular response to BFA.

As the effects of BFA are reversible (Palham, 1991) cellular recovery and organelle reformation following BFA treatment may also yield important insights regarding the forces that drive organelle specific component re-assembly and the molecular relationships involved in these processes. An example of a process that may be further understood by experiments involving BFA is cytokinesis, which involves the reassembly of organelles such as the Golgi following mitosis.

iv. Fluorescent lipid probes

A difficult problem in membrane biology has been to define the pathways and study the molecular mechanisms by which the many lipid species move from one organelle to another after their biosynthesis, mainly because techniques for studying lipid traffic within cells have not been available. These problems are currently being addressed by the use of a series of fluorescent lipid analogues in which one of the naturally occurring fatty acids has been replaced by a fluorescent molecule. Drugs that disrupt membrane traffic also have the
potential to contribute significantly to these studies.

a) 4-chloro-7-nitrobenz-1,3-diazole (NBD) lipids

Ghosh and Whitehouse (1968) first described 4-chloro-7-nitrobenz-1,3-diazole (NBD-chloride), a reagent which reacts with amino and thiol groups to form stable, highly fluorescent derivatives (Birkett et al., 1970; Price et al., 1975). NBD-chloride and NBD-fluoride have had multiple applications in the analysis of protein structure and conformational changes, in the chromatographic detection of amino acids and in the labeling of collagen to study its interactions with the cytoskeleton (Chattopadhyay, 1990).

Another important application of the NBD group is its increasing use to monitor the properties of biological and model membranes. Various synthetic lipids have been prepared by attaching NBD to the polar head or the non-polar fatty acid chain of the lipid precursor and using this probe as an analogue of the native lipid molecule. The processes studied with NBD lipids include spontaneous and protein-mediated transfer of lipids between vesicles or between vesicles and cell membranes (Nicols and Pagano, 1981; Nicols and Pagano, 1982; Arvinte and Hildenbrand, 1984; Nicols, 1985; Schroit and Madsen, 1983), membrane fusion, aggregation and lateral phase separation by resonance energy transfer and related methods (Uster and Deamer, 1981; Hoekstra, 1982), intracellular lipid transport and metabolism in living cells (Tanaka and Schroit, 1983; Lipsky and Pagano, 1985a; Sleight and Pagano, 1985), the study of lipid monolayers (Balakrishnan et al., 1982) and the study of the Golgi complex (Lipsky and Pagano, 1985b, Pagano, 1989; Pagano and Martin, 1988).

The most widely used NBD glycerolipids and sphingolipids for studying lipid metabolism and intracellular translocation in living cells are ones in which one of the naturally occurring fatty acids has been replaced with N-[7-NBD]-6-aminocaproic acid (C6-NBD fatty acid, Lipsky and Pagano, 1983). Amongst the C6-NBD-lipids that Pagano has studied over the last decade, C6-NBD-ceramide (C6-NBD-Cer, Fig. 8) has had the greatest impact in cell biology studies as it is both a vital Golgi marker and a good substrate for the enzymes of at least two metabolic pathways. Clearly, an important question is how accurately C6-NBD-lipids mimic their normal intracellular counterparts; the following points (1-4, Pagano and
Fig. 8 The structures of N-[7-(4-nitrobenzo-2-oxa-1,3 diazole)]-6-aminocaproyl-D-erythrosphingosine (C6-NBD-Cer) and N-[5-(5,7-dimethyl boron dipyrrromethene difluoride)-1-pentanoyl]-D-erythro-sphingosine (C5-DMB-Cer).
1) Various C₈-NBD lipids are metabolized to products that classical biochemical pathways predict and during co-incubation with their non-fluorescent radioactive counterparts there is no preferred substrate. 90 mol% of C₈-NBD-Cer fed to cellular monolayers grown in vitro can be converted to C₈-NBD-glucocerebroside (C₈-NBD-GlcC) and C₈-NBD-sphingomyelin (C₈-NBD-SM) within two hours of incubation at 37°C (Lipsky and Pagano, 1963). C₈-NBD-Cer is also metabolized in vivo and in experiments where this lipid analogue was dissolved in saline and injected into rat brain, the main metabolic products were fluorescent cerebroside (Cbs), sulfatides and SM (Di Biasi et al., 1991).

2) The time required for the translocation of newly synthesized fluorescent SM and Cb to the plasma membrane is consistent with the time required for newly synthesized isotopically labeled neuronal ganglioside, which is delivered in a similar fashion to SM and Cb, to appear at the plasma membrane.

3) Monensin inhibits the appearance of both isotopically labeled glyco sphingolipids and C₈-NBD-Cb to the cell surface, showing that C₈-NBD-lipid and glyco sphingolipid transport is subject to similar constraints.

4) Both C₈-NBD-PE and radioactively labeled PE which is synthesized de-novo appear to undergo transbilayer movement at the plasma membrane.

The NBD moiety is not charged at neutral pH (Chattopadhay and London, 1988). This means that the actual charge on C₈-NBD-lipids labeled in their acyl chains will be the same as the corresponding endogenous lipids under physiological conditions. However, as detected by differential spin label quenching and other studies (Chattopadhay and London, 1987, 1988) the NBD group is polar and loops back to the polar region of the membrane (Pagano et al., 1991). Therefore, if the acyl chain conformation is important, these lipids should be used with caution. A further possible disadvantage of NBD is that it is very susceptible to photochemical decomposition (bleaching).

b) 8,7-dimethyl boron dipyrromethene difluoride (DMB) lipids

Although much useful information has been obtained using NBD-labeled analogues, chemists have tried to design similar but more photostable molecules. In the case of
fluorescent lipids, membrane insertion in a manner resembling natural lipids was an additional goal. Boron dipyrromethene difluoride (BODIPY) is a novel fluorophore (Moore et al., 1988; Kang et al., 1988). Long chain BODIPY fatty acids show rapid incorporation into most lipids (Kasurinen and Somerharju, 1992) and Pagano et al. (1991) were the first to synthesize and describe the use of a DMB ceramide. N-[5(5,7-dimethyl) BODIPY]-1-pentanoyl] ceramide (C5-DMB-Cer, Fig. 8). C6-DMB-Cer is a vital Golgi stain (in addition to C6-NBD-Cer), can be metabolized to C5-DMB-SM and C6-DMB-GloC and has approximately two- to three-fold higher fluorescent yield and photostability than C6-NBD-Cer (Pagano et al., 1991). Studies on the spectral properties of C5-DMB-Cer revealed that the fluorescence emission maximum was strongly dependent upon the concentration of the probe in the membrane; this fluorophore exhibits a shift in its emission maximum from green (~515 nm) to red (~620 nm) wavelengths with increasing concentrations. Therefore, C5-DMB-lipids can be detected in regions where they are most concentrated by means of appropriate selection of filters in a fluorescence microscope.

V. Sphingolipid biosynthesis and traffic

Most cellular lipids are synthesized at the ER (Allan and Walkin, 1988), yet the membranes of the various organelles possess unique lipid compositions. Thus mechanisms must exist that allow lipid sorting. Although a lot of information is available about the role of the Golgi in protein processing and transport, the function of this organelle in lipid metabolism and trafficking is only beginning to emerge.

Simons and colleagues (Simons and van Meer, 1988; Simons and Wandinger-Ness, 1990) proposed that in the Golgi of MDCK cells, apical membrane proteins may be sorted coordinately with glycosphingolipids. Rosenwald et al. (1992) found that in the presence of 1-phenyl-2-(decanoylamino)-3-morpholino-1-propanol (PDMP), an inhibitor of sphingolipid biosynthesis, retardation of transport for secretory proteins also occurred, suggesting that transport of proteins and sphingolipids through the secretory pathway may be coupled to sphingolipid biosynthesis.

The general pathways of sphingolipid biosynthesis are probably common to all tissues,
including myelinating systems. Fig. 9 shows the main biosynthetic routes for sphingolipids and the enzymes responsible for each consecutive conversion. With the exception of the biosynthesis of Cer at the ER (Schwarzmann and Sandhoff, 1990), the various steps in sphingolipid assembly are believed to take place in the various cisternae of the Golgi in many non-glia cell types (Miller-Prodzara and Fishman, 1984; Lipsky and Pagano, 1985b; Rosenwald et al., 1992).

Although much is known about the metabolism and the various pathways by which sphingolipids traffic within cells, a single unifying model for intracellular transport cannot account for all of the existing data on sphingolipid movement within cells. Multiple pathways of intracellular lipid transport appear to depend on sphingolipid type, molecular species, cell type and the membranes under consideration (Koval and Pagano, 1990). Further investigations are needed in order to establish the exact routes of intracellular traffic and exact sites of biosynthesis of sphingolipids. This is particularly important in view of the regulation of glucosphingolipid biosynthesis through the effects of their concentration and composition of intracellular membranes and the cell surface. Myelinating cells should serve as good models for such investigations, as they are enriched in sphingolipids. Additionally, investigations into sphingolipid biosynthesis and traffic are important as it is becoming increasingly apparent that such lipids may have functional as well as structural roles (Gonatas et al., 1983; Bremer et al., 1984; Sung et al., 1991).

a) Ceramides

Radioactive and truncated ceramides

When radioactive-Cer was injected into rat brains it was metabolized to radioactive-GalC, -sulfate and -SM (Kishimoto and Kawamura, 1979). Lipid analysis showed that at 30 min post-injection and at all subsequent times radioactive-GalC was the main lipid found in myelin, suggesting that GalC is the main sphingolipid that may either be synthesized in myelin and/or be transported to myelin and that association of GalC with myelin probably occurs shortly after GalC biosynthesis.

C_{6}C_{8}-Cer is a water-soluble, amphiphilic Cer analogue truncated in both hydrophobic regions (Karrenbauer et al., 1990), permitting this molecule to diffuse through
Fig. 9 The pathways, enzymes and possible locations of sphingolipid biosynthesis in mammalian cells.
lipid bilayers and get trapped in organelle(s) after the transfer of the hydrophilic head group. When C₆C₈-Cer was incubated with Chinese hamster ovary (CHO) cells in the presence of BFA, the overall synthesis of C₆C₈-SM increased and the synthesis of C₆C₈-GlcC remained unaffected (Brüning et al., 1992). The authors suggested that the increase in C₆C₈-SM synthesis in the presence of BFA probably reflected the translocation of sphingomyelin synthase from the Golgi apparatus to a mixed ER/Golgi organelle, where a pool of Cer larger than in the Golgi alone was available. However, as GlcC biosynthesis is thought to take place in a light, smooth vesicle fraction that could be a pre- (Futerman and Pagano, 1991) or early-Golgi (Jeeckel et al., 1992) compartment, the apparent lack of change in C₆C₈-GlcC biosynthesis in the presence of BFA is not clear, as the intermixing of the Golgi with the ER would also provide a larger pool of Cer for the biosynthesis of C₆C₈-GlcC. A BFA-induced decrease in cellular SM levels that was accompanied by the induction of differentiation in HL-60 leukemia cells has also been reported (Linardic et al., 1992).

Fluorescent ceramides

After initial localization into the Golgi, C₆-NBD-Cer and its fluorescent metabolic products traffic through the intracellular compartments of cultured cells (Lipsky and Pagano, 1983). The intracellular transport of C₆-NBD-Cer and its metabolites can be followed by the use of fluorescence microscopy and lipid analysis can provide insights regarding their localization at given incubation times. Using these techniques Lipsky and Pagano, (1985a) showed that when monolayers of Chinese hamster lung (CHL) fibroblasts were incubated with C₆-NBD-Cer at 2°C, initial fluorescent labeling of the mitochondria, ER and nuclear envelope occurred. Upon warming to 37°C, the Golgi apparatus and later the plasma membrane became intensely fluorescent. The experimental evidence suggested that both fluorescent SM and GlcC were transported to the cell surface via the Golgi.

When fixed cells were treated with C₆-NBD-Cer and photobleached in the presence of 3,3′-diaminobenzidine (DAB) (Sandel and Mashland, 1988), photo-oxidation caused polymerization of DAB at the site of the fluorescent label and the dark product was specifically localized at the Golgi apparatus (Pagano et al., 1989). C₆-NBD-Cer was shown to specifically label the trans-Golgi cisternae, as in experiments where thiamine
pyrophosphatase (TPPase, an enzymic marker of the trans-Golgi) had been labeled with Pb.
DAB product did not accumulate. Cg-NBD-Cer accumulated in the trans-Golgi of cells fixed
in a variety of ways, but accumulation was inhibited when either fixation protocols that
extracted or modified cellular lipid or post-fixation permeabilization with detergent had been
used. These observations suggested that the trapping of Cg-NBD-Cer at the trans-Golgi was
due to interaction with the Golgi lipid.

Intraventricular administration of Cg-NBD-Cer into the brains of adult rats followed by
isolation of myelin and microsomal fractions showed that unmetabolized Cg-NBD-Cer was
located in a microsomal fraction; fluorescent Cb accumulated 2 h post inoculation, then
decreased with the concomitant accumulation of fluorescent sulfatide (Di Biase et al., 1991).
By contrast, fluorescent Cb and SM were present in myelin 30 min post-inoculation and then
at all times studied. Fluorescence microscopy revealed that at 30 min post-inoculation
fluorescence was only located in the cells lining the ventricles, while after 24 h fluorescence
was also present in the periventricular areas. This study demonstrated that when Cg-NBD-
Cer is metabolized in the CNS in vivo, fluorescent Cbs are transported in brain and
accumulate in myelin, as was previously found for radioactive Cer and GalC, respectively
(Kishimoto and Kawamura, 1979). In brain at least, Cg-NBD-Cer and radioactive Cer appear
to have the same metabolic fates, which indicates that these Cers may perhaps be used
interchangeably for studies in vivo. It is also significant that fluorescent as well as radioactive
Cbs are transported to myelin in preference to other sphingolipids, suggesting that specific
mechanisms for Cb delivery to myelin may exist and that Cbs may have an important role in
this membrane.

When Cg-DMB-Cer was used to label a variety of living cells, membranes containing high
concentrations of Cg-DMB-Cer and its metabolites (the corresponding analogues of -SM and
-GloC) could be differentiated from other regions of the cell where smaller amounts of the
probe were present, as concentrated DMB displayed its characteristic fluorescent shift
(Pagano et al., 1991). Using this approach, prominent red fluorescent labelling of the Golgi
apparatus, Golgi-associated tubulovesicular processes and putative Golgi-derived vesicles
were seen in a variety of cell types and the concentration of Cg-DMB-lipids in the Golgi was
calculated to be 6-10 mol% of the total Golgi lipid. Cg-DMB-Cer was mainly metabolized to
C₅-DMB-SM and only a small amount of C₅-DMB-GlcC was formed, in contrast to the metabolism of C₅-NBD-Cer where the ratio of C₅-NBD-SM/GlcC was ~1.31 under similar incubation conditions. The authors speculated that either only small amounts of C₅-DMB-Cer could reach the intracellular compartment(s) where the majority of GlcC synthesis occurs or that C₅-DMB-Cer is a poor substrate for glucocerebroside synthase because of the nature of the DMB fatty acid. In apparent support of the second hypothesis, Stein et al. (1989) have shown that the metabolic fates of Cers are critically dependent upon their fatty acyl chain compositions.

Back exchange is a technique that employs defatted bovine serum albumin (DF-BSA) in culture medium in order to remove fluorescent lipid from the plasma membrane of fixed cells, and back-exchange was previously used in order to remove and quantify C₅-NBD-Cer and its metabolites (van Meer et al., 1987; Pagano et al., 1989). Back-exchange could not deplete the surface of cells treated with C₅-DMB-Cer (Pagano et al., 1991) and it may be that strong interactions between C₅-DMB-lipids and other cellular lipids and/or proteins hinder the re-association of C₅-DMB-lipids with DF-BSA. While the inability to back-exchange C₅-DMB-lipids is an apparent limitation, their spectral properties can alternatively be used for quantitation.

b) Products of ceramide metabolism

Sphingomyelin

The precise site(s) of SM biosynthesis are not clearly defined; the suggestion that SM biosynthesis occurs in the cis- and medial-Golgi and that SM is subsequently delivered to the plasma membrane (Futerman et al., 1990; Jecskel et al., 1990) has been challenged by reports suggesting that although the main site of SM biosynthesis is the Golgi, some SM is also synthesized at the plasma membrane (reviewed by Koval and Pagano, 1991). Di Biase et al. (1991) speculated that SM is probably synthesized in the plasma membrane as well as in the Golgi of brain cells in vivo and then rapidly incorporated into myelin and in other cellular components such as microsomes, on the basis that similar amounts of C₅-NBD-SM were found in myelin and in microsomes at 30 min post-intraventricular injection with C₅-NBD-Cer.

The insensitivity of C₅-NBD-SM biosynthesis to treatment of intact Golgi membranes with
pronase (Jeckel et al., 1992) or trypsin (Futerman et al., 1990) coupled with the inability of SM to undergo transbilayer movement, suggested that SM is probably synthesized at the luminal surface of the Golgi.

C₆-NBD-SM inserted into the exoplasmic leaflet of fibroblasts was sequentially endocytosed into early, peripheral and perinuclear endosomes and the 1½ for a complete round of recycling was approximately 40 min (Pagano and Sleight, 1985a; Koval and Pagano, 1989). Comparison of C₆-NBD-SM transport and metabolism in normal and (lysosomal) acid-sphingomyelinase-deficient Niemann-Pick Type A (NP-A) fibroblasts indicated that the rate of C₆-NBD-SM transport along the degradative pathway was approximately 16-fold slower when compared to the rate of recycling, supporting the notion that most endocytosed membrane lipid is recycled to the plasma membrane. Experiments that compared the recycling of C₆-NBD-SM and transferrin (the latter of which is known to be involved in receptor-mediated endocytosis) in a variety of cell types, demonstrated that internalized plasma membrane C₆-NBD-SM cycles very similarly to transferrin. The authors concluded that during endocytosis, C₆-NBD-SM recycles through sorting endosomes and/or the Golgi (from which recycling to the plasma membrane can also occur) (Stoorvogel et al., 1988) in a cell-specific manner.

The mechanism of transport of SM through the Golgi stacks is not understood, but the TGN is believed to be the site of sorting for exocytic C₆-NBD-SM (van Meer, 1989). Cholesterol is also transported along the exocytic pathway and as cholesterol interacts preferentially with SM rather than with other phospholipids (Gardam et al., 1989), van Meer, (1989) suggested that SM and cholesterol may be cotransported. As the SM content of intracellular membranes can be correlated to their content in cholesterol (Patton, 1970), it is possible that endogenous sphingomyelinase may be involved in the maintenance of membrane cholesterol levels by regulating intracellular SM levels (Koval and Pagano, 1991).

Lipaky and Pagano, (1985) showed that when monolayers of Chinese hamster lung fibroblasts had been incubated with C₆-NBD-Cer in the presence of monensin the fluorescent label accumulated in an enlarged Golgi apparatus, whereas in the absence of monensin the Golgi as well as the plasma membrane were labeled. These experiments suggested that newly synthesized C₆-NBD-GloC and C₆-NBD-SM are transported through
the Golgi and probably arrive at the plasma membrane in vesicles originating from the TGN.
Monensin also increased the total amount of fluorescent SM without affecting the amount of
fluorescent GlcC found in those cells and the mechanism of this is unclear, although another
apparent effect of monensin is to block the glycosylation of Cer (Salto et al., 1984; Miller-
Prodzara and Fishman, 1984)

Although the metabolism, biosynthesis and traffic of SM have been under intensive
investigation, it is not yet understood how metabolism and transport are coordinated to
maintain the content of this lipid in each organelle, whether SM recycles through the Golgi
and the exact role of the strong interaction between SM and cholesterol

Ceramide

Subfractionation of rat liver and incubation with radioactive and fluorescent Cer analogues
suggested that GlcC is probably synthesized in a pre- or early-Golgi compartment (Futerman
and Pagano, 1991) and significant amounts of GlcC are probably synthesized at the cytosolic
face (Jeckel et al., 1992; van Echten and Sandhoff, 1989; van Meer, 1989, Pagano et al.,
1991). When radiolabeled glucosphingolipid precursors were fed to cultured murine BFA-
treated cells, GlcC and lactosylcerebroside (LacC) radioactivity accumulated; this was taken
to mean that BFA selectively disrupts the further metabolism of these lipids and that the GlcC
and LacC synthases are probably localized at the proximal Golgi (van Echten et al., 1990)
Newly synthesized C6-NBD-GlcC appears to transport through the Golgi and has the energy-
dependent vesicular transport characteristics of C6-NBD-SM (van Meer, 1989).

Sorting of C6-NBD-GlcC was shown to occur in the TGN of polarized (MDCK) cells
(Simons and van Meer, 1988; van Meer, 1989). The combined use of C6-NBD-GlcC and
transferrin (Kok et al., 1989), showed that C6-NBD-GlcC recycles between intracellular
compartments and the plasma membrane in a manner similar to C6-NBD-SM (Koval and
Pagano, 1989).

Developmental studies where radiolabeled precursors of Cer and sulfatide were injected in
brain in vivo suggested that the amount of label incorporation coincided with the onset,
progress and decline of active myelination. The rates of galactosylation of Cer and sulfation
of GlcC in vivo closely resembled those measured in vivo, with peak enzyme activities
corresponding to peak rates of myelin accumulation (for review see Morell et al., 1989).

In cultured oligodendrocytes, gradual progressive hypoxia or the depletion of ATP specifically inhibited the synthesis of [3H]GaIC from [3H]Cer, with [3H]Cer accumulating in the ER. This showed that the site of synthesis of GaIC is probably in a compartment separate from the ER and that GaIC synthesis may be coupled to energy dependent transport (Kandler and Dawson, 1992).

The galactosyltransferase that catalyzes the formation of galactosylhydroxycerebroside, the major brain galactolipid, has been extensively studied (Morell and Radin, 1989; Warren et al., 1976) and activity is found in a brain microsomal (mainly GoiGi) fraction (Omanand et al., 1988), although a significant amount of activity is also associated with the myelin membrane fraction (Nesovic et al., 1973; Constantin-Coccarini and Suzuki, 1975; Koul and Jungalwala, 1981). The specific activity of this enzyme increases during active myelination (Koul and Jungalwala, 1986) and reaches a maximum at P16 in myelin and at P20 in microsomes. In P16 animals the specific activity of UDP-galactose ceramide galactosyltransferase is 3-4 times higher in myelin than in microsomes (Koul et al., 1986) and Constantin-Coccarini and Suzuki (1976) have isolated a heat stable factor that appears to control the activity of this enzyme in brain.

There appears to be a precursor-product relationship between GaIC in oligodendrocyte microsomes and perikarya and GaIC in myelin (Sato et al., 1966) supporting the view that newly synthesized GaIC from either intracellular compartments or the plasma membrane may be transported to myelin. Immunocytochemistry showed that in oligodendrocytes, UDP-galactose ceramide galactosyltransferase is located in the cytoplasm, the cellular processes and in loosely wrapped myelin membranes (Roussel et al., 1987).

Sato et al., (1966) studied the in vitro effects of colchicine and monensin upon sulfatide delivery from microsomes and perikarya of oligodendroglial cells and the further incorporation of sulfatide into myelin. They showed that although the total amount of newly synthesized sulfatide was not depressed, delivery into myelin was inhibited by 50%, consistent with a possible involvement of the Golgi complex and cytoplasmic microtubules in the transport of sulfatide towards myelin. Using similar experimental conditions, Townsend et al., (1984) found that although the synthesis of GaIC and sulfatide was normal in the
presence of either colchicine or monensin, the entry of these sphingolipids into the myelin sheath was greatly inhibited.

These results indicate that GalC (and perhaps also sulfatide) biosynthesis in oligodendrocytes probably takes place in the plasma membrane and in intracellular compartments, and that the entry of these lipids into myelin may be dependent on vesicular transport through the secretory pathway. This differs from GlcC biosynthesis, which is apparently restricted to a pre- or early Golgi compartment, as well as GlcC transport in other cell types and may reflect the specialization of oligodendrocytes as myelinating cells and the need for the delivery of galactosylipids over considerable distances during active myelination and perhaps also in compact myelin.

Gangliosides

Gangliosides also transit through the Golgi (Klein et al., 1986; van Meer, 1989). Many enzymes of ganglioside biosynthesis reside in the Golgi (Keenan et al., 1974); the glycosphingolipid sialyltransferases SAT-1 and SAT-4 reside in the cis- and trans-cisternae, respectively (Trinchera and Ghidoni, 1989).

van Echten et al. (1986) showed that the biosynthesis of G_{M1}, G_{D1a}, G_{T1b} and G_{D3} was inhibited in BFA-treated cells and in similar experiments Young et al. (1990) showed that G_{A2}, G_{M2} and G_{D2} synthases were trans to the BFA block.

Cellular gangliosides that were initially detected in endosomes did not appear to reach the lysosome efficiently and their half-lives were of the order of 10-50 h (Miller-Prodzara and Fishman, 1984). When this is considered with the recycling of C_{6}-NBD-SM and -Cb through endosomal compartments, it strengthens the notion that endosomes may also be involved in lipid sorting.
The cytoskeleton of eukaryotic cells comprises microfilaments, microtubules, intermediate filaments and associated molecules. The cellular cytoskeleton has been implicated in processes as diverse as cell division, migration, shape change, cell adhesion, cell-cell interaction and possibly the transfer of information from the plasma membrane to the nucleus, thereby affecting gene expression (Ben-Ze'ev, 1986; Watt, 1986). An operational and experimental description of the cytoskeleton is "the insoluble residue remaining after extraction with nonionic detergent" (Brown et al., 1976). Although the best characterized cellular cytoskeleton is that of the erythrocyte (Birchmeier, 1984), considerable progress has also been made in characterizing the cytoskeletons of myelin and myelinating cells (Gillespie et al., 1989; Pereyra et al., 1988, Wilson and Brophy, 1989).

1. Cytoskeletal components in non-myelin forming cells

a) Proteins

Microtubules and associated proteins

Microtubules are 25 nm tubular filaments composed of heterodimers of α- and β-tubulins, which are 55.0 and 54.0 kDa subunits, respectively. These structures disassemble and reassemble around a spindle during mitosis (Brenner and Brinkley, 1981) and are involved in cellular processes such as the movement of cilia and flagella by the microtubule-associated ATPase dynein (Warner and Mitchell, 1980) and others. Polymerization and stabilization of microtubules is believed to be influenced by microtubule-associated proteins (MAPs), which include the large polypeptides MAP1B and MAP2 with Mr >250.0 kDa, and tau-proteins with Mr of 80-70.0 kDa (Connolly and Kalinka, 1980). MAPs may also be involved in the association of microtubules with microfilaments (Griffith and Pollard, 1982) and / or neurofilaments (Letterier et al., 1982)
Microfilaments

Microfilaments are composed of actin in linear homopolymers approximately 7nm in diameter. In living cells filamentous actin (F-actin) exists in diverse polymeric forms which are in equilibrium with monomeric G-actin and with associated forms of actin which cannot be readily defined as either F- nor G-actin (Koff er al., 1983). Actin binding proteins which cap, sever, stabilize and crosslink microfilaments control the various actin structures in the living cell (for review see Niggi and Burger, 1987).

Intermediate filaments

Intermediate filaments are 10 nm diameter fibers that are both more stable and more diverse than microfilaments. Six major classes of intermediate filaments have been described, based on their cell of origin and the nature of their subunits. These include GFAP, with a 50.0 kDa subunit in astroglial and non-myelinating Schwann cells and vimentin, with a 53 kDa subunit in mesenchymal cells. 0-2A progenitors (Raff, 1983), myelinating and non-myelinating Schwann cells both in vivo and in vitro (Jessen and Mirsky, 1991) and in other cultured cells. Although neurofilaments with 70, 140 and 200.0 kDa subunits were once thought to be specific to neuronal tissue, the 140 kDa subunit neurofilament NFM is also found in cultured Schwann cells (Kelly et al., 1992).

b) Lipids

Burn and Burger, (1985) first observed the presence of specific lipids in the cytoskeletons of platelets. They found that the Triton-X-100 insoluble frameworks of thrombin-activated platelets previously incubated with [3H]-palmitate contained significantly increased amounts of labeled lipids when compared to resting platelets. Palmitate, diacylglycerol and some phospholipids were particularly enriched in the cytoskeleton and these lipids interacted strongly with α-actinin, a protein occurring in the general contact area between F-actin and the membrane.

Many GPI-anchored proteins were found to be insoluble in Triton X-100, leading to speculation that they may associate with the cytoskeleton (reviewed by Low, 1992). Brown and Rose, (1992) have shown that human placental alkaline phosphatase (PLAP) which
contains a GPI-anchor, becomes Triton X-100-insoluble together with glycosphingolipids only after it has been transported through the Golgi, supporting the model of Simon and co-workers (Simons and van Meer, 1988; Simons and Wandinger-Ness, 1990) for sorting of certain membrane proteins to the apical cell surface after intracellular association with glycosphingolipids. Although PLAP is mostly insoluble in Triton X-100 and -114, >95% of the protein is solubilized by octyl glucoside, suggesting that lipid association with the cytoskeleton may be a function of selective detergent insolubility. A recent report (Moss and White, 1992) suggests that in the neuronal cell adhesion molecule GP130 (contactin) contains a GPI-anchor group which is necessary for the interaction of this protein with the actin Nonident P-40-insoluble cytoskeleton. The authors speculated that the GPI-anchor of GP130 may interact directly with cytoskeletal actin-binding phospholipids and that non-ionic detergents may preferentially solubilize some membrane lipids only.

Sphingolipids display strong affinity for cytoskeletons. Sakakibara et al., (1991) reported that antibodies against GaIC produced a microtubule-like staining pattern in several epithelial cell lines and that this pattern was ablated by treatment of the cells with colchicine, a drug that prevents microtubule polymerization. Ceramides co-purify with the Triton X-100 insoluble residue of platelets (Packham et al., 1991) and globoside, the most abundant neutral glycosphingolipid of human umbilical vein endothelial cells (HUVEC), as well as GM3 were found associated with intermediate filaments in these cells (Gillard et al., 1991). Globoside colocalizes with vimentin, desmin, keratin and GFAP in a variety of cell types, with a preference for vimentin in cells that contain both vimentin and keratin networks (Gillard et al., 1992).

The transport of lipid vesicles by microtubules has been extensively studied (Mateoni and Kreis, 1987; Vale and Holani, 1985) and it is also possible that intermediate filament proteins may constitute a distinct transport system for intracellular vesicles with or without association with microtubules (Steinert and Roop, 1985). Lipid-cytoskeletal protein interactions must therefore be a prerequisite for vesicular transport. Furthermore, lipid-protein interactions in the cytoskeleton may play dynamic and/or regulatory roles during development. Cells of the oligodendrocyte lineage should be good models for studying cytoskeletal lipid-protein interactions, as extension of long myelin-like processes during their development to
oligodendrocytes must involve dramatic rearrangements in the cellular cytoskeleton.

II. The membrane-associated cytoskeleton of CNS myelin

Tubulin copurifies with CNS myelin (de Nechaud et al., 1983). In an attempt to account for the presence of tubulin in myelin, Modesti and Barra, (1986) showed that MBP can interact with tubulin in solution, thus inhibiting the activity of tubulin carboxypeptidase. When Gillespie et al., (1989) incubated rat CNS myelin with a buffer containing Triton X-100 that had been specifically designed to preserve intact microtubules, all the PLP and DM20 were extracted and the insoluble cytoskeletal residue contained all the tubulin and half the actin. The 21.5 kDa MBP and CNP2 were totally associated with the cytoskeleton whereas only half the 18.5, 17.0 and 14.0 kDa MBPs and CNP1 were extracted by Triton X-100. Although both CNPs are palmitoylated in vivo (Agrawal et al., 1990a), isoprenylation of CNP1 but not CNP2 (Braun et al., 1991) may explain why CNP1 is more readily extracted by detergent. Isoprenylation is characteristic of proteins involved in the regulation of the cell cycle and signal transduction, such as ras and ras-like proteins, heterotrimeric GTP-binding proteins (Malteze, 1990) and nuclear lamins (intermediate filament proteins lining the inner face of the nuclear membrane) (Kitten and Nigg, 1991) where isoprenylation may be important in the association with the nuclear membrane (Suzan et al., 1992). CNP may therefore be involved in aspects of the cell cycle and/or signal transduction and this could involve the cytoskeleton.

Gillespie et al., (1989) also showed that a distinct subset of myelin lipids, particularly enriched in the myelin-specific lipids GalC and SM, is strongly bound to the cytoskeleton of CNS myelin (Table 2). The strength of lipid-protein interactions in the cytoskeletal fraction was exemplified by the comigration of macromolecular lipid-protein complexes during sucrose density-gradient centrifugation.

III. The oligodendrocytic cytoskeleton

Oligodendrocytes in vivo possess an extensive cytoskeletal network composed entirely of microtubules (Wood and Bunge, 1984). The extension of multiple myelin lamellae followed by their enwrapping around axonal segments is analogous to cellular processes where the cytoskeleton has been implicated in controlling shape and motility (Niggli and Burger, 1987).
Lipids were extracted from whole myelin and from the detergent-insoluble residue and the values were the means of measurements made on at least three different preparations. The standard deviations never exceeded 15% of each mean value.

COMPOSITION

<table>
<thead>
<tr>
<th>Component</th>
<th>Myelin</th>
<th>TX-100-insol. residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lipid (μmol/mg protein)</td>
<td>2.46</td>
<td>0.73</td>
</tr>
<tr>
<td>Cholesterol (mol% tot. lipid)</td>
<td>39.8</td>
<td>38.4</td>
</tr>
<tr>
<td>Cerebrosides (mol% tot. lipid)</td>
<td>11.4</td>
<td>35.6</td>
</tr>
<tr>
<td>Cerebrosides-NH (mol% cerebroside)</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>Cerebrosides-H (mol% cerebroside)</td>
<td>68</td>
<td>77</td>
</tr>
<tr>
<td>Sulfatide (mol% tot. lipid)</td>
<td>5.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Phospholipid (mol% tot. lipid)</td>
<td>43.5</td>
<td>19.5</td>
</tr>
<tr>
<td>PE (mol% phospholipid)</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>PC (mol% phospholipid)</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td>PS (mol% phospholipid)</td>
<td>13</td>
<td>ND</td>
</tr>
<tr>
<td>PI (mol% phospholipid)</td>
<td>4</td>
<td>ND</td>
</tr>
<tr>
<td>SM (mol% phospholipid)</td>
<td>6</td>
<td>48</td>
</tr>
</tbody>
</table>
There is growing evidence that myelin-specific proteins interact with the oligodendrocytic cytoskeleton and such interactions may be involved in directing myelin extension, enwrapping around axonal segments and stabilization of the sheath in vivo. Wilson and Brophy, (1989) used indirect immunocytochemistry and Western blotting to show that when rat oligodendrocytes are grown in vitro, CNP associates with microfilaments early in development and is eventually lost from the cell periphery, whereas MBP remains associated with the thick tubulin processes of the cytoskeleton upon cellular maturation. Dyer and Benjamin, (1989a) showed that in cultured oligodendrocytes F-actin, tubulin and CNP probably interact, as the association between these proteins is breached with the F-actin disrupting drug cytochalasin B. The authors suggested that the oligodendrocyte cell surface lipid GalC may be linked to microtubules via MBP, as treatment with anti-GalC antibodies causes GalC patching over MBP domains, which is accompanied by the disruption of microtubules in membrane sheets and resembles the disruptive effects of colchicine.

Recent reports (Diaz and Avila, 1989; Fischer et al., 1990) have indicated that the microtubule-associated protein MAP1B is present in glia including oligodendrocytes but nothing is known about the function of MAP1B in these cells. Oligodendroglia and neurons are believed to arise from a common progenitor cell in the cerebral cortex (Price, 1987; Cameron and Pakic, 1991) and MAPs have been strongly implicated in the development of neuronal polarity (Matus, 1988, 1990). In neurons, MAP1B is found in association with microtubules at very early stages of process extension, presumably crosslinking microtubules (Noble et al., 1989; Sato-Yoshitake et al., 1989). This has led to the proposal that MAP1B has an important role in neurite extension (Tucker et al., 1988a, b; Tucker and Matus, 1988) and this view is supported by the fact that MAP1B is down-regulated in all mature neurons in the adult rat nervous system, with the exception of cells that retain the ability to reinnervate such as neurons of the olfactory system (Viereck et al., 1989).
1.6 The RUMPSHAKER (rsh) MOUSE

A considerable number of mutations affecting the process of myelin deposition have been identified in the CNS. Mutant animals have been very useful in attempting to unravel the complexity of cellular interactions and the roles of the various molecules in myelination. Initially the jumpy (jp), quaking (qk) and myelin synthesis deficient (jp^msd) mouse mutants were described and more recently the shiverer (shi), twitcher (tw) trembler (tl) and other mouse mutations have also been recognized (Hogan and Greenfield, 1984). Most of these mutants have ephemeral oligodendrocytes and limited life spans, but differ in the morphology and biochemistry of their respective CNS myelin sheaths and in their clinical effects.

An almost universal feature amongst CNS myelin mutants is the drastic reduction in the total myelin membrane, which is reflected in both myelin specific proteins and lipids. PLP and the MBPs are reduced in jp (Nussbaum and Mandel, 1973; Lerner et al., 1974) and qk (Nussbaum and Mandel, 1973) and at least PLP is reduced injp^msd (Hogan and Greenfield, 1984). In these animals GaIC, sulfate and cholesterol are the main lipids reduced in myelin (Galli and Galli, 1966; Meir and MacPike, 1970; Bird et al., 1978).

Specific defects have been recognized in the expression of individual myelin protein genes and in some cases the genomic defect has been defined (Lemke, 1986,1988; Sutcliffe, 1987). In shi the MBP gene is defective and although in homozygotes this results in CNS demyelination, PNS myelin is unaffected; this led to the belief that in PNS myelin the basic (intracellular) portion of Po may be able to replace the function of the MBPs (Ganser and Kirchner, 1980).

In jp a specific point mutation in the PLP gene results in deletion of exon 5 (Nave et al., 1987) and in the shaking pup proline is substituted for histidine in exon 2; these mutations are inherited in an X-linked manner, consistent with the localization of the PLP gene on the X-chromosome (Willard and Riordan, 1985). These myelin mutants are characterized by development of tremors in hemizygous males at P10-15 and seizures are common in the rodent; both jp mouse and the shaking pup have short life spans by comparison with their wild type counterparts.

A new myelin mutant was recently recognized at the MRC Radiobiology Unit, Didcot.
A small stock of mice displayed tremors which were found to be associated with hypomyelination in the CNS; genetic analysis indicated an X-linked inheritance and immunochemical studies suggested a defect in PLP expression. This mutation was given the name rumpshaker (rsh) and was found to be quite different to jo (mouse) and the shaking pup.

In brain, rsh myelination commences appropriately but the majority of sheaths fail to develop normally. Oligodendrocytes are increased in number and have prominent Golgi apparatus, RER and free ribosomes, degenerative changes are not observed and cell death is not common. Immunostaining demonstrated a major defect in the expression of PLP and DM20, and site-specific antisera against portions of the PLP/DM20 molecule placed the major defect on PLP, where very few myelin sheaths were positive. Although genetic analysis indicated a locus at or close to the PLP jo locus, rsh is quite different from jo in that the former display normal longevity and breeding, produce substantially more myelin and have increased numbers of oligodendrocytes in brain (Griffiths et al., 1990).

A study of heterozygous rsh females showed that although major CNS hypomyelinated/amyelinated areas do not exist, hypomyelinated fibers are found in some areas and particularly in the spinal cord (Fanarraga et al., 1991). This resembles the situation in rsh hemizygous males and homozygous females but is considerably different from other X-linked PLP mutation heterozygotes, which are noted for more severe lesions and failure to recover with age.

A comparison between the optic nerve and spinal cord in rsh showed that the optic nerve contains varying numbers of myelinated and amyelinated fibers and that the majority of the sheath is of normal thickness. It was therefore thought that the disproportionately thin myelin sheaths in the spinal cord may be related to the difference in axon diameter between optic nerve and spinal cord, as axons in the spinal cord have proportionately large diameters that require more myelin per axon (Fanarraga et al., 1992). Although oligodendrocyte numbers are slightly increased in the optic nerve in young animals, the numbers in mature animals fall below those in wild type (wt) controls; by contrast, the number of oligodendrocytes in the spinal cord is consistently increased after P18. Immunostaining intensity in the optic nerve as well as the spinal cord is reduced for MBP and PLP and increased for GFAP.
The continued study of mutants such as *rsh* will be useful in trying to identify the cause(s) of demyelination and these animals also represent good model systems for remyelination experiments.
1.7 AIMS OF THIS STUDY

One of the major problems for investigators of CNS glia is establishing culture systems of homogeneous oligodendrocyte populations that can closely mimic the events associated with myelinogenesis in vivo, although some considerable progress has been recently made in this front. Some tissue culture systems, such as the one for O-2A cells from optic nerve, have been characterized very well but cell yields are rather low and this makes biochemical investigations problematic.

My goal was to prepare and characterize a primary culture system where highly purified cells of the O-2A lineage could divide and differentiate preferentially to oligodendrocytes. This model system would have to be highly reproducible, relatively easy for others to follow and repeat and should provide high cell numbers from few experimental animals, thereby permitting simultaneous immunohistochemical and biochemical examination of cells of the oligodendrocyte lineage at specific developmental stages.

An initial objective was to examine the developmental appearance of cytoskeletal and cytoskeletonally-associated proteins and lipids in culture, as they may be of importance in myelination. I also intended to investigate the developmental pattern of sphingolipid metabolism in vitro by the use of fluorescent Cer analogues and determine whether such analogues associate with the cellular cytoskeleton. I decided to examine the effects of BFA on organelle structure and attempt to relate this to lipid traffic in oligodendrocytes.

A parallel goal was to characterize CNS myelin further, by establishing the degree of association of myelin-specific proteins with the cytoskeleton during development.

As phosphorylation is a major regulatory mechanism in biological membranes, it was important to assess the effect(s) of phosphorylation on the association of myelin-specific proteins with the cytoskeleton and whether cytoskeletonally-associated proteins constitute a distinct pool of myelin proteins, distinguished by their phosphorylation status.

I had hoped that by comparing the cytoskeletal protein and lipid compositions of a known myelin mutant with its wild type counterpart, I might gain insights regarding the importance of the different components in intact myelin.

I also undertook to extend any interesting findings from the CNS investigations to PNS.
myelin and Schwann cells.
Materials and Methods
2.1 Antibodies

I. Sources and dilutions

The antibody concentrations that follow were the ones used for immunocytochemistry. For a given antibody, concentrations for Western blotting were, as a general rule, 1/10th of these concentrations.

Mouse hybridomas that produce the A2B5, C4 and O1 IgM mAbs were generous gifts from Dr I. Sommar, Institute of Neurology, University of Glasgow; each was used as the crude hybridoma supernatant diluted 1:10, 1:10 and 1:20, respectively. The production of monoclonal antibody from hybridomas will be described.

A mouse anti-MAP1B mAb of the IgG1 subclass was obtained from Sigma (anti-MAP5, cat no M-4528, Huber and Matus, 1984) and was used at 1:200.

Rabbit anti-MBP was used at 1:200 (1:50 for immunoelectron microscopy). This antibody was raised against a synthetic peptide comprising the N-terminal seven amino acid sequence of rat MBP exon 1 and was a generous gift from Dr N. Groome, Department of Biology, Oxford Polytechnic. This peptide is common to all known forms of rat MBP and was coupled to Keyhole Limpet hemocyanin for antiserum production by standard techniques.

Similarly, an antibody was produced against the N-terminal fifteen amino acid sequence of mouse MAP1B (Noble et al., 1989) and was used at 1:100.

A rabbit anti-tubulin (cat no.65-095-1, ICN Israel), a mouse anti-tubulin (cat no. MCA78A, Serotec, U.K.) and a rabbit anti-γ-actin (a gift from Dr C. Bulinsky Dept. of Anatomy and Cell Biology, Columbia University, U.S.A) were used at 1:100.

Affinity-purified rabbit anti-MAG (1:100), anti-CNP (1:100) and anti-PLP/DM20 (1:100) were from Dr D. Colman, Department of Anatomy and Cell Biology, Columbia University. Rabbit anti-bovine GFAP (1:500) was from Dr E. Bock, University of Copenhagen. Rabbit anti-
TGN38 (1:1000 for immunofluorescence and 1:600 for immunoelectron microscopy), which specifically recognizes a resident protein of the TGN, was from Dr P. Luzio, Department of Clinical Biochemistry, University of Cambridge (Luzio et al., 1990). Tissue culture supernatant containing the antibody 83FC3 which recognizes mannosidase II, a cis- and medial-Golgi component (Burke and Warren, 1984) was the kind gift of Dr. G. Warren and
for our purposes had to be concentrated 10-fold by overnight precipitation in 50% ammonium sulfite pH 7.4, resuspension in PBS and 24 h dialysis versus three changes of PBS at 4°C; this concentrate was used undiluted.

Wheat germ agglutinin (WGA) coupled to tetramethylrhodamine B isothiocyanate (TRITC), which recognizes N-acetyl-β-D-glucosamine was purchased from SIGMA and was used at 1:1000.

Fluorescent second antibodies conjugated to fluorescein isothiocyanate (FITC), (TRITC) or dichlorotriazinylamino fluorescein (DTAF) were used at a concentration of 1:100. Type-specific goat anti-mouse IgM (FITC) and goat anti-mouse IgG (TRITC) which we confirmed to be specific for mouse IgM and IgG respectively, were from Southern Biotechnology Associates (U.K). Donkey anti-mouse IgG (DTAF) and donkey anti-rabbit IgG (TRITC) were from Jackson Immunoresearch Labs., USA. Phalloidin-TRITC (SIGMA), specifically recognising F-actin, was used at 1:100.

Goat anti-rabbit IgG (Scottish Antibody Production Unit, SAPU) and goat anti-mouse IgG (Jackson Immunoresearch) conjugated to horseradish peroxidase were diluted 1:2,000 and 1:500 respectively for Western blotting and the former was diluted 1:200 for immunoelectron microscopy.

Goat anti-mouse IgG and IgM conjugated to 5 nm gold and goat anti-rabbit IgG conjugated to 10 nm gold were from Amersham and were used for immunoelectron microscopy at a dilution of 1:20.

II. Monoclonal antibodies from hybridoma cell lines

Hybridoma cells were either pelleted at 200 g for 10 min at room temperature or thawed directly from liquid nitrogen storage into a 37°C water bath, suspended into Optimem I (Gibco BRL), 10% FCS, penicillin (100 IU/ml), streptomycin (100 μg/ml) to a density of 10⁴ cells ml⁻¹ and incubated in sealed flasks at 37°C to a density of 10⁵ cells ml⁻¹. The cells were then either diluted to the initial density or induced to produce high titre antibody by (only) adding fresh penicillin and streptomycin every three days, until a density of 10⁶ cells ml⁻¹ was reached. The hybridomas were pelleted, resuspended to 10⁷ cells ml⁻¹ in 90% FCS / 10% dimethylsulphoxide (DMSO) and cooled sequentially to -44, -20, -70 and -176°C.
by allowing two hours between each cooling step.

The tissue culture supernatant was dot-blot tested for anti-mouse antibody content by diluting in PBS, spotting 1 µl aliquots on nitrocellulose strips, air drying, blocking for 3 h in 0.2% (w/v) pig skin gelatin / 0.1% (w/v) Triton X-100 in PBS, pH 7.4 and following the protocol for Western blotting (see further) from the point immediately after primary antibody incubation. Suitable concentrations were determined using immunofluorescence. comparison with previously isolated antibody. In the case of A2B5, half the dilution used for immunofluorescence was suitable during reverse panning of O-2A progenitors.

2.2 Cell cultures

1. Isolation of O-2A progenitors and differentiation to oligodendrocytes

Wistar rats of both sexes aged 1-2 day old were decapitated and the heads were swabbed with 70% ethanol. Meninges and blood vessels were removed from the cerebral hemispheres on 3MM chromatography paper (Whatman) pre-soaked in Hank's balanced salt solution without Ca²⁺ or Mg²⁺ (HBSS-Ca,Mg). The tissue was dissociated into single cells by chopping the cerebral hemispheres in 1.5 ml of HBSS-Ca,Mg per brain; the segments were then passed gently 3-4 times through a 16 gauge needle and forced slowly and sequentially through 136 µm and 30 µm nylon mesh (Nybro, Plastock Assoc., Birkenhead, U.K.). Cells were harvested at 500g for 5 min and resuspended to 2 ml/mLacrophage in Dulbecco's modified Eagle's medium (DMEM) containing 10% FCS (Flow, U.K.), penicillin (100 IU/ml) and streptomycin (100 µg/ml). The suspension was adjusted to 2.5x10⁶ cells ml⁻¹ and seeded at 3.3x10⁶ cells cm⁻² in 75cm² flasks, which had been pre-coated with 0.2 mg/ml poly-D-lysine hydrobromide (30-70,000 Mr, SIGMA) for 30 min. Poly-lysine was prepared by suspension in Milli-Q water followed by autoclaving and was stored at -20°C. The cultures were maintained at 37°C in a water-saturated atmosphere with 5% CO₂ (Wilson and Brophy, 1989) and the medium was replaced once after 3 d. After 6-7 d in culture when a clearly defined bilayer of cells had formed, the top layer consisting of phase-dark cells with few or no processes was harvested together with non-adherent microglia at 37°C by sealing and shaking the flasks at 100 rpm for 18 h followed by 180 rpm for 1 h in a Gallenkamp orbital incubator (McCarty and DeVellis, 1980). The A2B5 mAb (Eisenbarth et al., 1979)
was added at a 1:10 concentration directly to the growth medium (Behar et al., 1988). The flasks were sealed, gently shaken for 15 min at room temperature, inverted and incubated at 37°C for 20 min. The non-adherent O-2A progenitors were harvested at 1000g for 10 min at room temperature and plated on glass coverslips (washed overnight in 5% w/v chromic acid in concentrated H₂SO₄, rinsed extensively with water, autoclaved and coated with poly-D-lysine) at a density of 5x10³ cells per 13mm coverslip (Not thickness, BDH, UK) or seeded directly in 75 cm² flasks at 3 x 10⁶ cells per flask. The O-2A cells were stimulated to divide with 1 ng/ml of bovine bFGF (British Biotechnology Ltd, Oxford, U.K.) in a defined, serum-free medium consisting of DMEM with the following supplements: transferrin (50 μg/ml), insulin (5 μg/ml), sodium selenite (20 nM), triiodo-L-thyronine (30 nM), D-biotin (10 ng/ml), penicillin (100 IU/ml), streptomycin (100 μg/ml). Half the medium was replenished and fresh bFGF was added daily for the first 4 d of culture. The medium was then removed, the cells were washed twice with pre-warmed DMEM and FCS (1%) was added to defined medium in order to induce progenitors to differentiate into oligodendrocytes. This medium was replenished every 3 d for up to 9 d. A diagrammatic representation of this procedure is shown in Fig. 10.

II. Schwann Cell Cultures

These cultures were prepared and experimentally handled throughout by Dr. Bernadette Kelly. Ten 4 d old rat pups were killed by decapitation and swabbed in ethanol. The sciatic nerves were dissected, washed into 1 ml L-15 medium (Gibco BRL) and cut into small pieces in 1 ml of medium (Brookes et al., 1979). Collagenase (Lorne Diagnostics, UK) was added to 0.075% (w/v) and the tissue was incubated at 37°C for 37 min. Trypsin (Flow, UK) to 0.15% (w/v) was added for a further 15 min and the reaction was stopped with 1 ml of FCS. The tissue was triturated gently using a 21g needle followed by a 25g needle. Five ml of OptiMem I and 1 ml of FCS were added and the suspension was centrifuged for 5 min at 1000g. The pellet was resuspended in OptiMem I / 10% FCS and the cells were incubated at 37°C overnight.
Fig. 10. The isolation of O-2A progenitors from mixed glial cultures and differentiation to the oligodendrocytic phenotype.

Cerebral hemispheres from neonatal rats were dissociated to single cells and plated in poly-D-lysine coated flasks in DMEM / 10% foetal calf serum (FCS). After 8-9d the base of the dish was covered by a layer of Type-1 astrocytes (T1A) and flat cells (FC), which were overlayed by process-bearing O-2A progenitors. Macrophages (M) did not adhere to the bilayer. Following overnight shaking, the O-2A cells had retracted their processes and detached. The mAb A2B5 was added to the medium and the flasks were inverted and incubated at 37°C for 20 min. FC and M adhered to the plastic while the A2B5-coated O-2As remained non-adherent. The O-2As were plated in defined medium containing basic fibroblast growth factor (bFGF). After four days the bFGF was replaced with 1% FCS.
2.3 Batch screening of foetal calf serum (FCS)

FCS from at least four different sources was screened at any one time. Two well characterized hybridoma cell lines with different growth characteristics (such as A2B5 and O1) were grown in parallel and the chosen sera were further tested with mixed and enriched glial cultures.

Sera were diluted to 10% (v/v) in Optimem-1, penicillin (100 IU/ml), streptomycin (100 μg/ml) and 100 μl aliquotes were dispensed with a multiwell pipettor in 96-well tissue culture dishes. In order to adjust the pH, the dishes were placed in a 37°C incubator maintaining a 5% CO₂ humid atmosphere for 1 h.

The hybridomas were centrifuged at 200g for 10 min at room temperature, resuspended in medium minus serum, washed twice and resuspended in medium to a concentration of 10⁵ cells ml⁻¹. 100 μl aliquots of the cell suspensions were added in each of the eight left hand side wells of the 96-well tissue culture dish, one cell line per duplicate plate. The cells were suspended to homogeneity, 100 μl aliquots were placed in the next set of wells and this was repeated, thus enabling 1:2 serial dilutions across the plate. The dilutions were confirmed by light microscopy and cell growth was assessed after 7, 10 and 14 days. Undiluted cells always grew vigorously whereas growth in wells with smaller cell numbers varied, presumably depending on the ability of the individual batch of serum to support it. Sera were initially chosen according to their ability to support as few as 20-100 cells per well and the final choice depended on the growth of mixed glial and enriched differentiating O-2A cell cultures.

2.4 Indirect Immunofluorescence

All procedures took place at room temperature. In order to detect surface antigens antibodies were diluted in PBS pH 7.4 containing 2% (v/v) goat serum (BAPU) and applied to living cells by inverting the coverslip on 30 μl of antibody for 30 min in a humid chamber. For detection of cytoskeletal antigens the cells were extracted for 3 min by mild shaking in a buffer containing 10 mM Pipes pH 6.9, 50 mM KCl, 2 mM EGTA, 1 mM MgCl₂, 2 M glycerol, 10 μg/ml leupeptin, 10 μg/ml antipain and 0.5% (v/v) Triton X-100 (Wilson and Brophy, 1989).
Cells and cell cytoskeletons were fixed with 4% (w/v) paraformaldehyde (Sigma) in PBS for 20 min at room temperature, quenched with 0.1 M Glycine in PBS for 2x10 min and non-extracted cells were permeabilized with 0.1% (v/v) Triton X-100 in PBS for 5 min. Non-specific binding was blocked with 0.2% (w/v) pig skin gelatin (BDH) in PBS for an hour.

The cells were incubated with primary antibodies in PBS/gelatin / 2% goat or donkey serum (depending on the source of the secondary antibodies) for 30 min. After washing several times over 20 min with blocking buffer, the antigens were stained for 30 min with appropriate secondary fluorescent antibody conjugates (FITC, TRITC or DTAF) in PBS/10% goat or donkey serum in darkness. The coverslips were washed several times with blocking buffer and finally with PBS and then mounted on glass slides in either 90% glycerol, 10% PBS, 0.1% 1,4-phenylenediamine (Aldrich) or anti-fade 1 (AF1, Cityflour Ltd, UK).

Fluorescence was viewed using x40 or x63 objectives on a Zeiss Universal microscope equipped with phase-contrast and epifluorescence optics and Kodak T-Max (400 ASA) film was used for all photomicrography.

2.5 Incubations with antisense oligonucleotides

O-2A progenitors were permitted to differentiate for 6 d after which the coverslips were placed in 24 x 16mm well tissue culture dishes and washed twice with DMEM prewarmed to 37°C. Sense or antisense oligonucleotides were added to the cultures at a final concentration of 50 μM in DMEM without FCS and control cultures were incubated in medium without oligonucleotides. Two HPLC-purified oligonucleotides (5'-TGA AGA GAG TCC GAA CTC-3' and 5'-ACC ACC ACG GTC GCC ATC CT-3') which are complementary to murine MAP1B mRNA (Noble, et al., 1989) at nucleotide positions -31 to -14 and -3 to +17 respectively as well as their corresponding sense oligonucleotides were purchased from the Osswe DNA Service, Department of Chemistry, University of Edinburgh. The coverslips were processed for immunofluorescence after 5 h of incubation with the sense or antisense oligonucleotides.
2.6 Fluorescent lipids

I. Preparation of C₆-NBD-Cer and C₅-DMB-Cer / BSA complexes

A modification of the method of Pagano & Martin (1988) was used. Preparation of lipid-protein complexes and all subsequent procedures took place in complete darkness. A 50 nmol aliquot of C₆-NBD- or C₅-DMB-Cer (Molecular Probes Inc. Eugene, USA) in chloroform / methanol 1:1 (v/v) was dried with N₂ followed by at least 2 h of desiccation. The lipid was dissolved in 200 µl ethanol and injected into 10 ml of Optimem I, defatted bovine serum albumin (DF-BSA, 3.4 mg/ml) and sodium bicarbonate (2g/l) while vortexing. This solution was dialyzed overnight at 4°C against DMEM, 4mM HEPES, pH 7.4, aliquoted into eppendorf tubes and stored at -20°C for up to three months. The resultant C₆-NBD- or C₅-DMB-Cer / BSA complexes had a final concentration of 5 µM both in fluorescent lipid and DF-BSA. Fluorescent lipid was extracted every four to five weeks and was compared against non-complexed standards by thin layer chromatography (TLC, see under Lipid analysis).

II. Incubations with C₆-NBD- or C₅-DMB-Cer / BSA complexes

a) Live cells

Cells grown on coverslips in 35mm dishes were washed with pre-warmed DMEM and incubated at 37°C with 1 ml of 5µM C₆-NBD- or C₅-DMB-Cer/BSA complexes for 15 min. The cells were washed and either fixed and quenched immediately or further incubated for various periods of time and subsequently fixed and quenched (see Immunofluorescence). BFA (Epicentre Technologies, Madison, WI, USA or SIGMA) was prepared as a 10,000x stock solution in either methanol or ethanol and used at 1 µg/ml (3.6 nM) final concentration. Methyl(6(2-thienylcarbonyl)-1H-benzimidazol-2-yl)carbamate (nocodazole, SIGMA), was dissolved in DMSO and was used at 10 µg/ml (33 mM) final concentration. Controls for BFA and nocodazole experiments included samples incubated in medium as well as samples incubated in medium containing the same volumes of methanol, ethanol or DMSO as BFA- or nocodazole- treated cells.

When an intracellular antibody was to be used in conjunction with fluorescent-lipid labeled cells, fixed cells were inverted on a drop of medium or PBS, viewed and photographed. Lipid was then extracted with methanol pre-cooled to -20°C for 10s and indirect
immunofluorescence was as for permeabilized cells.

We discovered that the fluorescent properties of NBD-lipids permitted initial labeling of cellular compartments, followed by surface labeling with an antibody recognising surface antigens of oligodendroglia (such as GalC) and anti-GalC-TRITC. After NBD-lipid incubation at 37°C, the cells were lightly fixed with paraformaldehyde for 7 min, quenched, washed with PBS and surface labeled in the usual fashion. This fluorescent lipid analogue / antibody double labeling technique is of potential use for the detection of intracellular compartments in cell types which can be identified unambiguously via their expression of specific surface antigens, however, DMB-lipids cannot be used, as the latter fluoresce strongly in both green and red channels.

b) Fixed cells

Cells were fixed in 0.5% (v/v) glutaraldehyde / 10% (w/v) sucrose / 100mM PIPES, pH7 for 30 min at room temperature, quenched 3x5 min with 0.5 mg/ml freshly prepared NaBH₄ in ice-cold PBS, pH 7.4 and rinsed several times over 10 min in cold PBS. The cells were subsequently incubated with 5μM C₆-NBD-Cer or C₅-DMB-Cer/BSA complexes for 30 min at 2°C, washed with DMEM and back-exchanged with 5μM DF-BSA in Optimem-I for 4x30 min at room temperature, in order to remove fluorescent sphingolipids from the luminal leaflet of the plasma membrane (Lipsky and Pagano, 1995; van Meer et al., 1997). The cells were finally washed with PBS and mounted in the usual fashion.

2.7 Iodination of transferrin and measurement of exocytosis in oligodendrocytes

Transferrin (Tf) was radioiodinated by a modification of the method described by Woodman and Warren (1989): 20μl of a 0.5mg/ml solution of 1,3,4,6-tetrachloro-3a,6a-diphenylglycouril (lodogen, Pierce Chemical Co., Rockford, IL, USA) in chloroform was evaporated slowly in a glass tube using nitrogen, ensuring that the glassware was evenly coated. Twenty μl of a 2.5mg/ml solution of human holotransferrin (SIGMA) in 100mM sodium phosphate, pH 7.4 and 1 mCl (20μl) Na¹²⁵I (18 mCi/μg) were added sequentially and the mixture was incubated on ice for 15 min. The reaction was stopped by diluting with 200μl of the phosphate buffer and the protein was separated from free iodine on a 10ml Sephadex G-50 column run in phosphate buffer. The peak (which was approximately
equivalent to the void volume) was dialyzed overnight against 200 volumes of PBS at 4°C and the specific radioactivity was measured in a Packard gamma-counter and was approximately 6 x 10^6 dpm/μg of Tl.

Oligodendrocytes grown in 35mm dishes and permitted to differentiate for six days after the removal of bFGF were washed 2x with Tt-free RPMI (Gibco, BRL) and incubated in RPMI ± 1μg/ml BFA at 37°C for 2 h. The cells were washed and incubated in RPMI (± BFA) in the presence of 3.5μg 125I-Tl for 1 h. In order to demonstrate that the binding of 125I-Tl to receptors was specific, a 100-fold excess of non-iodinated Tl was added in control cells. The oligodendrocytes were washed with RPMI at 4°C and warmed to 37°C for specific times. The cells were finally washed in PBS, solubilized in 1M NaOH and the radioactivity was counted as before.

2.8 Preparation of 8nm gold / BSA complexes
All procedures took place in a darkened room. A colloidal gold suspension with mean particle size of approximately 8nm was prepared by heating 150µl tannic acid (10mg/ml) / 4.0 ml sodium citrate (10mg/ml) / 15.9 ml Milli-Q water in a 50 ml beaker and 200µl of HAuCl₄ (50mg / ml of Milli-Q water) / 80 ml Milli-Q water in a 250 ml beaker to 60°C for 15 min. The two solutions were combined with stirring and the suspension was allowed to cool slowly.

Seven ml of 0.2M sodium phosphate, pH 6.1 were added in a bolus to 83 ml of the colloidal gold solution at 4°C. Sixty-five ml of this suspension were added to 0.5 ml of 1mg/ml BSA in 0.1M sodium phosphate, pH 6.1. The mixture was centrifuged at 50,000g for 45 min at 4°C and the pellet was resuspended in 2 ml of PBS. A 1/20 dilution of the sample in PBS yielded an A₅₂₀ of 0.15.

2.9 Electron microscopy
O-2A progenitors were seeded on poly-D-lysine coated 1cm² slides squares (Allied Chem Corp.) in 35mm dishes and allowed to differentiate to oligodendrocytes for six d following the removal of bFGF. Protocols a) and b) were subsequently carried out by Ms. Diane Sherman, who also prepared and examined the sections from cells in procedure c). All solutions were prepared using Milli-Q water, the experiments were performed at room temperature and
washes were for 5 min unless otherwise specified.

I. Localization of MBP and MAP1B in oligodendrocytes.
The cells were fixed for 1.5 h in 4% (w/v) paraformaldehyde, 0.1% (v/v) glutaraldehyde, 0.5 mM CaCl₂ in 0.1 M sodium phosphate pH 7.4 (all from Sigma). After washing the cells several times in the same buffer with 3.5% sucrose in the absence of fixatives (Buffer A), the aldehydes were quenched with 50 mM NH₄Cl in Buffer A and rinsed again in several changes of Buffer A. The squares were washed in 0.1 M sodium maleate pH 6.5 containing 3.5% sucrose (Buffer B) and post-fixed for 1 h at 4°C with 2% uranyl acetate in Buffer B adjusted to pH 6.0. The cells were dehydrated through a graded series of ethanol and infiltrated overnight at 4°C with a 1:1 ratio of LR White (Agar Scientific, UK) and ethanol, followed by two changes of LR White over 2-4 h. The cells were embedded by inverting the square on a well (made by punching out the center of a second square) filled with fresh LR White and polymerized in a N₂ atmosphere at 52°C for 24 h. Sections on formvar- and carbon-coated nickel grids were blocked with 1% BSA, 0.5% fish gelatin, 0.1% Triton X-100 in Buffer C (20 mM Tris, 200 mM NaCl, 3 mM NaN₃, pH 7.4) for 1 h and incubated with mouse anti-MAP1B and rabbit anti-MBP in Buffer D (which comprised Buffer C with 0.2% BSA, 0.5% fish gelatin and 0.1% Triton X-100) for 3 h. Grids were washed three times with Buffer D then incubated for 3 h with goat anti-mouse IgG and IgM conjugated to 5 nm gold together with goat anti-rabbit IgG conjugated to 10 nm gold in Buffer D. After washing with Milli-Q water the sections were fixed in 2.5% glutaraldehyde for 5 min, rinsed in distilled water, dried and stained with 5% uranyl acetate and lead citrate. Sections were examined on a Jeol 100 CX transmission electron microscope.

II. Immunoperoxidase staining of the TGN
Cells were washed briefly with DMEM / 1% FCS and fixed with 4% (w/v) paraformaldehyde and 0.1% (v/v) glutaraldehyde in 0.1 M sodium phosphate buffer, pH 7.4 for 1 h. The cultures were briefly washed twice in 0.1 M phosphate buffer, quenched 3×10 min with 50 mM NH₄Cl in sodium phosphate and washed in PBS. The cells were then permeabilized by incubating with 0.05% (w/v) saponin in PBS for 5 min and non-specific antibody binding was
blocked by incubating in 1% (w/v) BSA and 0.05 (w/v) saponin in PBS (Buffer A) for 20 min. The cells were incubated with anti-TGN38 in Buffer B (i.e. Buffer A in which the concentration of BSA was decreased to 0.3%) for 2 h by inverting the as-corn square on 100µl of antibody. The squares were washed three times in buffer B and the cells were incubated with goat anti-rabbit IgG peroxidase conjugate in buffer B for 1.5 hours, washed twice in buffer B and twice in PBS. The tissue was fixed in 1.5% (v/v) glutaraldehyde, 5% (w/v) sucrose, 0.1 M sodium cacodylate, pH 7.4 (Buffer C) for 30 min, washed three times in Buffer D (i.e. Buffer C containing 7.5% sucrose) and rinsed three times in 7.5% (w/v) sucrose, 50 mMTris/HCl pH 7.4 (Buffer E). DAB pH 7.4 (0.2% w/v in Buffer E) was filter sterilized with a 20 µl Millipore filter and added at 1 ml per petri dish for 1 min. 1 µl volumes of 3% (v/v) H2O2 were added sequentially to this solution over a five minute period and this was repeated three times. The reaction was stopped after 15 min by washing twice in buffer E. The cells were rinsed in Buffer C minus sucrose (Buffer F) and postfixed in 1% (v/v) OsO4, 1% (w/v) potassium ferrocyanide in buffer F for an hour at 4°C. The discs were dehydrated in absolute ethanol, infiltrated and embedded in Epon 812 (Taab). Sections were examined on a JEOL 100 CX electron microscope.

III. Detection of fluorescent lipids.

Oligodendrocytes were washed with DMEM prewarmed to 37°C and after adding 1ml of 5 µM C₈-NBD-Cer or 5 µM C₅-DMB-Cer / DF-BSA complexes the cells were incubated at 37°C for several periods of time. On some occasions, control cultures and cells treated with BFA were incubated (in the continued presence of BFA) for 5 min with a 1/20 dilution of 6nm gold / BSA complexes in DMEM with supplements, washed and incubated for 15 min with C₈-NBD-Cer / DF-BSA complexes.

The cells were fixed in 1% (v/v) glutaraldehyde in 0.1M sodium phosphate, pH 7.4 for 30 min and washed with 0.1M Tris, pH 8.2 at 4°C. The cells were then warmed to room temperature while incubating with DAB (1.5 mg/ml in Tris, pH 8.2) for 10 min and the DAB solution was replenished and volumes adjusted to 1 ml. Small areas on the as-corn square were irradiated by focusing the blue beam (λex 470nm) of either a Zeiss universal microscope through a 18x (numerical aperture 0.4) lens for 50 min or the 20x (numerical aperture 0.7)
lens of an Olympus BH-2 microscope for 30 min at room temperature. Although some of these procedures were modifications of the method used by Pagano et al. (1989) they differed in principle in that in our experiments the cellular compartments of live cells had been labeled with fluorescent lipid pre-fixation. The cells were washed with 0.1M sodium cacodylate, pH 7.4, post-fixed with 1% (w/v) OsO₄, 0.1M sodium cacodylate, 1% (w/v) potassium ferricyanide for 1 h and washed extensively with sodium cacodylate buffer. The cells were successively dehydrated for 10 min periods in 50, 70 and 90% (v/v) ethanol / water and for 2x10 min in absolute ethanol. Infiltration in epoxy resin (Taab) was by shaking mildly with resin / absolute ethanol 1:1 (v/v) for 1 h followed by two changes of undiluted resin for half hour. Following removal of excess resin the acryl squares were inverted on 100 µl of embedding medium and polymerized at 60°C for 18 h. Sections were examined as before.

2.10 Protein estimation

Protein content was routinely determined by a modification of the method of Lowry et al. (1951) and included SDS to solubilize membrane proteins. All tests were carried out in duplicate. 250µl of 1M NaOH, 0.25% (w/v) SDS was added to samples made up to 200 µl with distilled water as well as standards containing 10-120 µg of BSA (Fraction V, Sigma) and these were incubated at 60°C for 15 min. Then, 0.5 ml of 2% (w/v) Na₂K Tartrate, 0.5 ml of 1% (w/v) CuSO₄ and 0.5 ml of 2% (w/v) Na₂CO₃ were added sequentially and with mixing the samples were incubated for 15 min at room temperature. Folin-Ciocalteau reagent (BDH) was freshly diluted 1:1 with double distilled water. 250 µl were added to the samples and the OD₇₅₀ was measured after a 45 min incubation.

2.11 Myelin

1. Isolation

This procedure is a modification of the method of Norton and Poduslo (1973) and takes advantage of the low buoyant density of myelin. Brains or peripheral nerve (sciatic or trigeminal) were removed from 3-4 week old Wistar rats of both sexes that had been killed by asphyxiation followed by decapitation.Brains from hemizygous males and homozygous
females from rumpshaker (rsh) and wild type (of the same genetic background as rsh) mice were prepared similarly. The tissue was frozen in liquid N₂ and was either used immediately or stored for up to six months at -80°C.

All subsequent procedures were performed under sterile conditions at 4°C. The brains were homogenized to 5% (w/v) final concentration in 0.85 M sucrose, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (Hepes), pH 7.4, 3 mM dithiothreitol (DTT), 1 mM tosyl-lysyl-chloromethyl-ketone (TLCK) using a Potter-Evansjem glass homogeniser (Orme Scientific, Man. U.K.). PNS tissue was initially ground to a fine powder in a mortar in liquid N₂ and was homogenised in a fashion similar to CNS tissue with the exception that the 0.85M solution was further supplemented with 0.5 mg/ml phenylmethylsulphonyl fluoride (PMSF), 0.01 mg/ml leupeptin, 0.01 mg/ml chymostatin, 0.01 mg/ml antipain, 0.01 mg/ml pepstatin-A, 10 mM benzamidine, 1 mM ethylenediaminetetraacetic acid (EDTA) pH 8.0, 1 mM ethylene glycol-bis (8-aminohexyl ether) N,N',N'N'-tetraacetic acid (EGTA), pH 7.4 and 0.01% (w/v) NaN₃.

The CNS tissue homogenate was adjusted to 40 ml in polycarbonate tubes and overlaid with 10 ml of 0.25 M sucrose, 10 mM Hepes, pH 7.4, 3 mM DTT and 1 mM TLCK; PNS homogenate was overlaid with this solution which additionally contained protease inhibitors to concentrations identical to the 0.85M sucrose PNS homogenisation buffer. Density-gradient centrifugation was at 70,000g for 90 min in an MSE 3x70 swing-out rotor.

The membrane was removed from the 0.85 / 0.25M sucrose interface and subjected to hypo-osmotic shock by either resuspending in 10 vol Milli-Q water, 1 mM TLCK (CNS myelin) or shocking solution further supplemented with the protease inhibitors of the 0.85M PNS homogenisation buffer to one tenth final concentration (PNS myelin).

The membrane was recovered by centrifugation at 23,000g for 30 min at 4°C in a Sorvall SA800 rotor. The shock procedure was repeated at least twice or until the supernatant was clear. Purified myelin was resuspended in a small volume of Milli-Q water and used immediately or aliquoted and stored at -40°C.

II. Protein phosphorylation

Myelin proteins were analyzed for cAMP-dependent and -independent phosphorylation by a
modification of the method of Bradbury et al., (1984). Thirty μg of myelin protein were diluted in 1mM MgCl₂, 0.02% (v/v) Triton X-100, 80μM ATP, 10μM of 0.5-3.0 Ci/mmol γ³²P-ATP (Amersham, U.K), 45mM Tris/HCl, pH7.4 in a total volume of 55 μl by initially preparing a cocktail of MgCl₂, Tris/HCl and Triton X-100 to which the ATPs were added. The procedure was carried out in a hood suitably adapted for the use and disposal of radioactive isotopes and the mixture was allowed to equilibrate at room temperature for 1 min. The reaction was started by adding myelin and vortexing and was carried out at 37°C for 8 min in the presence or absence of 7μM cAMP. The reaction mixture was centrifuged at 4°C for 20 min and the supernatant was removed by aspiration. Phosphorylated myelin samples or Triton X-100-soluble and -insoluble fractions prepared after phosphorylation were subjected to SDS-PAGE. The gels were either stained with PAGE blue and dried under vacuum or electrotransferred to nitrocellulose for Western blotting.

III. Protein deglycosylation
Myelin (30 μg protein) or the equivalent Triton X-100-soluble and -insoluble fractions were made up to 20 μl in 1% (w/v) SDS, 1% (v/v) β-mercaptoethanol and boiled for 2.5 min. The samples were allowed to cool and diluted to a final volume of 98 μl in 2mM EDTA, 1% (v/v) Nonidet P40 and 0.1% (w/v) sodium phosphate, pH 6.3. Endoglycosidase-F (0.05 units, 1 unit of activity per 20 μl) (Boehringer Mannheim) was added and the samples were vortexed and incubated for 5 h at room temperature. Another 0.05 units endoglycosidase-F were added and the samples were incubated for a further 18 h.

IV. Extraction with non-ionic detergent
Myelin was aliquoted in eppendorf tubes and centrifuged at 13,000g for 30 min at 4°C in an MSE-Microcentaur microfuge. The water was removed by aspiration and the pellet was resuspended in filter-sterilized cytoskeleton (CSK) buffer (Gilliespie et al., 1989) to a concentration of 1 mg/ml. This buffer was similar to the cell extraction buffer (previously mentioned under Indirect Immunofluorescence) with the exception that for myelin extraction the concentration of KCl was 100mM instead of 50mM.

Following a 5 min incubation at room temperature, the sample was centrifuged, the
supernatant (soluble fraction) was retained and the procedure was repeated. The pellet was resuspended in Milli-Q water to the same volume of the combined soluble fractions. The Triton X-100-soluble and -insoluble fractions were either used immediately or aliquoted and frozen at -20°C.

2.12 Protein detection

I. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were separated by SDS-PAGE on 5-17% slab gels using the discontinuous system of Laemmli (1970). Samples were boiled for 2.5 min in a buffer containing 2.5% (w/v) SDS, 125 mM DTT, 0.001% (w/v) bromophenol blue and 20% (v/v) glycerol. Electrophoresis was for 16-18 hours at 5 mA in a running buffer consisting of 0.03% (w/v) Tris(hydroxymethyl)aminomethane, 0.12% (w/v) glycine. Proteins separated according to size could be visualized by immersing the whole gel or a strip in 0.001% (w/v) PAGE blue (BDH) in 20% (v/v) methanol, 10% acetic acid (v/v) for 2-3 h.

II. Western blotting

Proteins separated by SDS-PAGE were electrotransferred to 0.45μm pore nitrocellulose paper (Schleicher and Schuell, Anderton Ltd) at 0.25A for 3 hours by the method of Towbin et al. (1979) in a Transblot apparatus (Biorad Laboratories, U. K.). The efficiency of transfer was assessed by staining nitrocellulose strips with 0.2% (w/v) Amido Black in 25% (v/v) methanol, 10% (v/v) acetic acid for 10 s and rinsing with solvent. Residual protein on the gel was visualized by staining with PAGE blue.

For immunoblotting all incubations were at room temperature and washes were for 5 min with mild shaking. Non-specific binding to nitrocellulose was blocked by incubating with 0.2% (w/v) pig skin gelatin, 0.1% (v/v) Triton X-100 in PBS, pH 7.4 (Buffer I) for 3 h and the blots were further incubated in Buffer I containing the appropriate dilution of primary antibody for 1 h. The blots were rinsed several times over 30 min with Buffer I and incubated with either goat anti-rabbit IgG or goat anti-mouse IgG (depending on the source of the primary antibody) conjugated to horseradish peroxidase for 1 h. After washing several times in Buffer I, twice in Buffer I minus Triton X-100 and once in PBS, immunostained proteins were
determined using 0.5 mg/ml DAB in Tris/HCl, pH 7.6 and 1 μl of 30% (v/v) H2O2 per ml of DAB solution as substrates. The reaction was terminated with 2% SDS and the DAB solution was neutralized with bleach prior to disposal.

2.13 LIPID ANALYSIS

I. Lipid extraction

Lipid was extracted in glass stoppered tubes by the method of Bligh and Dyer (1959). Five ml of chloroform / methanol / β-hydroxytoluene (BHT) (2:1:0.05, v/v/w) were added to each mg of protein (myelin, Triton X-100-insoluble pellet or cell protein) suspended in 200 μl distilled water. The sample was vortexed, extracted for 10 min at room temperature and 0.2 volumes of 0.1 M KCl were added with vigorous vortexing. The suspension was centrifuged at 1000 g for 10 min at room temperature and the lower phase was carefully removed with a Pasteur pipette and placed in a conical glass tube with an equal vol. of 0.1 M KCl / CH3OH 1:1 (v/v). The suspension was vortexed and centrifuged as before, the lower layer was uptaken and passed through 3MM filter paper (Whatman) in pre-weighed glass storage conical vials and the solvent was evaporated with N2 and immersion in warm water. The lipid was desiccated in darkness overnight, weighed and resuspended in chloroform / methanol 1:1 (v/v) containing BHT, gassed with N2 and stored at -20°C in darkness for up to six months.

II. Lipid class analysis

a) Phospholipid

The Eng and Noble (1968) method was used to measure total phospholipid as well as phospholipid classes. This method takes advantage of the reaction of inorganic phosphate with ammonium molybdate to form phosphomolybdic acid which is reduced and the product is determined spectrophotometrically.

Individual phospholipid classes were separated by streaking 500-1,000 nmoles phospholipid on 20 cm² 60 Kieselgel high performance TLC (HPTLC) plates (Merok, W. Germany) which had been pre-developed with chloroform / methanol, (1:1, v/v), air dried.
pre-developed with hexane / diethyl ether / acetic acid (85:15:1.5, v/v) and activated at 100°C for 15 min. The plates were developed in methyl acetate / propan-2-ol / chloroform / methanol / 0.025% w/v KCl (25:25:25:10:9) and individual phospholipid classes were identified by their co-migration with commercially purchased standards (Sigma) and with the components of a well characterized rat myelin lipid standard (Gillespie et al., 1989). Total myelin lipid, phospholipids scraped together with silica from HPTLC plates and standards (0–400 nmoles KH2PO4) were pipetted in thick-walled test tubes which had been washed by overnight immersion in chromic acid. The organic solvents were evaporated at 100°C in a fume hood; 0.85 ml of 70% (v/v) perchloric acid was added and the tubes were stoppered with glass marbles and heated to 180°C for at least 3 h until the samples were clear of color. The volumes were made up to 3.3 ml with distilled water before adding 0.5 ml of 2% (w/v) ammonium molybdate and 0.5 ml of freshly made 10% (w/v) ascorbic acid and the samples were mixed by vortexing. The tubes were heated for 5 min in a boiling water bath, allowed to cool and, after the silica had been pelleted at 1,000g for 10 min, the A800 was measured. The graph slope was linear and 400 nm phosphate yielded an average A800 = 1.9.

b) Sulfatides

The method of Kean (1968) was employed, this exploits the ability of lipid sulfates to form colored azure A complexes that are extractable into chloroform/methanol solutions. Samples and commercially purchased standards ranging from 0.35 nmoles were placed in stoppered glass tubes. After evaporating to dryness by heating at 100°C, 5 ml chloroform/methanol (1:1, v/v), 5 ml of 25μM H2SO4 and 5 ml Azure-A dye solution (0.004% w/v Azure-A in 25μM H2SO4, stored at room temperature in darkness for up to a week) were added. The tubes were stoppered, shaken for 30 s, centrifuged at 1000g for 5 min at room temperature and the A445 was measured; 25 nmoles of sulfatide yielded an A445 = 0.65.

c) Cerabrosides

The method of Macala et al. (1983) was employed. Samples, hydroxy and non-hydroxy cerabrose standards (0-8 nmoles) were spotted over 0.5 cm on pre-washed HPTLC plates. Development was in methyl acetate / propan-2-ol / chloroform / methanol / 0.2% (w/v) KCl (25:25:25:10:9, v/v/v/v/v) until the solvent front reached the upper limit of the plate. After evaporating the solvents by vacuum deslocation over 3 h, the plates were sprayed with 3%
(w/v) cupric acetate and 8% (w/v) phosphoric acid. The plates were then air dried and charred by baking at 160°C for 15 min. Cerabrosides were quantified by densitometry using a Shimadzu CS-9000 dual wavelength flying spot TLC scanner and a DR-13 recording integrator. This method could also be adapted for the quantification of other lipid classes.

d) Cholesterol

The chemical method of Sperry & Brand (1943) which is based on the Liebermann-Burchard reaction was employed. Five ml of acid-free chloroform was added to dried lipid samples or standards (0-700 nmoles) in glass stoppered tubes. The tubes were equilibrated in a water bath at 24°C and, following the addition of 2 ml of cold acetic anhydride reagent (20 ml acetic anhydride and 1 ml of concentrated H₂SO₄ incubated on ice for 9 min) were shaken vigorously and incubated for a further 20 min in darkness. The A₄₅₀ was read, the graph slope was linear and 700 nmoles cholesterol yielded an A₄₅₀ = 0.18.

III. Fatty acid analysis

Total lipid or lipid classes that had been separated by TLC using methyl acetate, propan-2-ol / chloroform / methanol / 0.2% (w/v) KCl (28:25:25:10:9 v/v/v/v/v) were subjected to acid-catalyzed transmethylation (Christie, 1982). Polar lipid classes identified against commercial standards by lightly spraying the TLC plate with 2',2',4'-dichlorofluorescein (DCF) were scraped off and transmethylated directly on silica. One ml of hexane and 2.5 ml of methanol containing 1% (v/v) concentrated H₂SO₄ were added to a maximum of 1 mg of dried lipid in a glass stoppered tube. The mixture was vortexed, gassed with N₂ and, by ventilating the stopper with a small piece of paper, heated at 50°C overnight.

Methyl esters were extracted from the transmethylation mixture by adding 5 ml hexane/diethyl ether 1:1 (v/v) and 2.5 ml distilled water, vortexing, centrifuging at 1000g for 5 min at room temperature and taking the upper layer into a clean tube. This was repeated and the extracts were pooled. After addition of 2.5 ml of 2% (w/v) KHCO₃ the tubes were vortexed, centrifuged and the upper layer was dried with N₂ and resuspended in hexane.

The methyl esters were further purified by TLC using hexane / diethyl ether / concentrated acetic acid (90:10:1, w/v/v) as the developing solvent. They were then redissolved in hexane containing 0.05% (w/v) BHT and analysed on a Packard 438 gas chromatography by using...
on-column injection. The carrier gas was H2 and the thermal gradient ranged from 50-
235°C. Individual methyl esters were identified by comparison with well characterized fish oil
methyl ester standards (Bell et al., 1983).

iv. Fluorescent lipid analysis

Cells of the O-2A lineage were grown in plastic 25cm² or 75 cm² flasks to developmental
stages that had been previously characterized in terms of morphology and the time of
appearance of myelin-specific antigens. The cells were washed twice with pre-warmed
defined medium (see Cell Culture) without FCS and incubated with 5mM C₆-NBD- or C₅-
DMB Cer / BSA complexes (3ml fluorescent lipid/BSA complex solution per 75cm² flask
containing approximately 10⁷ cells or one ml per 25cm² flask containing 3.3x10⁶ cells) for 15
min at 37°C. The cells were washed twice with warm medium and incubated in medium
without fluorescent lipid precursors for a total of 2 h. The cells were removed from the flasks
using a rubber policeman, pelleted at 10,000g for 10 min and total lipid was extracted.
Equal amounts of fluorescence were applied to HPTLC plates and these were developed
with methyl acetate / propan-2-ol / chloroform / methanol / 0.25% w/v KCl (25:25:25:10:9,
v/v) (solvent 1).

The fluorescent lipid metabolites C₆-NBD-SM, C₅-DMB-SM, C₆-NBD-GlcCer, C₅-NBD-
GalCer and C₅-DMB-GlcCer were identified by comparison with authentic standards, which
were the generous gifts of Dr Richard Pagano. Fluorescent spots were scraped from the
TLC plates, dissolved in chloroform/methanol 2:1 (v/v) and quantified by spectrofluorimetry
with a Perkin Elmer LS50 luminescence spectrometer equipped with Fluorescence Data
Manager software in the Scan mode, using λₑ=470nm and λₘ=530nm, slit width of 10nm
and integration time of 10s. For quantitative measurements, known molar quantities of
standards were treated identically to metabolized lipid.

Total fluorescent cerebrosides were resolved in the gluco- and galacto-forms on borate-
treated HPTLC plates. These plates were pre-washed in the usual manner (see under
phospholipid), immersed in 1.2% (w/v) analar quality boric acid (BDH) in Milli-Q water /
ethanol (1:1, v/v) overnight, air dried and activated for 10 min at 100°C. The plates were
developed in chloroform / methanol / water / ammonia (72:48:9:2, v/v) (solvent 2) and the
fluorescent cerebrosides were quantified as before.

Since no standard was available for C5-DMB-GalCer, this minor metabolite was tentatively identified by its Rf value (smaller than the Rf value of C5-DMB-GlcCer), by either spraying plates with orcinol / sulfuric acid which recognizes carbohydrates, or periodate-Schiff’s reagent which identifies vicinal diols (Christie, 1973). Developed borate-treated TLC plates were lightly sprayed with orcinol (2 mg/ml) in 75% sulfuric acid and heated for 15 min at 100°C. Carbohydrate-containing lipids appeared as blue-violet spots. Alternatively, the plates were sprayed with 2% (w/v) sodium periodate and dried at 55°C, then sprayed with 2% (w/v) sodium bisulfite and dried; the last step was repeated until the iodine stain had disappeared, when the plate was cooled and sprayed with Schiff’s reagent (pararosaniline chloride 1% w/v, sodium bisulfite 4% w/v in 0.25 M HCl) (Sigma). The plate was allowed to dry and developed at room temperature for at least six hours, after which sugar-containing lipids appeared as purple spots. The lipid identified as C5-DMB-GalCer only reacted in tests that detected glycolipids. It was negative in the various other colorimetric tests for polar and non-polar lipids. The Rf values for the various sphingolipids are given in Table 3.
Table 3. The R_f values of various sphingolipids

<table>
<thead>
<tr>
<th>R_f value</th>
<th>Endogenous lipid</th>
<th>C<sub>6</sub>-NBD-lipid</th>
<th>C<sub>5</sub>-DMB-lipid</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Solvent 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer</td>
<td>0.88</td>
<td>0.84</td>
<td>0.88</td>
</tr>
<tr>
<td>GalC</td>
<td></td>
<td>0.80</td>
<td>0.84</td>
</tr>
<tr>
<td>Non-OH</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glc</td>
<td>0.91</td>
<td>0.77</td>
<td>0.82*</td>
</tr>
<tr>
<td>SM1</td>
<td></td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>SM2</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>SM-A</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-B</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GlcC</td>
<td>0.76</td>
<td>0.73</td>
<td>0.76</td>
</tr>
<tr>
<td>GalC</td>
<td></td>
<td>0.53</td>
<td>0.64*</td>
</tr>
<tr>
<td>Non-OH</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solvent 1, Solvent 2: see Text

*: Tentative identification

SM1, SM2 and SM-A, SM-B: Sphingomyelin with either N-acyl sphingosine (SM1, SM-A) or dihydrosphingosine (sphinganine) (SM2, SM-B) backbone. The R_f values of SM1 and SM2 corresponded to those of stereoisomers of C₅-DMB-SM. These identifications were also tentative.
Establishment and characterization of a primary culture system for glia of the O-2A lineage derived from brain
3.1 Introduction

The analysis of cell lineage during development in the mammalian CNS has been facilitated by methods that identify, isolate and manipulate specific cell types under defined culture conditions. Such approaches were initially used to isolate and characterize the O-2A progenitor cell that can, under appropriate conditions, give rise to oligodendrocytes or Type-2 astrocytes (for review see Raff, 1988). A ligand produced by Type-1 astrocytes and identified as the A-chain of PDGF (Richardson et al., 1986) is mitogenic for optic nerve O-2A progenitor cells (Noble et al., 1988). Raff et al., (1988) have proposed that PDGF drives a "clock" that counts cell divisions and regulates the timing of oligodendrocyte development in culture.

Several other polypeptide growth factors have been shown to influence oligodendroglial development in culture, including insulin-like growth factor (McMorris and Dubois-Daloq, 1988), epidermal growth factor (EGF) (Sheng et al., 1989) and bFGF (Besnard et al., 1989). Since bFGF is present in brain during development (Gonzalez et al., 1990), it is possible that this polypeptide may have a role in gliogenesis. The continued presence of bFGF can maintain a high rate of mitosis and block differentiation in O-2A progenitors grown in culture and this mitogen also increases the sensitivity of O-2A cells to PDGF by maintaining a high level of expression of PDGF α-receptors (McKinnon et al., 1990). Louis et al., (1992) have recently shown that the combined use of bFGF and PDGF can stimulate prolonged division of O-2A cells from cerebral cortex, as had previously been shown for O-2A progenitors from optic nerve (Bögler et al., 1990).

Preferred differentiation of O-2A cells to oligodendrocytes was achieved for cells grown to high densities and was unrelated to the total number of cultured cells, whereas O-2A cells seeded at low densities differentiated to Type-2 astrocytes (Levi et al., 1991). Additionally, medium conditioned by high-density subcultures of O-2A cells contained high MW (>30 kDa) non-mitogenic factor(s) that were capable of inducing differentiation of O-2A cells to oligodendrocytes. Preferred differentiation of O-2A progenitors to oligodendrocytes occurred for cells seeded at either high or low densities. Such differentiation may be triggered by direct homotypic interactions and could be additionally dependent on the secretion of short range autocrine or paracrine factors by O-2A progenitors.
An enriched oligodendrocyte culture *system* with at least 60% purity had been previously characterized in our laboratory. Although this system had been useful for both immunocytochemical and biochemical analyses (Wilson and Brophy, 1989), an improved method was deemed necessary in order to:

a) increase the cell purity and yield

b) partially synchronize the cell population that is isolated during the initial enrichment from mixed glial cultures to the O-2A progenitor cell stage and

c) permit O-2A cell differentiation to oligodendrocytes in a sequential manner and characterize this progression by counting the cells that express well known markers of glial cell differentiation.

Although increased cell purity was desirable, high cell yields were essential considering that the proposed investigations included the use of a lipid analogue with low fluorescence yield (C6-NBD-Cer) as well as analysis of oligodendroglial cytoskeletal lipid, which was expected to be a small proportion of the total cellular lipid. In the case of CNS myelin which, by comparison with oligodendrocytes, can be isolated at relatively high abundance, the lipid isolating with the cytoskeleton is approximately 12 mol% of the total membrane lipid (Gilkeepie et al., 1989).

The primary cell culture system that was eventually developed (see Materials and Methods) combined elements from the system of Wilson and Brophy, (1989) with more recent knowledge regarding the specifics of O-2A progenitor cell development in culture. Cells of the O-2A lineage were permitted to differentiate to oligodendrocytes and were characterized at specific developmental stages by indirect immunofluorescence using stage-specific antibodies. The successive morphologies of differentiating O-2A cells were used as rough guides prior to performing biochemical and immunocytochemical analyses and at least one previously characterized antigen of development was used as a control at all times.
3.2 Results

Isolation of O-2A progenitors and differentiation to oligodendrocytes

Dissociated cells from neonatal rat cortex were cultured in DMEM/10% FCS for 6-8 d as described in the Methods and Methods section and formed a bilayer consisting of small, phase-dark cells adhering to a basement of flat, lighter cells (Fig. 11A). The dark cells were released by shaking the cultures overnight, the mAb A2B5 was introduced in the culture medium and O-2A progenitors (Fig. 11B) were isolated by reverse panning and induced to divide with bFGF in defined, serum-free medium. O-2A progenitors from brain typically have a bi- or multi-polar morphology, which was also described by others (McKinnon et al., 1990; Louis et al., 1992). After four days in mitogen, the O-2A progenitors were allowed to differentiate in fresh medium where bFGF had been replaced by 1% FCS. Proligodendrocytes (O4+ GaIC- cells) are larger than O-2A progenitors with wider, more extensive processes and the highest proportion of proligodendrocytes was found 1-2 d after the removal of bFGF (Fig. 11C). For most O-2A progenitors, terminal differentiation to oligodendrocytes (GaIC+ MBP+ cells) required culturing for 6 d subsequent to the removal of bFGF. Oligodendrocytes have larger cell bodies than proligodendrocytes and the thick, branching extensions of the former terminate in a meshwork of finer processes (Fig. 11D).

The layer resulting after the removal of phase-dark cells (Fig. 11E) consisted mainly Type-1 astrocytes (65±4% A2B5- GFAP+) and unidentified cells (<1% O4+ GaIC+ MBP+). Cells adhering on plastic during reverse panning were incubated in DMEM / 1% FCS for 2 h (Fig. 11F). Some of these cells were Type-2 astrocytes (14±2% A2B5+ GFAP+) and the rest were not identified (<1% O4+ GaIC+ MBP+).

O-2A progenitors differentiate to oligodendrocytes within 6 d in culture

Non-adherent (A2B5-coated) cells that were recovered by reverse panning were incubated in defined medium/1% FCS for 4 h, immunostained for the different antigens that mark the differentiation of O-2A progenitor cells to the oligodendrocytic phenotype and positive cells were counted. These cells were approximately 63% A2B5+, 28% O4+, 17% O1+, 2% MBP+ and 10% GFAP+, i.e. mainly O-2A progenitors (A2B5+ GFAP+) with some proligodendrocytes (O4+ GaIC+), oligodendrocytes (O4+ GaIC+) and astrocytes (GFAP+).
Fig. 11. The morphologies of cells in cultures from dissociated rat cerebra.

Postnatal 1-2 d old rat cerebra were dissected and dissociated as described in Materials and Methods. After a week in DMEM/10% FCS, small dark cells adhering on a layer of flat cells had formed a bilayer (A). The top layer was uptaken, the O-2A progenitors were isolated by reverse panning and induced to divide in bFGF/defined medium (B). After 4 d in mitogen the progenitors were induced to differentiate to preoligodendrocytes (C) or oligodendrocytes (D) by culturing for 3 and 9 d, respectively, in medium where 1% FCS had replaced bFGF.

E: The Type 1 astrocyte (65±4% A2B5+ GFAP+) and unidentified (−1% O4+ O1+ MBP+) cell layer following the removal of phase dark cells.

F: Cells adhering on plastic during reverse panning were incubated in DMEM/1% FCS for 2 h. Few of these cells (14±2%) were Type 2 astrocytes (A2B5+ GFAP+) and the rest were not identified (−1% O4+, O1+, MBP+).
When the cell population resulting from reverse panning was incubated for 4 d in defined medium + bFGF followed by 1 d in defined medium + 1% FCS (1 d post-bFGF, Fig. 12). O-2A progenitors dominated the culture (>80% A2B5+ GFAP*) and only 10% of the cells were Type 2 astrocytes (A2B5+ GFAP*). The total cell number had increased approximately 10-fold, as was determined by counting cells before and after bFGF in a number of similar fields. The effect of bFGF was identical at concentrations between 1-10ng/ml and daily renewal was necessary for the differentiation block and division to occur, as had been previously found by McKinnon et al. (1990). At 2 d post-bFGF a large proportion (~40%) of the O-2A progenitor cell population had differentiated to O4+GalC- oligodendrocytes and there was a sharp rise in the numbers of oligodendrocytes (O4+ GalC+) between 2 and 3 d. Although the number of MBP+ cells also rose substantially during 2 and 3 d, GalC+ MBP+ oligodendrocytes remained fewer than their GalC+ MBP- counterparts until 6 d post-induction, when the GalC+ MBP+ oligodendrocytes represented approximately 80% of the total cells in culture.

In experiments where the 4 d of incubation in bFGF had been omitted, the O-2A progenitors differentiated to oligodendrocytes within 36-48 h, yields and purity were low and the cells were approximately 60% O4+ GalC+ MBP+ oligodendrocytes / 40% A2B5+ GFAP* Type-2 astrocytes at 6 d after reverse panning. Control cultures treated with bFGF gave substantial yields of high purity cells, which differentiated sequentially and over a period of several days. O-2A progenitors that were seeded at low densities (<4x10^5 cells cm^-2) differentiated to approximately 60-70% A2B5+ GFAP* Type-2 astrocytes in the presence of either bFGF or 1% FCS and the total cell yields were low.

Since Type-1 astrocytes secrete PDGF in vitro (Raff et al., 1988), an attempt was made to produce conditioned medium containing PDGF (or PDGF-like) activity by incubating Type-1 astrocyte layers (resulting after O-2A removal, Fig. 11E) with defined medium containing 0, 1 or 10% FCS for 24-48 h. This “conditioned” medium failed to stimulate the proliferation of O-2A progenitor cells in the absence of bFGF, but incubation of O-2A cells in the presence of “conditioned” medium containing bFGF for 4 d, followed by incubation in “conditioned” medium + 1% FCS, resulted in the proliferation of O-2A cells and their differentiation to oligodendrocytes, a result similar to that obtained with defined medium.
Fig. 12 Developmental markers of O-2A progenitor differentiation in culture.

O-2A progenitors were grown for 4 d in defined medium containing 1 ng/ml bFGF then switched to medium containing 1% FCS without bFGF (0 d of differentiation). The numbers of cells expressing A2B5, O4, GalC, MBP and GFAP were determined by indirect immunofluorescence. A minimum total of 700 cells per duplicate coverslip were counted in at least ten randomly selected optical fields in three different experiments; SEMs were ±10% of each mean value. Cultures that had been allowed to differentiate for 6 d consisted primarily of oligodendrocytes (80% GalC+, MBP+ cells) with some Type-2 astrocytes (A2B5+ GFAP+). few oligodendrocytes that had not yet fully differentiated and a very small number of flat fibroblast-like cells.
3.3 Discussion

Fibroblast growth factors (FGFs) are a family of seven structurally related polypeptides which are highly mitogenic for cells derived from mesoderm and neuroectoderm (for review see Vlodarsky et al., 1991). The effect of bFGF on O-2A progenitors from rat brain has been studied by McKinnon et al., (1990) and this polypeptide was shown to be mitogenic for O-2A progenitors cultured in defined medium / 0.5% FCS for at least four days.

These experiments confirmed the findings of McKinnon et al., (1990). 2x their yield was achieved and it was additionally found that when seeding progenitors at high densities division could take place in the total absence of FCS. The O-2A cells were predominantly multipolar and such a morphology is an apparent function of high seeding density (Louis et al., 1992).

O-2A prenatal progenitors from the optic nerve have an average cell cycle time of 18 h (Wolwijk and Noble, 1989); in the present experiments, the total number of cells increased approximately 10-fold after 4 d in bFGF, when the cells were mostly O-2A progenitors. Such proliferation was consistent with a cell cycle time of 18 h, when considering that the starting cell population (i.e. cells prepared by reverse panning) was not homogeneous in O-2A progenitors.

O-2A cells could differentiate to approximately 80% pure oligodendrocytes in the presence of low (1%) concentrations of FCS and later experiments also showed that the O-2A progenitors could differentiate to oligodendrocytes in the total absence of FCS (results not shown). These experiments suggested that high cell density during the initial seeding of O-2A progenitors may be very important for differentiation to the oligodendrocytic phenotype (consistent with the findings of Levi et al., 1991) and that high cell density may also promote proliferation. Low concentrations of FCS may have a supportive role for cells seeded at low densities only and it is possible that autocrine and / or paracrine short-range factors produced by O-2A progenitor cells may promote their own survival, proliferation and differentiation to oligodendrocytes.

It is not understood why Type-1 astrocyte 'conditioned' medium failed to stimulate the proliferation of O-2A progenitors. One possible explanation is that in astrocytes remaining after the removal of the top layer of phase-dark cells, PDGF bioynthesis may be down-
regulated or PDGF secretion inhibited if the production of a certain number of O-2A progenitors has already occurred. No conclusions can therefore be drawn from the experiments involving conditioned medium and future work will either require commercially purchased PDGF or preparation of conditioned medium from Type-1 astrocyte layers grown specifically for PDGF production, such as the ones described by Wolsiwijk et al. (1991) and Louis et al. (1992).

These experiments suggested that cultured O-2A progenitor cells differentiate to oligodendrocytes in a sequential manner. Cell counts indicated that three stages of O-2A progenitor cell development emerged in sequence and could be identified on the basis of antigenic phenotype. O-2A progenitors (A2B5+ GFAP+) predominated 1-3 d after bFGF removal. O4+ GalC+ prolilgondrocytes appeared transiently (2-3 d) and terminally differentiated oligodendrocytes (GalC+ MBP+) were the main cells in the cultures from 6 d onwards. Such a sequence in appearance of antigenic phenotypes has been observed by others (Gard and Pfeiffer, 1990; Dubois-Dalcq et al., 1986) both in vivo and in vitro.

This primary cell culture system appeared to fulfill the following criteria:

a) establishment of the cultures was easy and reproducible
b) O-2A progenitors and oligodendrocytes were present at a relatively high purity
c) high cell yields were possible, thus enabling future immunocytochemical and biochemical experiments with cells from the same preparation to be carried out in parallel.
d) The stages of O-2A development had been characterized with a variety of well established antigenic markers, thereby investigations at key points of development were possible.

Since the criteria for a primary cell culture system had been largely met, it was decided to proceed with developmental, metabolic and trafficking investigations and perhaps develop the culture system further at a later date.
Microtubule-associated protein MAP1B: Role in stabilizing the morphology of differentiated oligodendrocytes
4.1 Introduction

During the most active phase of myelination in the mammalian CNS, oligodendrocytes extend numerous myelinating processes that are responsible for ensheathing many nerve fibres simultaneously (Wood and Bunge, 1984). In culture, oligodendrocytes extend a complex system of processes from the cell body coincident with their terminal differentiation from progenitor cells (Gard and Pfeiffer, 1989). Although much has been discovered about the factors that influence oligodendrocyte progenitor development (for a review see Raff, 1989), the factors that regulate the formation and extension of myelinating processes are unknown. The study of the cytoskeleton of myelin-forming cells and their progenitors might help in understanding how their morphology is determined during differentiation (Gillespie et al., 1989; Wilson and Brophy, 1989; Kelly et al., 1992). Unlike their progenitors, oligodendrocytes do not contain any known intermediate filaments (Raff et al., 1984), consequently they must rely on microtubules and microfilaments for the morphological reorganization required for the formation, extension and stabilization of myelin processes.

Microtubule-associated protein MAP1B, which may function as a microtubule crosslinker (Noble et al., 1989; Sato-Yoshitake et al., 1989), is found associated with neurites during the early stages of process extension, where it is probably involved in neuronal growth (Tucker et al., 1988a; Tucker et al., 1988b; Tucker and Matus, 1988) and the development of polarity (Matus, 1988; Matus, 1990). Since MAP1B is also present in glia (Diaz and Avila, 1989) including oligodendrocytes (Fischer et al., 1990) but its function in these cells has not been investigated, this study undertook to quantify the amount of MAP1B expression in cultured glia, the point at which MAP1B first appears during the differentiation of O-2A progenitors, and assess the possible role of MAP1B in oligodendrocytes. The amount of expression and the developmental appearance of MAP1B was investigated by double label immunofluorescence using anti-MAP1B and antibodies that either characterize the development of O-2A progenitors to oligodendrocytes (A2B5, O4, O1 and MBP) or recognize astrocytes (GFAP). The possible role of MAP1B in oligodendrocytes was examined by inhibiting its synthesis with antisense oligonucleotides.
4.2 Results

MAP1B expression in oligodendrocytes and astrocytes

Surface expression of the sphingolipid GaIC marks differentiated oligodendrocytes upon their development from progenitors and these cells possess MAP1B (Fig. 13, A and B). In addition to oligodendrocytes, these cultures contain some astrocytes and a small number (<1%) of fibroblasts. In contrast to oligodendrocytes, GFAP+ astrocytes have little detectable MAP1B except for perhaps in some regions of their fibrous processes (Fig. 13, C and D). Adjacent to the astrocyte in Fig. 13 C is shown a rare flat fibroblast-like cell that does possess MAP1B, although at a reduced level of expression in comparison with oligodendrocytes in the same cultures.

Immunoblotting shows that the MAP1B detected immunocytochemically in oligodendrocyte cultures comigrates with brain MAP1B in SDS gels (Fig. 14, Panel A), therefore the oligodendrocyte protein is probably identical to the well-characterized MAP1B of neurons (Noble et al., 1989) as suggested by Fischer et al., (1990). Since it is believed that MAP1B interacts only weakly with microtubules in neurons (Matus, 1988), the strength of MAP1B interaction with the cytoskeletons of oligodendrocytes was assessed by fractionating the cells into a detergent-soluble fraction and a detergent-insoluble cytoskeleton (Wilson and Brophy, 1989). Immunoblotting shows that most of the MAP1B does not remain associated with the cytoskeleton but is rather soluble in detergent (Fig. 14, Panel B). The presence of significant amounts of tubulin in the cytoskeleton fraction suggests that the extraction procedure does not unduly disrupt microtubules (Wilson and Brophy, 1989). In spite of their apparently weak interaction, tubulin and MAP1B colocalize in intact oligodendrocytes (Fig. 15, A, B and E) as demonstrated previously by Fischer et al. (1990). Furthermore MAP1B can be detected in association with microtubules in the oligodendrocyte cytoskeleton (Fig. 15, C and D).

MAP1B expression promotes the terminal differentiation of O-2A progenitors into complex process-bearing oligodendrocytes

Preliminary experiments showed that MAP1B could not be detected immunocytochemically in oligodendrocyte progenitors, despite the abundance of MAP1B in oligodendrocytes, which
Fig. 13. MAP1B is abundantly expressed in the cell body and major processes of mature oligodendrocytes.

O-2A progenitors were stimulated to divide in the presence of bFGF and then allowed to differentiate to oligodendrocytes in medium containing 1% FCS without bFGF. After six days in culture oligodendrocytes with complex, well developed processes appear, which are strongly GalC⁺ (FITC) (A); these cells express MAP1B (TRITC) in their cell bodies and major processes (B). There are small numbers of astrocytes which express GFAP (FITC) (C), however only faint MAP1B staining is detectable in some of their processes (arrows in C and D). Very rare (<1%) flat fibroblast-like cells which are GFAP⁺ (C) also express MAP1B (D, arrowhead). Bar, 5 μm.
MAP1B was detected by Western blot analysis in a brain homogenate from postnatal day 5 (P5) rats (Panel A) and in oligodendrocytes that had been allowed to differentiate for 5 d in culture (Panels B and C). Soluble (S) and cytoskeleton (C) fractions of oligodendrocytes were prepared by extraction with a buffer containing 0.5% (v/v) Triton X-100 (see Methods section). After SDS-PAGE in 5-17% slab gels, the proteins were transferred to nitrocellulose and immunostained with antibodies against MAP1B (Panels A and B) and tubulin (Panel C). Oligodendrocyte MAP1B was predominantly in the soluble fraction (Panel B) and had an identical Mₚ to that of brain protein (Panel A). Panel C shows that approximately half of the tubulin in these cultures remains assembled in microtubules, which indicates that the microtubules remained relatively intact under these conditions of extraction (Wilson and Brophy, 1989).
Fig 15. MAP1B colocalizes with tubulin and associates with microtubules in the oligodendrocyte cytoskeleton.

Progenitors were allowed to differentiate for 6 d and either fixed and permeabilized (A and B) or detergent-extracted and then fixed (C and D). Cells were analyzed by double label immunofluorescence for MAP1B (DTAF) (A and C) and tubulin (TRITC) (B and D). MAP1B colocalizes with tubulin in intact cells (A and B) and codistributes with microtubules in oligodendroglial cytoskeleton (C and D). Hence some MAP1B remains associated with microtubules. Bar, 5 μm. Close interaction of microtubules and MAP1B is also demonstrated by immunogold electron microscopy in Panel E. An oligodendrocyte labeled with antibodies against MBP (10 nm gold, arrow) possesses a microtubule decorated with MAP1B as detected by anti-MAP1B and secondary antibodies coupled to 5 nm gold (arrowhead). Bar, 0.1 μm.
promoted an investigation into the stage of MAP1B expression during oligodendrocyte
development by comparison with the well-defined differentiation markers A2B5, O4 and GaIC
together with the myelin membrane proteins MBPs.

By 2 d of differentiation there is a large number of A2B5+ cells (78%), a substantial
population of cells bearing the early marker O4 (39%) and a small but significant number of
O4+,GaIC+ oligodendrocytes (11%) (see Section 3, Fig. 12). This was thought to be an
appropriate developmental stage to identify the phenotypes of MAP1B+ cells during early
oligodendrocyte differentiation, when the cells are undergoing the transition from multipolar
preoligodendrocyte to complex, process-bearing oligodendrocytes. Therefore, cultures at 2 d
of differentiation were double labeled with antibodies against MAP1B and three of the
markers that had been used to define oligodendrocyte differentiation (A2B5, O4 and GaIC).

Fig. 16 illustrates the phenotypes of MAP1B+ cells at a time when these cells are
becoming preoligodendrocytes and beginning to lose A2B5. An A2B5+,MAP1B+ cell that is
in such a transitional stage is shown by the arrowhead alongside two A2B5+ progenitor cells
that have yet to acquire MAP1B (Fig. 16, A and B). Another cell that no longer expresses
A2B5 has the type of small, intensely-labeled MAP1B+ cell body that one observes in
strongly O4+ cells (Fig. 16, C and D). Preoligodendrocytes at an early stage of acquiring O4
(Fig. 16, C and D, small arrows) do not express MAP1B and have yet to develop an
extensive system of processes. As preoligodendrocytes mature to oligodendrocytes, their
major processes increase in diameter and terminate in a myriad of fine processes (Fig. 16, E
and F). This morphological transition is initiated before the expression of GaIC and coincides
with the movement of MAP1B to the major outgrowths from the cell body. Subsequently,
MAP1B is consoldated in the major processes of GaIC+ oligodendrocytes (Fig. 16, E and F).
A MAP1B+,GaIC- preoligodendrocyte (Fig. 16 F, arrow) in which MAP1B is now present in
the processes has a transitional morphology between the MAP1B+,O4+ cells (Fig. 16, C and
D) and more mature GaIC+ oligodendrocytes (Fig. 16, E and F).

The data in Fig. 16 suggested that MAP1B is expressed by preoligodendrocytes before
they acquire the terminal differentiation marker GaIC. This view was confirmed by double
label immunofluorescence and by measuring the number of MAP1B+ and GaIC+ cells in
cultures at different stages of development. From 0 d to 4 d of differentiation there
Fig. 16. MAP1B is first expressed by preoligodendrocytes during O-2A cell differentiation.

O-2A progenitors were allowed to differentiate for 2 d (A and B), 4 d (C and D) and 6 d (E and F) in culture and the developmental appearance of antigens was followed by indirect immunofluorescence. Cells were surface-labeled with IgM mAbs against A2B5 (A), O4 (C) or GaIC (E), then fixed, permeabilized and stained with anti-IgM (FITC) followed by anti-MAP1B (B, D and F) and anti-IgG1 (TRITC). Two adjacent A2B5* cells are visible, one of which is weakly MAP1B* (A, B, arrowhead) whereas the other is MAP1B*; an A2B5* cell in the same field is strongly MAP1B* (B, arrow). Early O4* cells are MAP1B* (C and D, arrows) and, when expressed at this stage of development, MAP1B is confined to the cell body (D). Some cells that are not yet fully differentiated (i.e. GaIC* cells) express MAP1B strongly in their cell bodies and major processes (F, arrow) but GaIC* oligodendrocytes are always MAP1B*. In contrast, the phenotypes A2B5* MAP1B* and O4* MAP1B*, GaIC*, MAP1B* are not observed. Bar, 10 μm.
are always more MAP1B+ than GaIC+ cells (Fig. 17), and at all stages of oligodendrocyte
differentiation the GaIC+ cells are MAP1B+. By 4 d of differentiation, 80% of the cells
express MAP1B, which corresponds to the number of MBP+ oligodendrocytes that ultimately
develop in these cultures (Section 3, Fig. 12). These observations show that MAP1B
expression precedes terminal differentiation and, since MAP1B is not a component of the
purified myelin membrane (data not shown), its synthesis appears to be fundamentally
related to the morphological reorganization of the oligodendrocyte.

Effect of reduced MAP1B levels on oligodendrocyte morphology and localization of tubulin

In order to investigate the role of MAP1B in oligodendrocyte differentiation, it was attempted
to inhibit MAP1B synthesis by treating oligodendrocytes with antisense oligonucleotides and
their respective sense congeners. Of two antisense oligonucleotides tested, one that was
complementary to the region of the MAP1B mRNA flanking the initiation codon (nucleotides
3 to +17 of the mouse MAP1B cDNA sequence, Noble et al., 1989) was effective in inhibiting
MAP1B expression in oligodendrocytes (Fig. 18, B and E). The other antisense
oligonucleotide might have been ineffective because the 5'-sequence of rat MAP1B mRNA
may differ from the equivalent region in mouse. The nucleotide sequences corresponding to
the N-terminal regions of the rat protein are probably similar, because an antibody raised
against the N-terminal 15 amino acid peptide of mouse MAP1B (see Materials and Methods)
cross-reacts strongly with rat MAP1B. The expression of MAP1B and tubulin in sense
controls was identical to untreated cells. Decreased levels of MAP1B caused the thinning
and retraction of processes (Fig. 18, A and D) accompanied by the concentration of tubulin in
the cell body (Fig. 18, C and F). The effects of the antisense oligonucleotide were fully
reversible. These data suggest that reduced levels of MAP1B might influence the
morphology of the oligodendrocyte by an effect on microtubule stability in the myelinating
processes.

The specificity of the antisense oligonucleotide in inhibiting MAP1B synthesis is
demonstrated in Fig. 19a, where the intensity of immunofluorescence staining with antibodies
against MBP and MAP1B is compared in cells treated with sense and antisense
oligonucleotides. Although the levels of MAP1B were drastically reduced, the MBPs were
Fig. 17 Developmental expression of MAP1B in differentiating oligodendrocytes.

Oligodendrocyte progenitors were allowed to differentiate and the developmental appearance of MAP1B and GalC was followed by indirect immunofluorescence using anti-lgG1-TRITC (specific for anti-MAP1B) and anti-lgM-FITC (specific for anti-GalC) secondary antibodies. Cell counts were from ten randomly selected fields of approximately 700 cells per duplicate coverslip in three different experiments, data are means ± SEM. All GalC+ oligodendrocytes were MAP1B+.
Fig.18 Inhibition of MAP1B synthesis by antisense oligonucleotide changes the morphology of oligodendrocyte processes.

O-2A cells that had differentiated for 5 d in culture were treated with sense (A, B and C) or antisense (D, E and F) oligonucleotides and MAP1B (B and E) and tubulin (C and F) were viewed by double label indirect immunofluorescence (DTAF and TRITC, respectively). Thinning and partial retraction of the processes in response to antisense oligonucleotide was evident by phase contrast microscopy (A and D, arrow and arrowhead) and was accompanied by the down-regulation of MAP1B (E) and withdrawal of tubulin (F) to the cell body. Bar, 10 mm.
Figure 19. Inhibition of MAP1B synthesis does not affect the expression of the myelin basic protein (MBPs).

a: Oligodendrocytes that had differentiated for 5 d were treated for 5 h with sense (A and B) or antisense oligonucleotide to MAP1B (C and D) and stained for MBP (TRITC) (A and C) and MAP1B (DTAF) (B and D). Antisense-treated cells had reduced MAP1B by comparison with sense controls whereas MBP was unaffected. Bar, 5 mm.

b: The amounts of MAP1B and MBP in 300 and 100 mg respectively of total protein were estimated by immunoblotting oligodendrocytes treated with sense (S) or antisense (A) oligonucleotide to MAP1B. MAP1B was reduced in antisense-treated cells, whereas identical amounts of the four major MBP isoforms (21.5, 19.5, 17 and 14 kD respectively) were detected in sense and antisense-treated cells.
unaffected in antisense-treated cells. The proteolipid protein, another major protein of differentiated oligodendrocytes was also unaffected in antisense-treated cells (data not shown). Western blotting confirmed the reduction in MAP1B expression caused by antisense oligonucleotide, whereas MBP polypeptides were expressed at control levels (Fig. 19b). Scanning densitometry showed that the amount of MAP1B in antisense-treated cells was reduced by 62% compared to control cells.
4.3 Discussion

It seems likely that cytoskeletal reorganization might play a fundamental role in preparing the myelin-forming cell for the extraordinary changes in shape necessitated by the extension of myelinating processes and the envelopment of axons. Indeed, recent studies have revealed that the cytoskeleton of Schwann cells, the myelin-forming cells of the PNS, are remodeled during differentiation (Kelly et al., 1992). In this study we present two distinct arguments to support the view that the microtubule-associated protein MAP1B plays a central role in the formation and stabilization of myelinating processes in the differentiation of oligodendrocytes. First, we show that in differentiated cells MAP1B colocalizes and interacts with microtubules and that developing oligodendrocytes express MAP1B immediately before assuming the process-bearing morphology required for myelination. Secondly, oligodendrocytes with decreased levels of MAP1B as a result of treatment with antisense oligonucleotide have thinned and retracted processes, and their microtubules are withdrawn to the cell body. Down-regulation of MAP1B by antisense oligonucleotide is specific because neither the localization nor the amounts of the four MBP isoforms are affected, each of which is encoded by a unique mRNA (de Ferra et al., 1985).

Direct evidence for the role of MAPs in the development of neuronal morphology has been adduced from experiments in which the expression of MAP tau and MAP2 in neurons has been attenuated by the introduction of antisense oligonucleotides and antisense RNA respectively (Caceres and Kosik, 1990; Dinsmore and Solomon, 1991). Microtubules and their MAPs are likely to have a similar vital function in the development of the characteristic process-bearing phenotype of oligodendrocytes since the induction of MAP1B expression coincides with the preoligodendrocyte stage of O-2A cell development, immediately prior to terminal differentiation. MAP1B can form cross-bridges between microtubules (Sato-Yoshitake et al., 1989) thus it could provide the structural support necessary for the stabilization of large complex outgrowths from the oligodendrocyte’s cell body. Nevertheless, only a small fraction of the total MAP1B in oligodendrocytes remains associated with the cytoskeleton after detergent-extraction, which is consistent with the fact that MAP1B cycles very inefficiently with brain microtubules and that most MAP1B does not associate with the cytoskeleton in HeLa cells transfected with MAP1B cDNA (Bloom et al., 1985; Noble et al., 1995).
This work suggests that similar weak interactions between MAP1B and microtubules must occur in oligodendrocytes; however, in contrast to the cytoskeletons of transfected HeLa cells, a fraction of MAP1B is detectable by immunofluorescence bound to the oligodendrocyte cytoskeleton. Both a-tubulin and MAP1B are susceptible to extensive post-translational modification, which might be responsible for modulating the strength of interaction between microtubules and MAP1B and thereby help to explain cell type-specific differences in the strength of microtubule-MAP1B interactions. For example, phosphorylated forms of MAP1B are known to be particularly abundant in growing axons (Sato-Yoshitake et al., 1989), and a-tubulin is predominantly tyrosinated in the labile dynamic microtubules of axons, whereas stable nucleating microtubules are rich in deacetylated and acetylated a-tubulin (Bass and Black, 1990).
Metabolism and traffic of fluorescent sphingolipids in oligodendrocytes
5.1 Introduction

During the most active period of myelination, oligodendrocytes synthesize more than three times their own weight of myelin membrane per day (Norton, 1981). Since myelin is 70-80% lipid, these cells should be excellent models for studying the metabolism and traffic of membrane lipids.

Car is the backbone structure of the sphingolipids SM, GlcC, GalC and sulfatide, the last two of which are characteristic of myelin in the nervous system. Although a considerable volume of information exists about the metabolism and transport of SM and GlcC (for reviews see Koval and Pagano, 1991; van Meer, 1989; Schwarzmann and Sandhoff, 1990), relatively little is known about the metabolism and transport of GalC and sulfatide; this may be because until recently it was not possible to culture sufficient numbers of oligodendrocytes for biochemical investigations. These problems have now been mostly overcome and it is possible to obtain sufficient, relatively homogeneous oligodendrocyte lineage cells at different developmental stages (McKinnon et al., 1990).

UDP-galactose ceramide galactosyltransferase (UDP-galactose 2 hydroxyacyl sphingosine galactosyltransferase, E.C.2.4.1.45) catalyzes the transfer of galactose from UDP-gal to Cer and is the terminal enzyme in the biosynthesis of GalC, the main sphingolipid in brain. Roussel et al. (1987) showed that in oligodendrocytes this enzyme may have a very wide distribution, since it is found in the Golgi, the cellular processes and in loosely wrapped myelin. By contrast, UDP-glucose ceramide glucosyltransferase which is responsible for the synthesis of GlcC, is probably restricted to a pre-Golgi compartment and/or in the cis-Golgi in various non-glia cells (Futerman and Pagano, 1991; van Meer et al., 1989; van Echten and Sandhoff, 1989). In such cells, most SM biosynthesis is believed to occur in the cis- and medial-Golgi (Futerman et al., 1990; Jeckel et al., 1990), although some may also take place at the plasma membrane (Koval and Pagano, 1991). It has been recently suggested that oligodendrocytes may be unusual in that equal amounts of SM may be synthesized in the plasma membrane and the Golgi (Di Biase et al., 1991).

In order to study sphingolipid biosynthesis and traffic in cultured oligodendrocytes, it was important to define an active stage of GalC biosynthesis during development. Therefore, the
relative extent of conversion of C6-NBD-Cer to C6-NBD-GalC and C6-DMB-Cer to C6-DMB-
GalC were studied at different stages of oligodendrocyte differentiation in culture. A suitable
time point was identified that coincided with the expression of oligodendrocyte differentiation
markers, and cells at this stage were used to study the initial localizations of C6-NBD-Cer
and C6-DMB-Cer in specific intracellular compartments and their subsequent transport and
metabolism. These investigations were carried out at the light and ultrastructural levels and
the localizations of fluorescent sphingolipids were compared with those of specific markers of
organisms that are involved in lipid metabolism and traffic.

Sphingolipids and proteins are probably cotransported along the secretory and recycling
pathways (Simons and van Meer, 1988; Simons and Wandinger-Ness, 1990; Rosenwald et
al., 1992; Kok et al., 1989) and BFA has been shown to be an extremely useful tool in the
analysis of such pathways (for reviews see Pelham, 1991; Klausner et al., 1992).
Sphingolipid traffic is considered to be intimately linked with metabolism (Miller-Prodzera and
Fishman, 1984; Lipsky and Pagano, 1985b; Rosenwald et al., 1992; Koval and Pagano,
1991), therefore it was of great interest to attempt to determine the influence of disrupting
the secretory pathway with BFA on sphingolipid metabolism and traffic. The effects of BFA
would also indicate whether oligodendrocytes belong to the group of cells in which BFA
causes the TGN to fuse with the rest of the Golgi and the ER (Alcade et al., 1991), or to
those in which the TGN/plasma membrane/endosomes and the cis/medial/trans-Golgi/ER
constitute two separate compartments (Reaves and Baning, 1992; Lippincott-Schwartz, et
al., 1991b; Wood et al., 1991), or to a third class where the TGN/plasma
membrane/endosomal system is formed but the cis/medial/trans-Golgi/ER fusion does not
occur (Lippincott-Schwartz, et al., 1991b). This analysis would therefore permit a detailed
comparison between the organization of the secretory and recycling pathways of
oligodendrocytes with those in other cell types and might provide information about the
biosynthesis and transport of myelin-specific lipids.

Microtubules are involved in many BFA-enhanced (such as retrograde transport) or BFA-
inhibited (such as anterograde transport from the cis-, medial-, trans-Golgi and the TGN,
Klausner et al., 1992; Wood et al., 1991) cellular functions, as well as functions that remain
unaffected such as the movement of endocyotosed material (Pelham, 1991; Lippincott-
Schwartz et al., 1991a). Microtubules also play an important role in the structural integrity and location of the Golgi apparatus (for reviews see Thyberg and Moskaliewski, 1985; Kreis, 1990), and in several cell lines a set of stable (detyrosinated) microtubules that are apparently unaffected by BFA colocalize with the Golgi (Burgess et al., 1991). Mature oligodendrocytes contain microtubules both in vivo and in vitro (Wood and Bunge, 1984; Wilson and Brophy, 1989), but these cells are quite unusual in that they do not contain any known forms of intermediate filaments and microfilaments appear to be predominantly in the cell periphery. Oligodendrocytes should therefore represent unique models for studying the effects of BFA on microtubules.

Removal of BFA leads to cell recovery via the reformation of organelles of the secretory pathway (Pelham, 1991; Alcades et al., 1992), therefore the study of recovery should yield information about the sequence of molecular, metabolic and transport events that lead to the restructuring of cellular organelles. Such studies may serve as models for understanding the formation and maintenance of cellular architecture involving the cytoskeleton. Considering the intimate link between the Golgi and microtubules, it was decided to study the reformation of this organelle with respect to tubulin in oligodendrocytes recovering from BFA.
5.2 Results

Cells of the oligodendrocyte lineage changes in sphingolipid metabolism during development

Initial time course experiments using oligodendrocytes at 6 d of differentiation indicated that during incubation at 37°C, little or no conversion of C₅-NBD-Cer and C₅-DMB-Cer occurs before 15 min. Maximum conversion to fluorescent Cb and SM takes place after approximately 2 h and these products persist for up to 5 h, however the ratios of fluorescent Cb/SM and GalC/GlcC remain constant (data not shown). As a consequence, a 2 h incubation period was used in all the metabolic experiments involving fluorescent Cer analogues.

Both C₅-NBD-Cer and C₅-DMB-Cer are metabolized to their respective SM and Cb analogues by oligodendrocytes and considerably more fluorescent Cb is produced from C₅-NBD-Cer than from C₅-DMB-Cer at all times during development (Fig. 20). Similar observations were made by Pagano et al., (1991) who compared the in vitro metabolism of C₅-NBD-Cer and C₅-DMB-Cer in human skin fibroblasts and found that the ratio of C₅-NBD-Cb/SM was ~0.77 while the ratio of C₅-DMB-Cb/SM was ~0.06 (recalculated data). The percent conversion of C₅-NBD-Cer to C₅-NBD-Cbs increases with a concomitant decrease in the biosynthesis of C₅-NBD-SM during differentiation (Fig. 21). The increase in Cb biosynthesis is the result of elevated production of C₅-NBD-GalC at the expense of GlcC between 6 and 9 d of development. The increase in C₅-NBD-GalC synthesis is accompanied by the conversion of O-2A progenitors into GalC⁺,MBP⁺ oligodendrocytes during development (see Fig. 12, Section 3).

GalC biosynthesis in the brain predominates before the onset of myelination, whereas GalC becomes the main Cb during myelination (Koul et al., 1988). Similarly, the present in vitro data suggest that O-2A progenitors and perhaps preoligodendrocytes predominantly convert C₅-NBD-Cer to C₅-NBD-GalC, while oligodendrocytes at 6 d and 9 d of differentiation produce considerable amounts of C₅-NBD-GalC. Although C₅-DMB-Cer is mainly converted to C₅-DMB-SM (Fig 20) and the main C₅-DMB-Cb is C₅-DMB-GloC, the relative amount of C₅-DMB-GalC also increases during development (not shown).

It is noteworthy that some C₅-NBD-GalC and C₅-DMB-GalC are formed at 0 d of differentiation, when cells in equivalent cultures are at least 80% O-2A progenitors, 25% O4⁺
Fig. 20. Comparison of the metabolism of C₆-NBD-Cer and C₆-DMB-Cer in fluorescent-Che and SM by differentiating O-2A progenitors.

O-2A progenitors were permitted to differentiate for 0, 1.5, 3, 6 and 9 d, when they were incubated for 2 h with C₆-NBD-Cer/DF-BSA or C₆-DMB-Cer/DF-BSA complexes. Fluorescent lipids were identified with authentic standards and quantified as described in Materials and Methods. The ratio of C₆-NBD-Cb/SM increased during differentiation; C₆-NBD-SM was the main metabolic product in O-2A progenitors (0 d of differentiation) and C₆-NBD-Cb predominated in terminally differentiated oligodendrocytes (9 d of differentiation). By contrast, C₆-DMB-Cer was mainly metabolized to C₆-DMB-SM and the ratio of C₆-DMB-Cb/SM was very similar throughout development.
Fig. 21. Biosynthesis of C6-NBD-GalC from C6-NBD-Car during oligodendrocyte
development

O-2A progenitors were permitted to differentiate for 0, 1.5, 3, 6 and 9 d, then incubated with
C6-NBD-Car/DF-BSA complexes for 2 h. C6-NBD-SM, -GlcC and -GalC were identified and
quantified as described in Materials and Methods. C6-NBD-SM and -GlcC were the main
metabolic products in O-2A progenitors (0 d) but with the onset (1.5 and 3 d) and progress
(6 and 9 d) of differentiation, more C6-NBD-GalC and less C6-NBD-SM was produced. At 6
d and 9 d the relative amount of C6-NBD-Cbs exceeded that of C6-NBD-SM. The proportion
of C6-NBD-GalC was constant at 0, 1.5 and 3 d of differentiation and somewhat reduced at 6
and 9 d of differentiation.
cells (preoligodendrocytes) and -1% terminally differentiated oligodendrocytes (see Section 3). It therefore appears that O-2A progenitors and/or preoligodendrocytes may have a basal level of UDP-galactose-4'-epimerase and UDP-galactose ceramide galactosyltransferase activities. In these cultures the formation of C₅-NBD-GalC and C₅-DMB-GalC is specific to oligodendrocyte lineage cells, because only GlcC and SM derivatives are formed when Type-1 or -2 astrocyte monolayers are incubated with either C₅-NBD-Cer or C₅-DMB-Cer (data not shown).

The conversion of C₅-NBD-Cer and C₅-DMB-Cer to either C₅-NBD-GalC or C₅-DMB-GalC by differentiating O-2A cells is probably underestimated at later stages of differentiation, when up to 20% of the cells in the cultures are Type-2 astrocytes. However, the high levels of C₅-NBD-GlcC and even higher levels of C₅-DMB-GlcC at all developmental stages may reflect the propensity of C₅-NBD-Cer and C₅-DMB-Cer to be preferentially converted to the GlcC analogue. The small amounts of fluorescent GalC may also be caused by the inability of cultured oligodendrocytes to produce only large amounts of GalC (Poduslo et al., 1990).

Two forms of C₅-DMB-SM were identified, SM1 and SM2, whose Rf values correspond to stereoisomers of C₅-DMB-SM. However, in biological systems one stereoisomer is usually formed (the L-isomer) therefore SM1 (Rf 0.07) and SM2 (Rf 0.05) are probably not stereoisomers but instead correspond to SMs with sphinganine and N-acyl sphingosine backbones, respectively. SM2 predominates over SM1 at 0 d of differentiation (mol% SM2/SM1 - 7.3) but when the majority of the cells have differentiated to oligodendrocytes (i.e. at 9 d of differentiation), the relative amount of SM2 is almost equal to SM1 (SM2/SM1 - 1.2). The significance of this is not understood, but when the lipids from mature rat CNS myelin are separated by TLC two bands of SM in approximately similar amounts are detected (data not shown), indicating that SM in myelin may contain sphinganine and sphingosine backbones. Almost equal amounts of SM1 and SM2 may therefore signify that as oligodendrocytes mature they tend to synthesize myelin-specific SM, however, two bands of SM in myelin may arise due to the presence of fatty acids with different chain lengths.

By 8 d of differentiation the cultures are approximately 80% pure in oligodendrocytes (GalC⁺, MBP⁺) and at this point oligodendrocytes are able to convert C₅-NBD-Cer to sphingolipids that include considerable amounts of C₅-NBD-GalC. These results suggested
that in the present culture system, 6 d of differentiation probably represent a good stage at which to study sphingolipid metabolism and transport in oligodendrocytes.

Characterization of the Golgi in oligodendrocytes

Cultured oligodendrocytes have small cell bodies, multiple branching processes and express GalC on the cell surface (Fig. 22, Panel a). Since the Golgi is thought to be the site of sphingolipid biosynthesis and transport (Simons and van Meer, 1998; Simons and Wandinger-Ness, 1990), this organelle was initially characterized in oligodendrocytes at 6 d of differentiation at the light level by utilizing a range of Golgi markers. C₅-NBD-Cer (b), C₅-DMB-Cer (d) and TGN38, a marker for the trans-Golgi network, (Luzio et al., 1990) (c and e) label perinuclear locations, whereas WGA-TRITC labels a perinuclear location as well as the cell surface (f). C₅-NBD-Cer and C₅-DMB-Cer were previously shown to be vital markers for the Golgi apparatus (Lipsky and Pagano, 1983; Pagano et al., 1991) and in fixed human skin fibroblasts C₅-NBD-Cer and C₅-DMB-Cer labels the trans-Golgi and multiple Golgi stacks, respectively (Pagano et al., 1989; Pagano et al., 1991). WGA binds N-acetyl-glucosamine and sialic acid residues (for review see Goeze and Morré, 1991), therefore WGA-TRITC probably labels the trans-Golgi, the TGN, secretory vesicles and the plasma membrane in oligodendrocytes. Another fluorescent lectin, *Ricinus communis* Agglutinin-1-TRITC which binds β-gal residues, labels oligodendrocytes in a similar way to WGA-TRITC (data not shown). These observations suggested that C₅-NBD-Cer and C₅-DMB-Cer concentrate in the Golgi of oligodendrocytes.

Incubation with C₅-NBD-Cer indicates that at the light level, the Golgi of live oligodendrocytes has a different morphology from that of astrocytes and fibroblasts (Fig. 23). The Golgi appears thin and elongated in fibroblasts, extensive and tubulovesicular in astrocytes and relatively compact in oligodendrocytes.

These initial experiments indicated that in cultured oligodendrocytes different Golgi markers may label similar but not identical Golgi compartments. Additionally, the Golgi of oligodendrocytes appears different from that of other cells in these cultures at the light level.
Fig. 22 C$_6$-NBD-Cer and C$_5$-DMB-Cer colocalize with Golgi markers in oligodendrocytes

O-2A progenitors were permitted to differentiate to oligodendrocytes for 6 d in defined medium/1% FCS. Live cells were incubated with C$_6$-NBD-Cer/DF-BSA for 15 min at 37°C (b), surface-labeled with anti-GalC followed by indirect immunofluorescence with secondary antibodies coupled to TRITC (a). Alternatively, live cells were incubated with C$_5$-DMB-Cer/DF-BSA, fixed and photographed (d), then extracted with methanol and labeled with TGN38 (DTAF) (c). Oligodendrocytes were labeled with TGN38 (DTAF) (e) and WGA-TRITC (f). C$_6$-NBD-Cer, C$_5$-DMB-Cer and TGN38 labeled perinuclear locations; by contrast, WGA-TRITC labeled the plasma membrane as well as a perinuclear location.

Bars: 10μm.
Fig. 23. The Golgi of oligodendrocytes labeled with C₆-NBD-Cer has a different morphology to Golgi of other brain cells.

Mixed glial cultures were seeded in 35mm dishes and grown in DMEM/10% FCS for one week and in defined medium/1% FCS for a further 6 d. The cells were incubated with C₆-NBD-Cer/DF-BSA for 15 min at 37°C, fixed and examined by fluorescence microscopy. Although oligodendrocytes (arrowhead), fibroblasts (large arrow) and astrocytes (small arrow) were all labeled in a perinuclear location, their patterns of labeling were strikingly different at the light level. Bar: 10μm.
Since I intended to study the intracellular transport of C₈-NBD- and C₅-DMB-lipids in oligodendrocytes in order to relate it to metabolism, it was important that light level observations at key metabolic points should be further examined at the ultrastructural level. Fig. 24 demonstrates that in oligodendrocytes, C₈-NBD-lipid labels the trans-Golgi and the TGN while C₅-DMB-lipid is distributed throughout the Golgi excluding the TGN. At this point little or no metabolism of C₈-NBD-Cer and C₅-DMB-Cer would have occurred, therefore it appears that in oligodendrocytes C₈-NBD-Cer labels the trans-Golgi and the TGN, while C₅-DMB-Cer labels the rest of the Golgi, excluding the TGN. Pagano et al., (1989) have shown that C₈-NBD-Cer targets organelle-specific lipids and they speculated that the lipid composition of the trans-Golgi apparatus may be unique. However, the exact lipid compositions of the various Golgi subcompartments are not known, although Brasitus et al., (1968) have shown that in order of abundance, the principal lipids of the Golgi in rat proximal small intestinal cells are PC, cholesterol, PE and SM. The Golgi probably exchanges lipids with other organelles continuously, through its involvement not only in secretion but also in the intracellular routing of molecules during endocytosis and the recycling pathways from the plasma membrane (for a review see Geuze and Morré, 1991), therefore it must possess mechanisms for lipid sorting in order to maintain a constant lipid composition.

The products of C₈-NBD-Cer and C₅-DMB-Cer metabolism traffic through different intracellular compartments. Fluorescence analysis indicates that after 2 and 5 h of incubation at 37°C, C₈-NBD-Cer and C₅-DMB-Cer metabolites of probably distribute in different intracellular compartments (Fig. 25). However, although the patterns of fluorescence are different at 2 and 5 h, the same major fluorescent metabolic products are found at these time points of incubation and it was therefore assumed that the fluorescence at 2 h and at 5 h originates from the same sets of C₈-NBD- or C₅-DMB-lipids. Electron microscopy (Fig. 26) indicates that after 2 h of incubation C₈-NBD-Cb and SM are in structures resembling TGN-derived vesicles and early endosomes, whereas C₅-DMB-lipids (comprising 72% C₅-DMB-SM) are in structures resembling ER and in the plasma membrane. After 5 h of incubation C₈-NBD-lipids are in endosomes or lysosomes and C₅-DMB-lipids are in the Golgi and Golgi-associated vesicles.
Fig 24. C₅-NBD-Cer and C₅-DMB-Cer label different Golgi compartments in oligodendrocytes

Oligodendrocytes at 6 d of differentiation were fixed, peroxidase-labeled with TGN38 and processed for electron microscopy (a). Alternatively, live cells were incubated for 15 min at 37°C with either C₅-NBD-Cer/DF-BSA (b) or C₅-DMB-Cer/DF-BSA (c), fixed, photobleached in the presence of DAB and processed for electron microscopy. C₅-NBD-Cer and TGN38 specifically labeled the trans-Golgi and the trans-Golgi network (TGN); by contrast, C₅-DMB-Cer did not label the TGN but was distributed throughout the rest of the Golgi stacks. Bar: 500 nm.
Oligodendrocytes were incubated for 15 min at 37°C with either C6-NBD-Cer/DF-BSA (a and d) or C6-DMB-Cer/DF-BSA (b and d), washed and incubated up to 2 h (a and b) or 5 h (c and d). The cells were fixed and photographed in the green and red microscope channels for NBD- and DMB-fluorescence, respectively. At 2 h C6-NBD-lipids labeled perinuclear compartments whereas C6-DMB-lipids were present in the cell body and in the processes. At 5 h the fluorescence from both C6-NBD- and C6-DMB-lipids was mainly restricted to the cell body. Bar: 10μm.
Fig. 26. C₉-NBD- and C₅-DMB-metabolites are transported to different intracellular compartments.

Oligodendrocytes at 6 d of differentiation were incubated for 15 min at 37°C with either C₉-NBD-Cer/DF-BSA (a and c) or C₅-DMB-Cer/DF-BSA (b and d), washed, incubated up to 2 h (a and b) or 5 h (c and d), fixed, photobleached in the presence of DAB and processed for electron microscopy. At 2 h the metabolic products of C₉-NBD-Cer were in structures resembling the TGN, TGN-derived vesicles and early endosomes (a), whereas C₅-DMB-lipids were located in the ER and at the plasma membrane (b). At 5 h C₉-NBD-Cbs and -SM were found in endosomes (c), whereas C₅-DMB-SM was mainly in the Golgi (d). Bars: 500nm.
These observations suggest that at 37°C, C₈-NBD-Cer localizes in the trans-Golgi and the TGN by 15 min, the products of its metabolism distribute between TGN-derived vesicles and early endosomal compartments by 2 h and in late endosomes and lysosomes by 5 h. By contrast, C₅-DMB-Cer initially localizes in various Golgi compartments excluding the TGN. C₅-DMB-SM is in the ER and the plasma membrane at 2 h and in the Golgi and Golgi-derived vesicles at 5 h. Lipsky and Pagano, (1983) showed that when Chinese hamster fibroblasts are incubated with C₈-NBD-Cer, cytoplasmic structures, the Golgi and the plasma membrane are sequentially labeled; significant metabolism of C₈-NBD-Cer to C₈-NBD-Cb and C₈-NBD-SM occurs within 15 min and by 1 h approximately similar amounts of C₈-NBD-Cb and C₈-NBD-SM are produced and remain at the same levels by 2 h. In this culture system the ratio of C₈-NBD-Cb/SM alters through development and similar amounts of C₈-NBD-Cb and C₈-NBD-SM are obtained at 2 and 3 d of differentiation (Figs. 20 and 21).

Although C₈-NBD-Cer is apparently a vital stain for the trans-Golgi in human skin fibroblasts (Pagano et al., 1989), in oligodendrocytes C₈-NBD-Cer labels the trans-Golgi and the TGN. The finding that C₅-DMB-Cer initially labels multiple Golgi stacks is in agreement with the observations of Pagano et al., (1991) and in oligodendrocytes these stacks may represent Golgi compartments earlier than the TGN, i.e. cis-, medial- and perhaps trans-Golgi. In any event, C₅-DMB-Cer is initially localized to a more proximal location than C₈-NBD-Cer in the Golgi stack. C₅-DMB-Cer is also metabolized much slower by oligodendrocytes than human skin fibroblasts (Pagano et al., 1991) and in both cell types is mainly converted to C₅-DMB-SM.

These results indicate that in oligodendrocytes C₈-NBD-Cer and C₅-DMB-Cer initially concentrate in different intracellular loci, probably as a result of interactions between Golgi lipid and the C₈-NBD and C₅-DMB fluorophores; indeed, Pagano et al., (1991) have suggested this possibility for C₅-DMB-Cer. Subsequent metabolism and intracellular transport of these lipids may be determined by the localization and specificities of the enzymes involved in sphingolipid metabolism and transport mechanisms, either at the trans-Golgi and the TGN in the case of C₈-NBD-Cer or at the early Golgi in the case of C₅-DMB-Cer. In order to test this hypothesis, we utilized BFA which is known to either fuse the cis-, medial- and trans-Golgi in some cells and/or the TGN with endosomes in others (Reeves and
Banting, 1992; Wood et al., 1991; Lippincott-Schwartz et al., 1991a; Hunziker et al., 1991), thus physically separating the TGN from the rest of the Golgi. Therefore it was of great interest to determine if disrupting the organization of the secretory membrane system, and perhaps causing the coalescence of organelles that are normally physically separated might affect the manner in which sphingolipids are metabolized in oligodendrocytes. Thereby, it was hoped that insights would be gained into the roles of different compartments of the secretory pathway and sphingolipid traffic.

The TGN of BFA-treated oligodendrocytes disorganizes more slowly and recovers faster than the cis- and medial-Golgi.

Before analyzing the effects of BFA on lipid metabolism and traffic, it was important to establish how BFA affected the organelles of the secretory pathway in oligodendrocytes. The TGN and the cis- and medial-Golgi of oligodendrocytes are in similar but not identical locations (Fig. 27, a and b), as shown by TGN38, a marker of the trans-Golgi network and anti-Man II, a marker of the cis- and medial-Golgi (Luzio et al., 1990; Burke and Warren, 1984). BFA affects the whole Golgi (Fig. 27, c and d), after 0.5 h in BFA, TGN38 is present in a MTOC-like location but anti-Man II fluorescence is weak and dissipated (Fig. 27, c and d), as was also observed in BFA-treated NRK cells (Reaves and Banting, 1992; Alcada et al., 1992; Wood et al., 1991). Weak Man II fluorescence is seen in an ER-like pattern after 1 h in BFA, when the TGN is probably distributed with the recycling endosomal system (Fig. 27, e and f). At 3 and 4 h in BFA, TGN38 is seen intracellularly and at the plasma membrane and Man II is distributed in an ER-like pattern (Fig. 27, g, h, i and j). Wood et al., (1991) showed that when the TGN/endosomal network was formed in response to BFA, there was a 5-fold increase in manose-6-phosphate receptors (MBPRs) to the cell surface, consistent with a redistribution, considerable amounts of TGN38 are found at the cell surface of cells treated with BFA for 3 h (Fig. 27; Lippincott-Schwartz et al., 1991a).

These results support the idea that in oligodendrocytes BFA causes the cis- and medial-Golgi to fuse with the ER while the TGN distributes with the recycling endosomal system, this was also seen in other cell types (Lippincott-Schwartz et al., 1991b; Reaves and Banting, 1992; Wood et al., 1991).
Fig. 27. The effects of BFA on the cis- and medial-Golgi and the TGN.

Oligodendrocytes were incubated for 0 h (a and b), 0.5 h (c and d), 1 h (e and f), 3 h (g and h), and 4 h (i and j) at 37°C in the presence of BFA, fixed and processed for double indirect immunofluorescence using TGN38 (DTAF) (a, c, e, g, i) and the cis- and medial-Golgi marker anti-Man II (TRITC) (b, d, f, h and j). In control cells, TGN38 and anti-Man II labeled similar but not identical compartments (a and b). After 0.5 h in BFA, TGN38 fluorescence was reduced and concentrated in a MTOC-like location, whereas anti-Man II fluorescence was extremely weak (c and d). The fluorescence from TGN38 was very weak and dispersed after 1 h in BFA when a faint, ER-type staining was detected with anti-Man II (e and f). TGN38 fluorescence reappeared at the cell body after 3 h in BFA and Man II was distributed in a punctate pattern resembling the ER (g and h). At 4 h, TGN38 fluorescence was increased in the cell body whereas Man II retained the ER-like distribution that was seen at 3 h. Bar: 10μm.
During recovery from BFA, TGN-derived structures re-form much faster than those from the cis- and medial-Golgi (Fig. 28). After 0.5 h of recovery, TGN38 plasma membrane fluorescence is reduced and vesicular structures begin to appear, but only weak Man II fluorescence can be seen (Fig. 28, a and b). This stage is somewhat similar to that of 0.5 h of incubation in the presence of BFA (Fig. 27, c and d), suggesting that during recovery from BFA the TGN may reform prior to the cis- and medial-Golgi. In contrast, Alcide et al., (1992) showed that during the recovery of NRK cells from BFA the cis- and medial-Golgi reform before the TGN and suggested that the cis-medial-trans-Golgi as well as the TGN may fuse with the ER. However, it should be pointed out that when others (Wood et al., 1991; Lippincott-Schwartz et al., 1991) treated NRK cells with BFA, they observed fusion of the TGN with the recycling plasma membrane/endoosomal system and the cis- and medial-Golgi with the ER, as was seen in oligodendrocytes (Fig. 27), although they did not examine recovery. The relative rates of recovery from BFA for the different Golgi compartments may therefore depend on cell subtype and whether reassembly originates at the ER and/or the endosomal system.

RFA causes redistribution of tubulin and the TGN in oligodendrocytes

Since the changes caused by BFA are believed to be mediated by microtubules (Alcide et al., 1992; Lippincott-Schwartz et al., 1991a; Wood et al., 1991; Pelham, 1991; Klausner et al., 1992), oligodendrocytes were incubated with BFA and the intracellular distribution of the TGN was assessed in relation to tubulin.

The TGN of BFA-treated oligodendrocytes undergoes a dramatic change in morphology (Fig. 29, b, d, f, h and j) that has also been described by others (Lippincott-Schwartz et al., 1990; Reaves and Banting, 1992; Alcide et al., 1992). After 4 h in BFA, bright plasma membrane labeling as well as labeling at the extremities of the cellular processes is seen with TGN38 (Fig. 29, j); this indicates that TGN38 has cycled to the plasma membrane and that during this cycling, TGN38 was transported to cellular loci as distant as the extremities of the cellular processes (see also Fig. 27).

The initial collapse of the TGN in an area resembling the MTOC and its eventual relocation at the cell surface in the presence of BFA is accompanied by the redistribution of
Fig 2A. The asynchronous recoveries of the TGN and the cis- and medial-Golgi following incubation with BFA

Oligodendrocytes were incubated for 2 h at 37°C in the presence of BFA, washed and incubated in medium minus BFA for 0.5 h (a and b), 1 h (c and d), 2 h (e and f), 4 h (g and h) or overnight (i and j). The cells were fixed and labeled for indirect immunofluorescence with TGN38 (DTAF) (a, c, e, g and i) and anti-Man II (TRITC) (b, d, f, h and j). After 0.5 h of recovery, TGN38 was seen in a perinuclear location, appearing punctate/tubulovesicular in some cells or decorating the plasma membrane and a MTOC-like location in others (a); by contrast, only weak, diffuse Man II fluorescence could be observed at that time (b). The localization of TGN38 at 1 h of recovery resembled that at 0.5 h (c and e) and Man II was distributed in a punctate/vesicular pattern (d). TGN38 and Man II were in juxtaposition, Golgi-like tubulovesicular processes at 2 h (e and f) and at 4 h most of the TGN and Man II had accumulated in a perinuclear location (g and h). Both the TGN and the cis- and medial-Golgi were totally recovered after overnight incubation (i and j). Bar: 10μm.
Fig. 28. The effects of BFA on tubulin and the TGN.

Oligodendrocytes were incubated for periods of 0 h (a and b), 0.5 h (c and d), 1 h (e and f), 3 h (g and h) and 4 h (i and j) at 37°C in the presence of BFA. The cells were fixed and labeled for double indirect immunofluorescence with anti-tubulin (TRITC) (a, c, e, g and i) and TGN38 (DTAF) (b, d, f, h and j). Tubulin was found in the cell body and the major processes of control cells (a). After 0.5 h and 1 h of incubation in the presence of BFA, tubulin appeared progressively withdrawn to the cell body (c and e), then reappeared at the processes at 3 h (g); by 4 h tubulin was present again in the cell body and major processes (i). After 0.5 h in BFA, the fluorescence from TGN38 was reduced by comparison with the control and was mainly seen in a MTOC-like location (b and d). TGN38-derived fluorescence was very weak and dispersed throughout the cell body at 1 h (f), whereas at 3 h it was seen in a perinuclear location, the plasma membrane and dispersed throughout the cell body (h). After 4 h in BFA, the fluorescence from TGN38 was approximately as strong as in control cells; however, instead of marking a single perinuclear location, TGN38 decorated the cell body and the extremities of the cellular processes (j). Bar: 10 μm.
cellular tubulin. Tubulin is partly withdrawn from the cell processes after 0.5 h in BFA (Fig 29, c), is mainly present in the cell body after 1 h in BFA (Fig. 29, a), reappears at the processes after 3 h in BFA (Fig. 29, g) and is present in processes to the same extent as control cells by 4 h in BFA (Fig. 29, f).

Phase contrast optics indicate that the changes in tubulin distribution are accompanied by an increase in the size of the cell body, coupled with an initial thinning and eventual re-thickening of the cellular processes (data not shown). It therefore appears that in the presence of BFA, tubulin re-acquires its normal distribution once the recycling endosomal-plasma membrane-TGN system has formed. To our knowledge, no such redistribution of tubulin upon BFA treatment was shown in other cell types. BFA may either affect microtubules directly since microfilaments and intermediate filaments that could support microtubules in other cell types are absent from oligodendrocytes, or indirectly via MAPs and/or associated lipids.

When oligodendrocytes are recovering after 2 h of incubation in the presence of BFA (i.e. before the complete formation of the recycling endosomal/plasma membrane/TGN system), punctate tubulin staining is seen in some areas of the cellular processes and TGN38 decorates a perinuclear location and tubulovesicular structures at 2 h of recovery (Fig. 30, a and b). At 4 h of recovery, tubulin is distributed sparsely throughout the cellular processes while TGN38 is still present in a perinuclear location in and tubulovesicular processes (Fig 30, c and d). It therefore appears that tubulin localizes in similar but not identical compartments during incubation with and recovery from BFA. Abundant tubulin at the cellular processes with completely recovered TGN is only seen after overnight recovery (Fig. 30, e and f). In cells that are incubated with BFA for longer than 2 h, recovery of tubulin and the TGN requires at least 24 h (results not shown).

Fluorescent ceramide labeling of BFA-treated cells.

C6-NBD-Cer and C6-DMB-Cer label the Golgi in a variety of cell types (Lipsky and Pagano, 1983; Pagano et al., 1989; Pagano et al., 1991), most probably by interacting with Golgi compartment-specific lipids (Pagano et al., 1989). Therefore, oligodendrocytes were incubated with BFA, fixed and incubated with either C6-NBD-Cer or C6-DMB-Cer in order to
Fig. 30. The distribution of tubulin and the TGN in oligodendrocytes recovering from BFA

Oligodendrocytes were incubated in the presence of BFA for 2 h at 37°C, washed and permitted to recover in the absence of BFA for 2 h (a and b), 4 h (c and d) or overnight (e and f). The cells were fixed and labeled for indirect immunofluorescence with anti-tubulin (TRITC) (a, c and e) and TGN38 (DTAF) (b, d and f). At 2 h of recovery, tubulin was seen in the cell body as well as in the origins and at discrete areas along the major process (a), at which time TGN38 labeled tubulovesicular processes emanating from a perinuclear location (b). After 4 h of recovery, tubulin accumulated in a perinuclear location reminiscent of the MTOC and thin strands of tubulin were present in the major processes (c), when TGN38 fluorescence was seen in a perinuclear location and in associated tubulovesicular processes (d). Tubulin and the TGN assumed their normal distributions after overnight recovery (e and f). Bar: 10 μm.
assess the BFA-induced redistribution of Golgi-specific lipids.

Golgi labeling is seen in non-BFA-treated controls (Fig. 31, c and d). In BFA-treated oligodendrocytes Ce-NBD-Cer is distributed throughout the cytoplasm (Fig. 31, g), while Ce-DMB-Cer labeling is seen throughout the cell body and at the sites where the major processes exit from the cell body (Fig. 31, h). Ce-NBD-Cer labeled intracellular compartments and the plasma membrane of BFA-treated oligodendrocytes at the light level, since substantial amounts of fluorescence were found in the back-exchange medium by comparison with controls. However, since back-exchange could not remove plasma membrane-associated Ce-DMB-Cer (also see Pagano et al., 1991), it was not possible to tell whether more compartments than the plasma membrane had been labeled with Ce-DMB-Cer in BFA-treated oligodendrocytes.

In order to determine the structures in which the trans-Golgi and TGN lipids reside in BFA-treated oligodendrocytes, live cells were incubated with BSA-colloidal gold and Ce-NBD-Cer in control cells BSA-colloidal gold labels endosomes and Ce-NBD-Cer the trans-Golgi and the TGN (Fig. 32, a). By contrast, in BFA-treated oligodendrocytes BSA-gold and Ce-NBD-Cer accumulate in tubulovesicular processes such as those observed by Lippincott-Schwartz et al., (1991a) and in endosomes (Fig. 32, b and c). This probably means that in BFA treated oligodendrocytes Ce-NBD-Cer accumulates in a fused plasma membrane/endosomal/TGN compartment, physically separated from the cis/medial/trans-Golgi/ER compartment (see Fig. 27).

Since the accumulation of Ce-NBD-Cer in the Golgi is probably via recognition of Golgi-specific lipids, the present data further suggest that after 3 h in BFA endogenous TGN lipids as well as proteins (such as the one recognized by TGN38, Lippincott-Schwartz et al., 1991a and M6PRs, Wood et al., 1991) also redistribute to the recycling plasma membrane/endosomal/TGN compartment (Fig. 27, g).

The recycling of transferrin is unaffected by BFA in oligodendrocytes

Cultured oligodendrocytes possess high affinity transferrin (Tf) receptors, but the number of Tf receptors in these cells is at least two orders of magnitude lower than in most other cell types (Espinosa and Foucaud, 1987). In order to examine the function of the distal regions
Oligodendrocytes were incubated for 3 h at 37°C in the absence (a, b, c and d) or presence (e, f, g and h) of BFA, fixed, labeled with C₆-NBD-Cer (c and g) or C₅-DMB-Cer (d and h) and back-exchanged with DF-BSA. In oligodendrocytes not previously treated with BFA, C₆-NBD-Cer and C₅-DMB-Cer labeled Golgi compartments (c and d). By contrast, in BFA-treated cells C₆-NBD-Cer labeled the plasma membrane, cytoplasm and a perinuclear location (g), while C₅-DMB-Cer labeled the cell body, plasma membrane and beginnings of the branching processes (h). Plasma membrane-associated fluorescence could be back-exchanged from cells incubated with C₆-NBD-Cer but not C₅-DMB-Cer. Bar: 10μm.
Fig. 32. BSA colloidal gold and C₈-NBD-Cer colocalize in BFA-treated cells.

Oligodendrocytes on aclar squares were incubated for 2 h 40 min at 37°C in the absence (a) or presence (b and c) of BFA, then incubated with BSA colloidal gold for 5 min, followed by C₈-NBD-Cer/DF-BSA for 15 min, in the continued absence (a) or presence (b and c) of BFA. The cells were fixed, incubated with DAB and photobleached, then processed for electron microscopy. Cells not previously incubated with BFA accumulated C₈-NBD-Cer in the TGN and BSA-gold in endosomes (a, arrow). By contrast, in BFA-treated cells C₈-NBD-Cer and BSA-gold colocalized in long, tubulovesicular processes (b, arrow) and endosomes (c, arrow). Bar: 500 nm.
of the secretory pathway in BFA-treated oligodendrocytes. Cells at 8 d of differentiation were incubated for 2 h in the presence of BFA, loaded with [\(^{125}\)I]Tf for 1 h and the amounts of cell-associated [\(^{125}\)I]Tf were determined at different time points (Fig 33). The uptake of [\(^{125}\)I]Tf was specific, since incubation with a 100-fold excess of unlabeled Tf caused a 3-4 fold decrease in the amount of cell-associated radioactivity.

Quantitative measurements showed that 50% of the cell bound radioactivity was released in approximately 3.5 min and that the rate of efflux of cell-associated Tf was the same as in controls, indicating that BFA does not affect receptor-mediated recycling in oligodendrocytes. In an analogous experiment, Lippincott-Schwartz et al. (1991a) loaded NRK cells with [\(^{125}\)I]Tf in the absence of BFA and measured the cell-associated radioactivity during subsequent incubation in the presence of BFA. They also found that BFA did not affect the cycling of Tf, but by comparison to oligodendrocytes NRK cells released 50% of the cell bound radioactivity in approximately 7 min. Therefore BFA appears not to impair vesicular traffic between the plasma membrane and the TGN/endosomal network in oligodendrocytes.

BFA alters the metabolism of C\(_6\)-NBD-Cer

In order to determine whether the BFA-induced redistribution of the secretory pathway in oligodendrocytes is accompanied by changes in sphingolipid metabolism, the cells were fed with fluorescent Cer analogues in the presence of BFA. Although control and BFA treated oligodendrocytes metabolize C\(_6\)-NBD-Cer to the same extent, the C\(_6\)-NBD-Cb/SM ratio is increased in BFA treated cells, although the C\(_6\)-NBD-GalC/GlcC ratio is unaffected (Fig 34). This change in the metabolism of C\(_6\)-NBD-Cer in BFA treated oligodendrocytes is only noted after the first 3 h of incubation and becomes more pronounced with increased time in BFA. This might mean that the change in the metabolism of C\(_6\)-NBD-Cer in BFA treated oligodendrocytes occurs after the fusion of the TGN/endosomal/plasma membrane and the cis-medial/trans-Golgi/ER systems (see Fig 27, g and h). The increases in the C\(_6\)-NBD-Cb/SM ratios persist, even after 2 h of recovery and/or the presence of nocodazole, a drug that disrupts microtubule organization and disperses the Golgi (Kreis, 1990). These experiments show that once the BFA-dependent change in the metabolism of C\(_6\)-NBD-Cer...
Fig. 33. The release of transferrin (Tf) by BFA-treated oligodendrocytes

Oligodendrocytes were washed with RPMI and incubated in RPMI (± BFA) for 2 h at 37°C. The cells were washed, incubated with [125I]Tf in RPMI for 1 h at 37°C, then washed several times at 4°C. The cells were warmed to 37°C for the indicated times, solubilized in 1 M NaOH and scraped into vials, when the cell-associated radioactivity was measured.
The metabolism of C₆-NBD-Cer in BFA-treated oligodendrocytes

Oligodendrocytes were incubated at 37°C in medium containing BFA for the indicated times. The cells were then incubated for 2 h at 37°C with C₆-NBD-Cer in the continuous presence of BFA and the fluorescent lipids were identified and quantitated as described in Materials and Methods. Although the amounts of metabolized C₆-NBD-Cer/mg cellular protein were identical in BFA-treated and control cells, the ratio of C₆-NBD-Cb/SM increased in BFA-treated cells, whereas the C₆-NBD-GalC/GlcC ratio was unchanged.
hat occurred in oligodendrocytes. It persists during the (slow) restructuring of the secretory pathway and is independent of the precise structure of the Golgi and the microtubule cytoskeleton. Therefore BFA may cause extensive alterations in the enzymic machinery involved in sphingolipid metabolism in oligodendrocytes.

The relative amounts of metabolized C\textsubscript{6}-DMB-Cer and the C\textsubscript{5}-DMB-Cb/SM and C\textsubscript{5}-DMB-GalC/GlcC ratios were identical in BFA-treated cells and controls, indicating that metabolism of C\textsubscript{5}-DMB-Cer is unaffected by BFA-induced changes. Additionally, the change in the C\textsubscript{6}-NBD-Cb/SM ratio was not observed in BFA-treated Type-1 astrocytes, although it was not examined whether in Type-1 astrocytes BFA has the same effects on organelles of the secretory pathway as in oligodendrocytes. Therefore, the change in Cb/SM ratio may only take place in oligodendrocytes in these cultures and depend on the use of a Cer analogue that recognizes lipids of the recycling TGN/plasma membrane/endosomal system. The finding that BFA affects the metabolism of C\textsubscript{6}-NBD-Cer in oligodendrocytes but not astrocytes was not too surprising, since several other effects of BFA are cell-type specific (for review see Pelham, 1991) and BFA is known to cause changes in sphingolipid metabolism. When different cell types were fed with radiolabeled sphingolipid precursors in the presence of BFA, radiolabeled Cbs accumulated (van Echten et al., 1990; Young et al., 1990). Linardic et al. (1992a, b) reported a BFA dose-dependent decrease in cellular SM levels in HL-60 leukemia cells and attributed it to BFA acting to bring pools of SM in contact with sphingomyelinase. In contrast, Brüning et al. (1992) found an increase in CgC\textsubscript{8}-SM but not CgC\textsubscript{8}-GlcC when CgC\textsubscript{8}-Cer was fed to BFA-treated CHO cells; they proposed that the Golgi/ER fusion may make more substrate available to ceramide:phosphatidyicholine phosphocholinetransferase thought to reside in the cis- and medial-Golgi, thus favoring SM biosynthesis. However, it is not clear why the relative amount of CgC\textsubscript{8}-GlcC was not increased, since the intermixing of the Golgi with the ER should also favor GlcC biosynthesis by making more Cer available to UDP-glucose:glucotransferase, which is located in a pre- and the cis-Golgi compartments (Futerman and Pagano, 1991). Since these other workers did not examine the BFA-induced redistributions of the secretory pathway in each cell type by immunocytochemistry, absolute comparisons with oligodendrocytes are not possible.

It therefore appears that BFA-induced changes in sphingolipid metabolism may be cell-
type specific, therefore the exact effects of BFA must be determined for a particular cell type with respect to rearrangements in the secretory pathway. The present data also suggest that the sphingolipid analogue one uses is important, since the structure of the Cer analogue may determine the site(s) of intracellular metabolism and transport by preferentially associating with different Golgi subcompartments through recognition of specific lipids.
5.3 Discussion

Since little or no metabolism of fluorescent Cer occurred at the time these lipids are in the Golgi, Cer metabolism may be a prerequisite for exit from the Golgi. Cells of the oligodendrocyte lineage could convert C6-NBD-Cer to increasingly higher proportions of C6-NBD-GalC and smaller proportions of C6-NBD-SM as a function of differentiation to the oligodendrocytic phenotype. This finding was in agreement with the conversion of C6-NBD-Cer to C6-NBD-GalC and -SM (Di Blase et al., 1991) and with GalC marking differentiation (Raff et al., 1978; Bansal and Pfeiffer, 1985; Gard and Pfeiffer, 1989; Wood and Bunge, 1984). It was puzzling however that little C6-DMB-Cb was produced from C6-DMB-Cer throughout development, although Pagano et al. (1991) have shown that C6-DMB-Cer is predominantly converted to C6-DMB-SM in various non-myelinating cell types. These data suggested that C6-NBD-Cer and C6-DMB-Cer are metabolized in different ways and prompted me to investigate the intracellular sites of their metabolism and traffic in oligodendrocytes.

C6-NBD-Cer and C6-DMB-Cer localized in different Golgi subcompartments prior to metabolism, suggesting that localization might be determined by the interaction of their fluorescent FA chains with compartment-specific lipids. Moreover, the subsequent metabolism and transport of C6-NBD- and C6-DMB-lipids appeared to depend on the specific Golgi subcompartment which was originally targeted. Accordingly, the initial localization of C6-NBD-Cer to the trans-Golgi and the TGN and C6-DMB-Cer to Golgi stacks proximal to the TGN in oligodendrocytes may determine the metabolism and transport of these lipids and their products.

Bio synthesis of GalC in oligodendrocytes is thought to take place in the Golgi and at the plasma membrane (including myelin), both in vivo and in vitro (Roussel et al., 1987; Nesovic et al., 1973; Constantino-Ceccarini and Suzuki, 1975; Koul and Jungalwala, 1981). The same might be true for SM (Di Blase et al., 1991). The possible site(s) of GlcC biosynthesis have not been determined in cells of the oligodendrocyte lineage, although a pre- or early-Golgi compartment have been implicated in other cell types (Futerman and Pagano, 1991). C6-NBD-Cer is converted to C6-NBD-Cbs and -SM in cells of the oligodendrocyte lineage, and -GlcC and -SM in non-myelinating cells (Lipsky and Pagano, 1983). However, only
small amounts of C5-DMB-Cer may reach the sites of Cb biosynthesis in oligodendrocytes, because (as in other cells, Pagano et al., 1991) C5-DMB-Cer was predominantly converted to C5-DMB-SM. Stein et al., (1989) showed that the metabolic fate of Cers is critically dependent upon the acyl chain composition of the sphingolipid precursor, which these results suggest could be a due to the initial localization of Cers to different Golgi subcompartments. This possibility was tested with the use of BFA, a fungal metabolite that can potentially disconnect the TGN from other Golgi compartments (Klausner et al., 1992; Pelham, 1991).

BFA caused the formation of two separate compartments in oligodendrocytes, the TGN/plasma membrane/endoosomal and cis-/medial-/trans-Golgi/ER compartments. BFA also caused changes in the metabolism of C5-NBD-Cer, in that the C5-NBD-Cer/SM ratio was increased although the extent of C5-NBD-Cer metabolism was unaffected. However, BFA did not influence the metabolism of C5-DMB-Cer. The increased C5-NBD-GalC/SM ratio in BFA-treated oligodendrocytes may be due to C5-NBD-Cer targeting TGN-specific lipids in the fused TGN/plasma membrane/endoosomal system and being metabolized by resident enzymes. The C5-NBD-Cer metabolites will not diffuse once they have acquired a polar head group and will probably remain trapped in this system, which is physically separated from other Golgi and ER membranes. The fused TGN/plasma membrane/endoosomal system must therefore have an increased GalC and decreased SM biosynthetic capacity. In support of this argument, the specific activity of UDP-galactose ceramide galactosyltransferase is much higher in the plasma membrane of oligodendrocytes than in the Golgi during active myelination (Koul and Jungalwala, 1986). Since SM biosynthesis probably occurs at the Golgi and at the plasma membrane (Koval and Pagano, 1991; Di Biase et al., 1991), in BFA-treated cells C5-NBD-Cer would be more available for (more active) GalC biosynthesis at the fused TGN/plasma membrane/endoosomal system only. Concurrently, C5-NBD-SM biosynthesis may be reduced by only occurring in the fused TGN/plasma membranes/endoosomal system and not in the proximal Golgi, and might be further decreased by the action of acid and perhaps neutral (Linaric et al., 1992a, b) sphingomyelinases. The reason why the C5-NBD-GlcC/SM ratio increases in the presence of BFA is not clear, but may be caused by BFA selectively disrupting the further metabolism of GlcC and C5-NBD-GlcC accumulating, as was shown when radioactive glucosphingolipid precursors were fed to
cultured murine cells (Young et al., 1989; van Echten et al., 1990). The intracellular compartments of C5-NBD-Cer and C5-DMB-Cer localization in the presence or absence of BFA in oligodendrocytes, which probably determine the subsequent metabolism and transport of these sphingolipids, are shown in Fig. 35.

The BFA-induced redistribution of tubulin in oligodendrocytes has not been observed in other cell types and it is not clear whether it is linked to the redistribution of the Golgi. The data suggest that BFA causes a rearrangement of the cellular cytoskeleton. Microtubules are particularly abundant in the cytoskeleton of mature oligodendrocytes, both in vivo (Wood and Bunge, 1984) and in vitro (Wilson and Brophy, 1983). Microtubules interact with a variety of proteins including those that mediate their linkage with the Golgi, such as the 110 kDa protein (crosslinking the Golgi with MAP2 in a variety of nonneuronal cell types, Allan and Kreis, 1986) and the 56 kDa protein (Bloom and Brashear, 1989). Additionally, microtubules interact with multiple coat proteins, each of which may be involved in a single transport step (Patham, 1991) as well as with GTP-binding proteins that may mediate the association of Golgi membranes with coat proteins and could be the sites of BFA action (Klistakis et al., 1992). Microtubules may also associate with cell-specific proteins and/or lipids, such as MBP and GaIC in oligodendrocytes (Wilson and Brophy, 1989, Dyer and Benjamins, 1989b, respectively). Therefore, the effect of BFA on tubulin may also be cell specific and detected only in cells lacking intermediate filaments and abundant microfilaments in the cell body.

Receptor-mediated recycling of Tt in oligodendrocytes was unaffected in the presence of BFA, despite the dramatic changes in the organelles of the secretory pathway and the corresponding modifications on lipid metabolism. Since iron delivery is also unaffected by BFA in other cell types (Lippincott-Schwartz et al., 1991a), the effects of BFA may be specific to certain cellular functions.
Fig. 35. The localization of C₆-NBD-Cer and C₅-DMB-Cer in BFA-treated oligodendrocytes.

In the absence of BFA, C₆-NBD-Cer and C₅-DMB-Cer localize in different, interconnected Golgi compartments via the recognition of specific lipids. BFA causes the segregation of the Golgi from the TGN which leads to the formation of two different recycling compartments: the plasma membrane/TGN/endosomal and the Golgi/ER compartment, which determine the localization and subsequent metabolism of C₆-NBD-Cer and C₅-DMB-Cer.
The association of sphingolipids with cytoskeletons
6.1 Introduction

The association of myelin-specific sphingolipids with the cytoskeletons of glial cells and myelin was examined by immunocytochemistry, lipid analysis and by following the fate of fluorescent sphingolipid precursors.

Establishing the presence of sphingolipids in the cytoskeletons of oligodendrocytes was of particular interest, since Wilson and Brophy, (1969) proposed that lipid-protein interactions in the cytoskeleton may play dynamic and/or regulatory roles during development. GaIC may associate with MBP and microtubules (Dyer and Benjamin, 1968, 1969b) and sphingolipids are enriched in the cytoskeleton of myelin (Gillespie et al., 1989). Lipid-protein interactions in the cytoskeletons of oligodendrocytes may matter during the extension of myelin, since the cytoskeleton is known to control cell shape and motility (Niggli and Burger, 1987). Interactions of lipids with the cytoskeleton are also thought to be a prerequisite for vesicular transport (Mateoni and Kraig, 1987; Vale and Hotani, 1988; Steinert and Roop, 1988), and such interactions may be involved in membrane flow in oligodendrocytes.

In a series of initial experiments, immature and mature oligodendrocytes were extracted with Triton X-100. The presence of the major myelin sphingolipid GaIC in the cytoskeletons of oligodendrocytes was established immunocytochemically and its distribution was compared with those of microfilaments and microtubules, since microfilaments are found in the extremities of extending processes in immature cells, whereas microtubules are found at the cell body and the major processes throughout development (Wilson and Brophy, 1969). The presence of specific lipid classes in the cytoskeletons of oligodendrocytes was confirmed by lipid analysis.

Another series of experiments attempted to assess whether the specific association and enrichment of sphingolipids in the cytoskeleton of CNS myelin (Gillespie et al., 1989) also occurred in PNS myelin. It was also important to compare the fatty acid (FA) compositions of cytoskeleton-associated lipids with those in the intact membrane, since such an analysis might provide clues about the role of FA chain composition during the interaction of specific lipid classes with the cytoskeleton.

In order to visualize the possible interaction of sphingolipids with the cytoskeleton, it was decided to examine if C6-NBD-Cer and C6-DMB-Cer or their respective -Cb and -SM...
metabolites might be incorporated into the cytoskeleton. If so, a comparison between the compositions of fluorescent and endogenous sphingolipids associating with the cytoskeleton might provide information about structural features that could be important for such associations.
6.2 Results

GalC associates with the cytoskeletons of oligodendrocytes

GalC is present in the cytoskeletons of immature and mature oligodendrocytes and the patterns of cytoskeleton-associated GalC fluorescence are strikingly different during development (Fig. 36). Punctate-vesicular and flat sheet-like fluorescence are seen in the cytoskeletons from young and mature oligodendrocytes, respectively. In immature cells, anti-GalC decorates peripheral microfilaments, whereas little GalC colocalizes with microtubules. In these cultures mature oligodendrocytes contain few microfilaments (data not shown; Wilson and Brophy, 1989) and GalC codistributes with tubulin in the cytoskeleton. Mature oligodendrocyte cytoskeletons are more extensive and contain more GalC than their immature counterparts.

The association of GalC with the cytoskeleton of younger oligodendrocytes might be transient and related to microfilament-mediated transport to myelinating processes, whereas some GalC might associate permanently with microtubules in mature cells. The microfilament-rich processes of immature oligodendrocyte cytoskeletons contain CNP (Wilson and Brophy, 1989) and it is possible that GalC, microfilaments and CNP may interact in the peripheral cytoskeleton of these cells. However, since MBP colocalizes with microtubules in the processes of mature oligodendrocytes (Wilson and Brophy, 1989), it is possible that in these cells GalC might interact with MBP and tubulin. It therefore appears that although GalC interacts with the cytoskeleton at all times, GalC associates with different cytoskeletal elements during development. The studies of Dyer and Benajmins, (1989b) suggested that a linking between GalC, MBP and microtubules may exist in the cytoskeletons of oligodendrocytes and Fig. 36 indicates that GalC, MBP and tubulin may interact in the cytoskeletons of mature but not immature cells.

The lipid compositions of oligodendrocyte and myelin cytoskeletons.

The lipid to protein ratio in the cytoskeletons of oligodendrocytes was smaller by comparison with intact cells (Table 4), and a lower ratio is also found in the cytoskeleton of CNS myelin by comparison with the intact membrane (Gillespie et al., 1989; Table 5). Cholesterol is a
Fig. 36: The association of GalC with the cytoskeletons of oligodendrocytes

Oligodendrocyte progenitors differentiated for 3 d (A, B, C and D) or 6 d (E and F), were then extracted with Triton X-100 and examined by double indirect immunofluorescence. A: actin (TRITC); C and E: tubulin (TRITC); B, D and F: GalC (FITC). The microfilament-rich peripheral processes of immature oligodendrocyte cytoskeletons (A) were decorated with anti-GalC in a punctate/vesicular fashion and anti-GalC staining was also present in some cell bodies (B). By contrast, microtubules were mainly present in the cell body and major processes of immature oligodendrocyte cytoskeletons (C), and did not colocalize with GalC to a great extent (D). Microtubules were found in the cell body and major processes in cytoskeletons from mature oligodendrocytes (E), where they colocalized with GalC (F). Compared to younger cells, the cytoskeletons from mature oligodendrocytes contained more GalC-associated fluorescence. Bar: 10µm.
Table 4. The lipid compositions of cultured rat brain oligodendrocytes and their cytoskeletons

O-2A progenitors that had differentiated to oligodendrocytes for 4-5 d after the removal of bFGF from the medium, were extracted with a buffer containing Triton X-100 (Wilson and Brophy, 1989). Lipids from unextracted cells or cytoskeletons (CSKs) were separated by TLC, visualized by charring and quantified by densitometry. All values are means of measurements from at least three different experiments, with SDs ≤ 10% of each mean value. The values in brackets are for oligodendrocytes cultured for 34 d, recalculated from Fressinaud et al., (1990) for comparison.

<table>
<thead>
<tr>
<th></th>
<th>CELLS</th>
<th>CSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid / protein (μg/μg)</td>
<td>1.92</td>
<td>0.53</td>
</tr>
<tr>
<td>Lipid class (weight %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>45 (N/A)</td>
<td>57</td>
</tr>
<tr>
<td>Ceramide</td>
<td>3 (8)</td>
<td>5</td>
</tr>
<tr>
<td>% Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GalC-non-OH</td>
<td>53</td>
<td>48</td>
</tr>
<tr>
<td>GalC-OH</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>GlcC</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Sulfatide</td>
<td>1 (4)</td>
<td>1</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>51 (41)</td>
<td>37</td>
</tr>
<tr>
<td>% Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>43 (48)</td>
<td>45</td>
</tr>
<tr>
<td>PC</td>
<td>34 (20)</td>
<td>38</td>
</tr>
<tr>
<td>PS</td>
<td>18 (17)</td>
<td>6</td>
</tr>
<tr>
<td>PI</td>
<td>2 (10)</td>
<td>2</td>
</tr>
<tr>
<td>SM</td>
<td>8 (5)</td>
<td>9</td>
</tr>
</tbody>
</table>
Lipids were extracted from either 3-4 week old rat CNS myelin or its detergent-insoluble cytoskeleton (CSK) and analyzed as described in Materials and Methods. All values were the means of duplicate measurements made on at least three different experiments. The standard deviations were in all cases <15% of each mean value. Values in brackets refer to trigeminal nerve (PNS) myelin and its CSK.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MYELIN</th>
<th>MYELIN CSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid / protein (μmol/mg)</td>
<td>4.5 (3.4)</td>
<td>2.2 (3.3)</td>
</tr>
<tr>
<td>Lipid class (mol%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>39 (34)</td>
<td>41 (40)</td>
</tr>
<tr>
<td>Cerabroside</td>
<td>11 (12)</td>
<td>35 (27)</td>
</tr>
<tr>
<td>GalC non-OH</td>
<td>33 (50)</td>
<td>40 (48)</td>
</tr>
<tr>
<td>GalC-OH</td>
<td>63 (45)</td>
<td>59 (51)</td>
</tr>
<tr>
<td>GlcC</td>
<td>4 (5)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Sulfatide</td>
<td>4 (8)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>46 (46)</td>
<td>23 (31)</td>
</tr>
<tr>
<td>PE</td>
<td>40 (37)</td>
<td>18 (4)</td>
</tr>
<tr>
<td>PC</td>
<td>37 (18)</td>
<td>34 (34)</td>
</tr>
<tr>
<td>PS</td>
<td>12 (13)</td>
<td>3 (5)</td>
</tr>
<tr>
<td>PI</td>
<td>4 (2)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>SM</td>
<td>7 (30)</td>
<td>43 (46)</td>
</tr>
</tbody>
</table>
major lipid component in oligodendrocytes (Poduslo et al., 1990; Table 4) and the predominant lipid in their cytoskeletons. Although these immature cells contain little Cb (mainly GaIC), this lipid is somewhat enriched in their cytoskeletons, as was also found in CNS myelin (Gillespie et al., 1989). The proportions of individual GaIC classes in the cytoskeleton were the inverse of those in intact cells, with GaIC-Non-OH and GaIC-OH predominating in intact cells and cytoskeletons, respectively. The low GaIC-OH/GaIC-Non-OH ratio in intact oligodendrocytes may be another indication of their immaturity, since GaIC-OH predominates in mature CNS myelin and its associated cytoskeleton (Norton and Cammer, 1984, Gillespie et al., 1989, respectively). GaIC-OH, the main Cb in CNS myelin (Norton and Cammer, 1984) displays a high affinity for the cytoskeletons of oligodendrocytes and CNS myelin by comparison to GaIC-Non-OH (Gillespie et al., 1989; Tables 4 and 5). Therefore the enrichment of GaIC-OH in myelin may be due to its strong interaction with the cytoskeletons of oligodendrocytes and myelin throughout development.

The increased proportion of cholesterol in the cytoskeleton of oligodendrocytes is mainly accounted for by a complementary decrease in phospholipids (Table 4). The phospholipid composition in the cytoskeleton is different from that in intact cells, in that SM is increased in the cytoskeleton with a concomitant decrease in PS. SM is also increased and PS decreased in the cytoskeleton of CNS myelin, but the increase in SM is much greater and mostly accounted for by a concomitant decrease in PE (Gillespie et al., 1989; Table 5). This suggests that not only GaIC but also SM, another sphingolipid, displays a strong affinity for the cytoskeleton of myelin and oligodendrocytes.

The strong affinity of various sphingolipids for cellular cytoskeletons has been known for some time (Sakulibara et al., 1981, Gillespie et al., 1989, Packham et al., 1991, Gillard et al., 1991, 1992), and at least one protein is thought to be sorted through the Golgi via an interaction of its GPI-anchor with glycosphingolipids (Brown and Rose, 1992). Many GPI-anchored proteins are insoluble in Triton-X-100 (Low, 1989), leading to speculation that sphingolipids may mediate contact between cytoskeletal elements and membrane proteins containing covalently attached lipids. However, covalently attached lipids may also be involved in interactions other than with the cytoskeleton, since PLP contains at least two molecules of palmitate per polypeptide chain (Bizzozero and Lees, 1986) but either does not
interact at all with the cytoskeleton in rat CNS myelin (Gillespie et al., 1989) or to a very small extent in rabbit CNS myelin (Perayra et al., 1988).

The cytoskeleton of CNS myelin contains less lipid per mg protein than the intact membrane (Table 5, Gillespie et al., 1989). By contrast, the lipid/protein ratios in PNS myelin and its associated cytoskeleton are very similar (Table 5).

Although cholesterol is enriched in the cytoskeleton of myelin (mainly PNS) (Table 5), the major differences between myelin and its associated cytoskeleton are in the sphingolipids and phospholipids. The Cbs are proportionately enriched and the total phospholipids depleted in the cytoskeleton. The relative proportions of individual Cb classes do not vary significantly between myelin and its cytoskeleton. PE is significantly reduced, while SM is the most abundant phospholipid in the cytoskeleton. The differences in lipid composition between CNS myelin and its associated cytoskeleton are analogous to the ones found by Gillespie et al. (1989) and comparison with PNS myelin shows that the strong affinity of sphingolipids for the cytoskeleton is not restricted to CNS myelin and oligodendrocytes. Sphingolipids are the only lipids that show a consistent proportionate increase in the cytoskeletons of CNS, PNS myelin and oligodendrocytes.

Lipids of the cytoskeleton are enriched in saturated fatty acids.

Since the lipid compositions of myelin and its associated cytoskeleton are markedly different (Table 5), a comparison of their FA compositions might help understand why specific lipid classes display a preferential association with the cytoskeleton. This analysis was only performed on CNS tissue, since the differences in lipid composition between CNS and PNS myelin and their respective cytoskeletons are comparable (Table 5).

Myelin and cytoskeletal lipids differ in their FA compositions and these differences are predominantly accounted for by PE, PC and SM (Table 6).

24:0 and 24:1 are the main FAs in myelin GaIC (Norton and Cammer, 1984). The FA compositions of cytoskeletal-associated Cbs are almost identical to those in myelin (Table 6). Therefore, although Cbs are enriched in the cytoskeleton, association of Cbs with the cytoskeleton may not have a specific FA composition requirement.
Table 6: The main differences between the fatty acid classes of lipids found in CNS myelin and its associated cytoskeleton. The results are the means of at least two different duplicate experiments. Only significant differences are shown and the Student’s t-test P-values were always < 0.05.

M: Myelin, C: Cytoskeleton. DMA: Dimethylacetal, a plasmalogon derivative. ND: Not detected.

<table>
<thead>
<tr>
<th>FATTY ACID</th>
<th>CER M</th>
<th>CER C</th>
<th>SULF M</th>
<th>SULF C</th>
<th>PE M</th>
<th>PE C</th>
<th>PI M</th>
<th>PI C</th>
<th>PS M</th>
<th>PS C</th>
<th>PC M</th>
<th>PC C</th>
<th>SM M</th>
<th>SM C</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>2.4</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>16:0</td>
<td>6.3</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>18:0</td>
<td></td>
<td></td>
<td>39.3</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Total Sats</td>
<td>54.8</td>
<td>55.6</td>
<td>48.0</td>
<td>62.8</td>
<td>15.2</td>
<td>23.5</td>
<td>45.3</td>
<td>33.9</td>
<td>53.9</td>
<td>54.7</td>
<td>56.7</td>
<td>77.5</td>
<td>59.6</td>
<td>75.9</td>
</tr>
<tr>
<td>14:1</td>
<td>2.4</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>18:1</td>
<td></td>
<td></td>
<td>8.3</td>
<td>12.7</td>
<td>26.0</td>
<td>21.9</td>
<td>32.3</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:1</td>
<td>4.6</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>24:1</td>
<td>13.6</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Tot. Monoenes</td>
<td>36.2</td>
<td>35.3</td>
<td>33.0</td>
<td>23.1</td>
<td>24.1</td>
<td>31.4</td>
<td>11.0</td>
<td>15.0</td>
<td>33.5</td>
<td>37.0</td>
<td>36.2</td>
<td>18.5</td>
<td>27.7</td>
<td>20.2</td>
</tr>
<tr>
<td>18:1 DMA</td>
<td></td>
<td></td>
<td>11</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Total DMA</td>
<td>31.2</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>20:4 (n-6)</td>
<td>7.7</td>
<td>3.9</td>
<td>25.4</td>
<td>3.5</td>
<td>2.2</td>
<td>9</td>
<td>1.9</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:2 (n-6)</td>
<td>5.7</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:4 (n-6)</td>
<td></td>
</tr>
<tr>
<td>Total (n-6) PUFA</td>
<td>4.0</td>
<td>2.9</td>
<td>4.8</td>
<td>2.5</td>
<td>15.3</td>
<td>8.4</td>
<td>30.5</td>
<td>8.5</td>
<td>5.1</td>
<td>1.9</td>
<td>5.3</td>
<td>1.6</td>
<td>2.6</td>
<td>.7</td>
</tr>
<tr>
<td>22:6 (n-3)</td>
<td></td>
</tr>
<tr>
<td>Total (n-3) PUFA</td>
<td>ND</td>
<td>ND</td>
<td>1.4</td>
<td>ND</td>
<td>12.3</td>
<td>5.6</td>
<td>5.8</td>
<td>14.6</td>
<td>3.2</td>
<td>2.5</td>
<td>1.2</td>
<td>1.2</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Cytoskeletal-associated sulfatides are enriched in saturated FAs (mainly 14:0 and 16:0), while the monoenes (mainly 18:1 and 24:1) are approximately halved and PUFAs are either depleted or not detected in the cytoskeleton, with the exception of 20:4(n-6) and 22:4(n-6), whose proportions do not change.

The proportions of all the saturated FAs and monoenes are increased in cytoskeletal-associated PE; this increase is primarily due to the approximate doubling of the 20:1 species. Total plasmalogens (see Table 6 under dimethylacetals OMA) are proportionately decreased in the cytoskeleton and this is due to a halving in the amount of 18:1, the main plasmalogen in myelin PE (Norton and Cammer, 1984). Total PUFAs are also decreased to approximately half in the cytoskeleton, which is principally reflected in the 20:4(n-6), 22:4(n-6) and 22:6(n-3) species.

The decrease in cytoskeletal-associated PI is mainly due to an almost halving in the proportion of 18:0 by comparison with myelin; 18:0 is the major FA in myelin PI, representing approximately 40% of the total FA (Table 6). The proportions of the 20:1 monoenes are approximately quadrupled in the cytoskeleton and the 20:4(n-6) PUFAs, the major PUFAs in myelin PI, can account for the major decrease of total (n-6) PUFAs in cytoskeletal-associated PI. Uniquely, the (n-3) PUFAs of PI are the only cytoskeletal-associated PUFAs that are proportionately enriched.

Only small differences are noted in the FA compositions of myelin and cytoskeletal-associated PS. The main difference is in the proportion of 24:1, which is depleted in the cytoskeleton.

The predominant FA in myelin PC is 16:0 (Norton and Cammer, 1984); the proportion of this FA is increased in the cytoskeleton, making up more than 50% of the cytoskeletal-associated FA in PC (Table 6). By contrast, the proportion of 18:1, the main monoene in PC, is approximately halved in the cytoskeleton, leading to a corresponding halving in the total cytoskeletal-associated monoenes. The (n-6) PUFAs are also decreased in cytoskeletal-associated PC.

In SM, saturated FAs account for approximately 55 and 75% of the total FAs in myelin and the cytoskeleton, respectively (Table 6). These differences are mainly due to a proportionate increase in cytoskeletal-associated 18:0, the major FA in myelin SM. The major differences
In the monoenes and PUFA content of cytoskeletal SM are decreases in 24:1 and 22:2(n-6) in the cytoskeleton.

In summary, FA analysis of individual myelin and cytoskeletal lipid classes, which was also confirmed by total FA analysis (data not shown), suggested that the cytoskeletonally-associated lipid of myelin is enriched in all classes of saturated FAs and depleted in monoenes, (n-6) and (n-3) polyunsaturated FAs (PUFAs) and plasmalogens by comparison with myelin lipid. 16:0 and to a lesser extent 20:0 and 24:0 are proportionately enriched in the cytoskeleton and monoenes (with the exception of 24:1) are depleted, the PUFAs are reduced to approximately 25% and the plasmalogens to 50% of their proportions in total myelin lipid. However, all the FAs present in myelin are also found in the cytoskeleton, indicating that Triton X-100 does not preferentially solubilize lipids that contain a specific FA chain.

Marseri and Low, (1989) have shown that Band 3, a transmembrane ion transport protein in red blood cells, copurifies with phospholipids containing long chain saturated FAs after non-ionic detergent treatment; their work has suggested that the tight association of Band 3 with long chain saturated FAs is necessary for stabilization of Band 3, and it is possible that the enrichment of saturated FAs in the cytoskeleton of myelin may have a similar role.

C5-DMB-lipids associate with the cytoskeletons of oligodendrocytes after overnight incubation.

Although small amounts of C5-DMB-lipids associate with the cytoskeletons of oligodendrocytes after 2 and 5 h of incubation at 37°C, overnight incubation is necessary for these lipids to accumulate in the cytoskeleton; however, the relative amounts of metabolic products of C5-DMB-Cer remain constant after 2 h of incubation (data not shown). Cytoskeletonally-associated C5-DMB-lipids are mainly seen in a perinuclear location and some fluorescence is also present along the major processes (Fig. 37). By contrast, C5-NBD-Cer and its -SM and -Cb metabolites (Lipsky and Pagano, 1983) do not associate with the cytoskeletons of oligodendrocytes under these conditions.

172
Oligodendrocytes at 4 d of differentiation were incubated with C₃-DMB-Cer/DF-BSA for 10 min at 37°C, washed and incubated at 37°C overnight. Whole cells (A), or cytoskeletons resulting from extraction with Triton X-100 (C), were fixed and examined by indirect immunofluorescence. In unextracted cells, C₃-DMB-lipid fluorescence (red channel) was mainly in the cell body, with some fluorescence along the major processes (B). C₃-DMB-lipids were also associated with the cytoskeletons of oligodendrocytes, where the fluorescence was present in a perinuclear location and at the processes (D). Bars: 10 µm.
C₆-NBD- and C₅-DMB-Cer are very different as regards their spectral properties, metabolic fates and abilities to label intracellular compartments; this is thought to be a consequence of their fatty-acyl chain compositions (Pagano et al., 1991). The NBD group (see Section 1, Fig. 8) is polar and tends to loop back to the polar region of the membrane (Chattopadhyay and London, 1987, 1988), making the sphingosine backbone the only portion of the molecule with a potential for embedding in the membrane. The limited interaction of C₆-NBD-lipids with the hydrophobic core of the lipid bilayer may account for the total extraction of these lipids with non-ionic detergent. Since the DMB group is mainly non-polar and bulkier than the NBD group, DMB probably remains associated with the non-polar region of the membrane, which may account for the ability of DMB-lipids to interact with the cytoskeleton. However, since overnight incubation was necessary in order to detect sufficient C₅-DMB-lipids (mainly C₅-DMB-SM) in the cytoskeletons of oligodendrocytes, it is possible that equilibration with cellular lipids and/or proteins may also be of importance for interaction with the cytoskeleton. C₅-DMB-lipids are found in a perinuclear location and along the major processes of oligodendrocyte cytoskeletons, where microtubules are also located (Wilson and Brophy, 1989, Fig. 36). Since microtubules are involved in vesicular transport (Pearse and Robinson, 1990, Vallee and Shpatner, 1990, Pelham, 1991) and microtubules are the major cytoskeletal structure in oligodendrocytes, both in vivo (Wood and Bunge, 1984) and in culture (Wilson and Brophy, 1989), these data suggest that C₅-DMB-lipids may continuously cycle in transport vesicles that move along microtubules and slowly become concentrated on the tubulin cytoskeleton.

Table 7 shows that following overnight incubation, the ratios of cellular to cytoskeletal-associated endogenous lipids (control cells) and unextracted cytoskeleton-associated C₅-DMB-lipids are rather similar, implying that C₅-DMB-lipids may behave in a manner similar to endogenous lipids. Although C₅-DMB-SM is the predominant cellular and cytoskeleton-associated metabolite of C₅-DMB-Cer, C₅-DMB-Cbs (approximately 95% C₅-DMB-GlcC) are enriched in the cytoskeletons of oligodendrocytes after overnight incubation. This is consistent with the enrichment of endogenous Cbs in oligodendrocytic cytoskeletons (Table 4) and the enrichment of Cbs in the cytoskeletons of CNS and PNS myelin (Gilkespie et al., 1989: Table 5).
Table 7: The association of N-[5(5,7-dimethyl borondipyrromethene difluoride)-1-pentanoyl] ceramide (C₅-DMB-Cer) and its cerebroside (Cb) and sphingomyelin (SM) metabolites with the cytoskeletons of oligodendrocytes.

Oligodendrocytes at differentiation stage 4-5 d after the removal of bFGF were incubated overnight in the absence (control cells) or presence of C₅-DMB-Cer. Cellular lipids (control cells) and C₅-DMB-lipids from either unextracted cells or cytoskeletons (CSKs) were quantitated as described in Materials and Methods.

<table>
<thead>
<tr>
<th>LIPID / PROTEIN RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Cells</td>
</tr>
<tr>
<td>Controls (µg lipid/µg protein)</td>
</tr>
<tr>
<td>C₅-DMB-Cer-treated (pmol lipid/µg protein)</td>
</tr>
<tr>
<td>a) Total lipid</td>
</tr>
<tr>
<td>b) Lipid Class</td>
</tr>
<tr>
<td>Cer</td>
</tr>
<tr>
<td>SM</td>
</tr>
<tr>
<td>Cb</td>
</tr>
</tbody>
</table>
Schwann lipids associate with the cytoskeleton of Schwann cells

The presence of GalC (Fig. 38, B) and C5-DMB-4pids (Fig. 38, D) in the cytoskeletons of Schwann cells shows that association of these lipids with the cytoskeleton is not limited to oligodendrocytes. Since in oligodendrocytes most of the C5-DMB-4pid is C5-DMB-SM after overnight incubation (Table 7), C5-DMB-SM may also associate with the cytoskeletons of Schwann cells.

Cytoskeletally-associated GalC colocalizes with peripheral microfilaments in immature oligodendrocytes and with the cell body and process-associated microtubules in mature oligodendrocytes (Fig. 38), which does not reflect the perinuclear distribution of GalC in Schwann cell cytoskeletons (Fig. 38). Although oligodendrocytes and Schwann cells perform the same function in vivo, their morphologies and modes of myelination are very different, and it is possible that cytoskeletally-associated GalC in Schwann cells may have a different role to that in oligodendrocytes.
Fig. 38 Sphingolipids associate with the cytoskeletons of Schwann cells.

Schwann cells were incubated at 37°C for 10 min in the absence (A) or presence (C) of C₅-DMB-Cer/DF-BSA complexes, washed and incubated at 37°C overnight. After extraction with Triton X-100 and fixation, the cytoskeletons from cells incubated in the absence of C₅-DMB-Cer were processed for indirect immunofluorescence using anti-GaIC (TRITC) (B). Cytoskeletonally-associated GaIC was seen in a perinuclear location and in structures that resembled vesicles (B), whereas the cytoskeletons from cells incubated with C₅-DMB-Cer retained fluorescence in a perinuclear location only (D). Bar: 10μm.
6.3 Discussion

Immunocytochemistry showed that GaIC associates with the cytoskeletons of oligodendrocytes and Schwann cells, and in oligodendrocytes this was confirmed by lipid analysis. Lipid analysis also showed that by comparison with total oligodendrocyte and myelin membrane lipids, cytoskeletonally-associated lipids are enriched in sphingolipids.

Since sphingolipids are also enriched in the cytoskeletons of both CNS and PNS myelin, these lipids may have analogous roles in both systems and their cytoskeletal association may be a prerequisite for myelin function. Much information is currently available about the roles of gangliosides as modulators for transmembrane signals and mediators of cellular interactions (for review see Hakomori, 1990), the role of sphingomyelin in such interactions is beginning to emerge (Kolesnich, 1991) and Dyer and Benjamin, (1992) suggested that GaIC and sulfatide may independently mediate Ca^{2+} responses in oligodendrocytes. GM3 colocalizes with intermediate filaments in human umbilical vein endothelial cells (HUVEC) (Gillard et al., 1991), but the possible association of gangliosides with the cytoskeleton has not yet been investigated in myelin and myelinating cells. Sphingolipid association with the cytoskeleton may therefore mediate axonal communication and intracellular signaling in myelinating cells and myelin.

It is possible that cytoskeletonally-associated GaIC and perhaps other sphingolipids may mediate events between the plasma membrane and the cytoskeleton via linker proteins. On the surface of lymphocytes, GM1 ganglioside undergoes lateral redistribution and forms patches after binding cholera toxin, suggesting that GM1-toxin complexes may be indirectly associated with the cytoskeleton via a transmembrane component (Saheyoun et al., 1981); based on similar morphological changes on oligodendrocytes after anti-GaIC treatment, Dyer and Benjamin (1989b) proposed that GaIC may be important in transmitting transmembrane signals and regulate oligodendrocyte membrane sheet morphology by indirectly associating with microtubules via MBP.

Although GaIC associates with the cytoskeletons of oligodendrocytes throughout development, more GaIC is seen in the cytoskeletons of mature cells, suggesting that as oligodendrocytes mature GaIC accumulates in the cytoskeleton. In young cell cytoskeletons
GaIC is linked to microfilaments, that also contain CNP (Wilson and Brophy, 1989); however, in mature cell cytoskeleton GaIC colocalizes with microtubules, that contain MBP (Wilson and Brophy, 1989). Therefore, the proposition of Dyer and Benjamin, (1989b) for a possible tubulin/MBP/GaIC linkage in the cytoskeleton appears justified in the case of mature cells.

Cytoskeletonally-associated GaIC may also be involved in the delivery of molecules to myelin via its interaction with CNP and microfilaments in young oligodendrocytes, whereas in mature cells GaIC may participate in vesicular transport and/or stabilization of the tubulin cytoskeleton via its interaction with MBP. Thus, the interaction of GaIC with the cytoskeletons of oligodendrocytes and CNS myelin may have a role in myelinogenesis (as originally proposed by Gillespie et al., 1989) and in the mature sheath. Cytoskeletonally-associated GaIC may have similar but not identical functions in Schwann cells since, unlike in oligodendrocytes, Schwann cell development is under axonal control (for review see Jessen and Mirsky, 1991) and the cytoskeleton of Schwann cells contains abundant intermediate filaments (Kelly et al., 1992).

Saturated FAs (primarily 16:0) are enriched and all other FA classes are depleted in the cytoskeleton of CNS myelin, with PE, PC and SM accounting for the major differences. Diacylglycerol and palmitic acid (16:0) form supramolecular complexes and are linked to the actin cytoskeleton via α-actinin (Bum and Burger, 1985). The affinity of saturated FAs for cytoskeletons and their possible involvement in aggregation was exemplified by Packham et al., (1991), who showed that when platelets are induced to aggregate with thrombin ³H-labeled saturated FAs and in particular palmitic acid are rapidly incorporated in PC, whereas ³H-labeled unsaturated FAs are excluded. Therefore, it seems that preferential association of saturated FAs with cytoskeletons, and in particular palmitic acid which is also enriched in cytoskeletonally-associated myelin PC and SM, may not be unique to myelin and myelinating cells but might be a general mechanism promoting the strong and rapid association of lipids with cytoskeletons.

The observation that C₅-DMB- but not C₆-NBD-lipids have the potential to associate with the cytoskeleton of oligodendrocytes and Schwann cells also indicates that acyl chain composition may preferentially determine the association of lipids with cytoskeletons, while the association of C₅-DMB-SM and -Cb with the cytoskeletons of oligodendrocytes
reinforces the view that SM and Cbs have a strong tendency to incorporate in the cytoskeletons of myelin and myelinating cells.
The association of myelin proteins with the cytoskeleton during development
7.1 Introduction

The cytoskeleton is involved in a variety of functions via lateral or end-on linkages to other cellular components, including molecules in the plasma membrane (for review see Niggli and Burger, 1987). Immunologically-related proteins that associate with the cytoskeleton can have different functions in different cell types: spectrin in brush border microvilli (densely packed specializations of intestinal epithelial cells) acts as a microfilament cross-linker, whereas in synaptosomes spectrin appears to control the function of the glutamate receptor (Siman et al., 1985). The myelin-specific proteins MBP and CNP associate with the cytoskeleton of mature CNS myelin (Pereyra et al., 1988; Gillespie et al., 1989). Dyer and Benjamin, (1989a) have speculated that microfilaments may be linked with microtubules and with CNP in cultured oligodendrocytes. In these cells CNP interacts with microfilaments during process extension, whereas MBP interacts with microtubules throughout development (Wilson and Brophy, 1989). MAG also interacts with the cytoskeleton in myelin (Pereyra et al., 1988), and Trapp et al., (1989a) have proposed that since oligodendrocytic MAG is found in multivesicular bodies (MVBs), this protein may be associated with an endocytic pathway that originates in the periaxonal membrane of CNS myelin internodes and terminates in the perinuclear cytoplasm.

These data suggest that the compositions of myelin and oligodendrocyte cytoskeletons change during development and that such changes could be important in myelination. Therefore, initial experiments were aimed at examining which myelin-specific proteins associate with the cytoskeleton at the onset (postnatal day 9, P9) and during active myelination (P15). An examination of the protein composition of the myelin cytoskeleton during development might provide clues about the roles of individual components of the cytoskeleton during myelination. Therefore, rat CNS myelin from these developmental stages was extracted with Triton X-100 in the manner described by Gillespie et al., (1989) and the presence of myelin-specific proteins in the cytoskeleton was established by Western blotting. Additionally, it was hoped that deglycosylation of detergent-soluble and -insoluble myelin fractions followed by immunoblotting would indicate which MAG isoforms associate with the cytoskeleton during development.

The localization of MAG in young and mature oligodendrocytes and its possible association
with the cytoskeleton was examined by immunocytochemistry and Western blotting. Double labeling with anti-MAG and either phalloidin (recognizing F-actin) or anti-tubulin might reveal whether MAG colocalizes with microtubules or microfilaments in intact oligodendrocytes and oligodendrocyte cytoskeletons during development; comparison of these data with those of Wilson and Brophy, (1989) might also indicate whether MAG colocalizes and perhaps interacts with either CNP or MBP during development.
7.2 Results

The protein composition of the cytoskeleton of rat CNS myelin increases in complexity during development.

The myelin extraction buffer system was tested on adult rat CNS myelin by essentially repeating the immunoblotting experiments of Gillespie et al., (1989) with identical results (data not shown).

The myelin cytoskeleton from P9 animals contains approximately half the tubulin and half the 21.5, 18.5 and 17.0 kDa MBPs but very little actin and no CNP (Fig 39). The association of the MBPs and tubulin in the myelin cytoskeleton before active myelination may be important in establishing a foundation upon which the myelin sheath will eventually be built. Approximately half the actin, all the tubulin and most of the MBP and CNP polypeptides are found in the cytoskeleton at P15. These results show that the association of the 21.5, 18.5 and 17.0 kDa MBPs with the myelin cytoskeleton precedes that of actin and CNP. The association of CNP and F-actin with the cytoskeleton at P15 may mean that these proteins are important during active myelination. The distribution of CNP between the detergent-soluble fraction and the cytoskeleton resembles that of actin at P9 and P15, respectively. All the CNP is detergent-soluble at P9 and most of the smallest polypeptide (CNP1) and all the CNP2 are associated with the cytoskeleton at P15. The finding of CNP and F-actin in the myelin cytoskeleton at P15 may indicate that F-actin is involved in the delivery of CNP to myelin and supports the earlier proposal that cytoskeletonally-associated CNP and F-actin interact in the peripheral processes of immature oligodendrocytes (Wilson and Brophy, 1989).

At P9 the 21.5 kDa MBP is enriched in the cytoskeleton, this MBP polypeptide is totally associated with the cytoskeleton at P15 and the studies of Pareyra et al., (1988) and Gillespie et al., (1989) have shown that the 21.5 kDa MBP is exclusively associated with the cytoskeleton in mature myelin. These data suggest that either post-transcriptional modification may influence the extent of interaction of the 21.5 kDa MBP with the cytoskeleton and the form that displays strong affinity for the cytoskeleton predominates during active myelination and in adult myelin, or that the presence of microfilaments (which are essentially absent from P9 myelin) may be necessary for all the 21.5 kDa MBP to
Fig. 2B. The distribution of rat CNS myelin proteins between the Triton X-100-soluble (S) and cytoskeleton (C) fractions during development.

Rat brain myelin from postnatal days 9 and 15 (P9 and P15) was extracted with Triton X-100 as described in Materials and Methods. The distribution of proteins between the detergent-soluble and cytoskeleton fractions was demonstrated by Western blotting. CNP co-distributed with actin and the distribution of the 21.5, 18.5 and 17.0 kDa MBPs resembled that of tubulin at P9 and P15, respectively. The 14.0 kDa MBP, which was not detected at P9, distributed like actin at P15.
Approximately half of the 18.5 and 17.0 kDa MBPs are found in the myelin cytoskeleton at P9 and these MBPs are totally associated with the cytoskeleton at P15. The distributions of the 21.5, 18.5 and 17.0 kDa MBPs between the detergent-soluble fraction and the cytoskeleton of myelin, reflect those of tubulin at P9 and P15, respectively, suggesting a structural relationship between these proteins during development. Since approximately half the 18.5 and 17.0 kDa MBPs from mature rat CNS myelin are detergent-soluble (Gillespie et al., 1989) while at P9 these proteins are associated with the myelin cytoskeleton, it is possible that total association with the cytoskeleton is only necessary during the period of active myelination.

The 14.0 kDa MBP is not detected in myelin at P9 but is present at P15, when it distributes almost equally between the detergent-soluble and -insoluble fractions. This data and those of others (Barbarose et al., 1978; Morell et al., 1984) indicate that the 14.0 kDa MBP appears later than the other MBPs and persists in adult myelin. The finding that the 14.0 kDa MBP, CNP and microfilaments associate with the myelin cytoskeleton at approximately the same time, and data showing that this association persists in adult myelin (Gillespie et al., 1989; Pereyra et al., 1988) suggests that the 14.0 kDa MBP, CNP and F-actin might interact during active myelination and in mature myelin.

All the PLP and DM20 are detergent-soluble, both at P9 and P15 (data not shown), as was previously demonstrated for mature rat CNS myelin (Gillespie et al., 1989).

The distributions of actin, CNP and tubulin between the detergent-soluble fraction and the cytoskeleton at P15 are very similar to those found by Gillespie et al., (1989) and Pereyra et al., (1988) for mature myelin, indicating that their pattern of association proteins with the myelin cytoskeleton may have already been established by P15. By contrast, the pattern of association of MBP with the cytoskeleton changes throughout development and may only become established in mature myelin.

MAG associates with the myelin cytoskeleton during myelination

Western blotting indicates that MAG associates with the cytoskeleton of CNS myelin at P9 and P15 (Fig. 40). Most of the S-MAG associates with the cytoskeleton at P9 and this may
Fig. 40. The association of MAG with the myelin cytoskeleton during development.

Rat CNS myelin from postnatal days 9 and 15 (P9 and P15) was extracted with Triton X-100. Equal volumes of detergent-soluble (S) and insoluble cytoskeleton (C) fractions were incubated in the absence (A) or presence (B) of endoglycosidase F and the distribution of MAG was shown by Western blotting. MAG was predominantly (P9) or exclusively (P15) associated with the cytoskeleton. Significant amounts of the small (S-) and large (L-) MAG polypeptides were detergent-soluble at P9 only.
mean that S-MAG and the 21.5 kDa MBP (Fig. 39) are the first myelin-specific proteins that
associate with the cytoskeleton of CNS myelin. The strong association of MAG with the
cytoskeleton persists at P15 (Fig. 40) and MAG is enriched in the cytoskeletons of CNS and
PNS myelin from 4-6 week old animals (data not shown).

A small but significant amount of S-MAG and all of the L-MAG are detergent-soluble at P9
(Fig. 40, Panel B), whereas at P15 both of the MAG polypeptides are cytoskeletonally-
associated (P15, Panel B). The distribution of MAG between the detergent-soluble fraction
and the cytoskeleton at P9 and P15 resembles that of tubulin and the 21.5, 18.5 and 17.0
kDa MBPs, but not that of actin and CNP (compare Figs 39 and 40).

In CNS and PNS myelin from 4-6 week old rat, S-MAG partitions mainly and L-MAG totally
with the cytoskeleton (results not shown). At this age, the distribution of MAG between the
detergent-soluble and cytoskeletal fractions resembles the distributions of tubulin and the
21.5, 18.5 and 17.0 kDa MBPs (Gillespie et al., 1989); this may indicate that the interaction
of MAG, tubulin and the MBPs with the cytoskeleton of myelin is important for the
stabilization of adult myelin

MAG-cytoskeleton interactions in oligodendrocytes.

Oligodendrocytes at 4 d of differentiation (Fig. 41, A) have smaller cell bodies and less
extensive processes in comparison with their more mature 14 d counterparts (Fig. 41, B). In
immature oligodendrocytes, microfilaments are restricted to peripheral processes (Fig. 41,
B), whereas MAG is found at the cell body and in the cell periphery where it colocalizes with
microfilaments (Fig. 41, C). In support of this association, Trapp et al. (1989b) have shown
that MAG colocalizes with actin in Schwann cells. Extraction with Triton X-100 indicates that
MAG does not associate with the cytoskeleton in immature oligodendrocytes (data not
shown). Wilson and Brophy (1989) demonstrated that F-actin and CNP colocalize in the
periphery of immature oligodendrocytes and their cytoskeletons. Since MAG, CNP and
microfilaments are found in the peripheral processes of immature oligodendrocytes where
MAG does not associate with the cytoskeleton, it is possible that weak interactions between
MAG and either microfilaments or CNP may be involved in the transport of MAG to myelin.
Fig. 41 MAG colocalizes with microfilaments in the elongating processes of immature oligodendrocytes.

O-2A progenitors were permitted to differentiate to oligodendrocytes for 4 d (A, B and C) or 14 d (D, E and F), respectively, in defined medium/1% FCS. The cells were fixed and processed for fluorescence microscopy using phalloidin-TRITC (a stain for microfilaments) (B and E) and anti-MAG (FITC) (C and F). MAG and microfilaments colocalized in the processes of oligodendrocytes at 4 d of differentiation, whereas MAG was restricted to the cell body of mature oligodendrocytes that are devoid of microfilaments. An astrocyte that does contain microfilaments is seen in the top left corner in D and E. Bar: 10 mm.
Mature oligodendrocytes do not contain intermediate filaments and the absence of microfilaments was shown by Wilson and Brophy, (1969) and confirmed by these experiments (Fig. 41, E). In these cells, MAG is found predominantly but not exclusively at the cell body (Fig. 41, F). I speculated that if MAG does associate with the cytoskeleton of mature oligodendrocytes, it may do so with microtubules. The data show that oligodendrocyte cytoskeletons prepared from cells at 14 d of differentiation (Fig. 42 D) contain MAG that decorates microtubules at the cell body and cellular processes (Fig. 42, E and F). All the MAG is cytoskeletonically associated at this developmental stage in culture (Fig. 43). The distribution pattern of MAG in the cytoskeleton resembles that of MAG in oligodendrocytes on sections from brain and spinal cord (Sternberger et al., 1979). These results suggest that MAG and tubulin probably interact in the cytoskeletons of mature oligodendrocytes and CNS myelin (Fig. 40).
Fig. 42 MAG colocalizes with tubulin in the cytoskeleton of mature oligodendrocytes.

Oligodendrocytes at 14 d of differentiation (A, B and C) or their cytoskeletons (D, E and F) were treated and processed for double indirect immunofluorescence using anti-tubulin (TRITC) (B and E) and anti-MAG (FITC) (C and F). MAG codistributed with tubulin in the cell bodies and in the major processes of mature oligodendrocytes (B and C) and their cytoskeletons (E and F).

Bar 10 mm
Fig. 43 MAG is totally associated with the cytoskeletons of 14-d old oligodendrocytes

Oligodendrocytes at 14 d of differentiation were extracted with Triton X-100. The detergent-soluble (S) and -insoluble cytoskeleton (C) fractions and CNS myelin (MY) from P14 rat were immunoblotted for MAG.
7.3 Discussion

Interactions between the cellular cytoskeleton and the plasma membrane have been implicated in the control of cell shape and movement in a variety of cell types (for review see Carraway and Carothers, 1969) and the extension of myelinating processes from an oligodendrocyte requires a drastic change in cell morphology that probably involves the cellular cytoskeleton (Wilson and Brophy, 1969). The association of myelin-specific proteins with the cytoskeletons of CNS myelin (Perry et al., 1966; Gillespie et al., 1969) and oligodendrocytes (Wilson and Brophy, 1969) indicated that specific associations may exist between either MBP and tubulin or CNP and actin in myelin and in oligodendrocytes. The present data show that the cytoskeletons of myelin and oligodendrocytes increase in complexity during active myelination. PLP and DM20 from mature rat brain myelin are solubilized totally by detergent (Gillespie et al., 1969, respectively) as are PLP and DM20 from P9 and P15 rat brain myelin, suggesting that these proteins do not interact with the cytoskeleton of rat CNS myelin.

The late appearance of the 14.0 kDa MBP in myelin (also shown by Rousel and Nussbaum, 1981) suggests that this MBP may have a specific role during the late stages of myelination. Since the 14.0 kDa MBP is the only MBP polypeptide that co-distributes with actin, CNP and tubulin at all times during development, it is possible that the 14.0 kDa MBP may be involved in linking CNP/microfilament with MBP/microtubule complexes. This notion is supported by the Triton X-100 solubilization of both CNP and actin in P9 myelin when the 14.0 kDa MBP is not yet expressed, and by experiments where specific disruption of oligodendrocyte microfilaments results in the simultaneous disruption of microtubules (Dyer and Benjamins, 1989a). Therefore, owing to the late developmental expression of the 14.0 kDa MBP, macromolecular CNP/microfilament/MBP/microtubule complexes may only start forming during the period of active myelination and persist in mature myelin.

The enrichment of the 21.5 kDa MBP in early myelin and its strong association with the cytoskeleton throughout development is in support of a formative and/or stabilizing role for this MBP in myelin, as was previously proposed by Gillespie et al., (1969).

CNP2 is not associated with the myelin cytoskeleton at P9 but is found in the cytoskeletons of P15 and 4-6 week old myelin. Since CNP2 is the only known myelin protein that is
phosphorylated in a cAMP-dependent manner (Bradbury and Thompson, 1984). It is possible that cAMP-dependent phosphorylation of CNP2 may only involve the cytoskeleton during active myelination and in mature myelin. However, since the experiments of Bradbury and Thompson (1984) were performed with myelin from adult animals, it is not known whether cAMP-dependent phosphorylation of CNP2 may also occur during early and active myelination, when phosphorylation may be related to association with the cytoskeleton.

Although radioactive fucose labeling of rat brain at different ages indicates that there may be a change in the MW of MAG during development (Quarles et al., 1983/84), it was not possible to ascertain whether this change occurs in the polypeptide or carbohydrate portion of MAG. In rat and mouse, the mRNA coding for L-MAG is the dominant MAG mRNA at P15, while the mRNA coding for S-MAG dominates at P62 (Frail and Brown, 1984); however, it has never been conclusively shown that the relative levels of deglycosylated L- and S-MAG polypeptides follow the same developmental shift as their respective mRNAs. The finding that in P9, P15 and 4-6 week old rat CNS myelin, S-MAG is the predominant MAG polypeptide, suggests that posttranscriptional regulation and not the relative levels of MAG mRNA may be responsible for the amounts of L- and S-MAG polypeptides in myelin. Such regulation of myelin (and other) proteins is common and was also found in PLP and DM20, when at early ages the relative levels of their respective mRNAs do not correspond to the relative levels of PLP and DM20 (LeVine et al., 1990). The association of MAG with the cytoskeleton of myelin was shown previously (Perayra et al., 1988); however, these are the first data to show which and how much of each MAG polypeptide associates with the cytoskeleton during development and that MAG only associates with the cytoskeleton of terminally differentiated oligodendrocytes.

MAG is thought to create and maintain the axon/myelin apposition (Quarles, 1983/84) and S-MAG, the deglycosylated form of which primarily partitions with the myelin cytoskeleton throughout development, may be involved in retrograde transport in oligodendrocytes (Trapp et al., 1989a). Since retrograde transport involves microtubules (for review see Turner and Tartakoff, 1989), the possibility that MAG may be involved in such transport is supported further by the colocalization of MAG and microtubules in the cytoskeletons of myelin and mature oligodendrocytes. The particularly specific link between MAG and tubulin is

194
exemplified in P14 myelin as well as in cultured oligodendrocytes at 14 d of differentiation, where Western blotting shows that all the MAG is found in the cytoskeletal fraction. Trapp et al. (1989a) showed that MAG is present in multivesicular bodies (MVBs) in oligodendrocytes in vivo, and MVBs are similar in structure to the MAG-enriched vesicles that Sternberger et al. (1979) observed in oligodendrocytes stained with anti-MAG on thin sections. It is therefore attractive to hypothesize that the punctate pattern of MAG staining that is observed in the processes of oligodendrocyte cytoskeletons may represent MAG-enriched MVBs in strong association with microtubules during retrograde transport.
Phosphorylation of cytoskeletally-associated proteins in myelin
8.1 Introduction

The phosphorylation state of proteins represents a dynamic balance between the activities of phosphatases and kinases. Phosphorylation/dephosphorylation events lead to changes in the structure of myelin proteins (Ramwani and Moscarello, 1990) and differences in the phosphorylation state of myelin-specific proteins may determine the flexibility with which they interact \textit{in vivo}. Myelin membrane flexibility may thus be determined by protein phosphorylation at different residues on the polypeptide backbone, which would depend on small differences in protein sequence and the specificities of enzymes available at different loci.

Phosphorylation may control the interaction of cytoskeletal proteins with one another and/or other cellular proteins, since disruption of phosphorylation results in an aberrant organization of the cytoskeleton in retinal ganglion neurons (Nixon et al., 1997). Pathogenic accumulation of abnormally phosphorylated cytoskeletal proteins is characteristic of several neurodegenerative conditions, such as Alzheimer's disease, Pick's disease, amyotrophic lateral sclerosis and Parkinson's disease (Johnson and Jope, 1988). Gillespie et al., (1989) showed that the cytoskeleton of CNS myelin is strongly associated with specific proteins and they speculated that the reversible phosphorylation and dephosphorylation of these proteins might regulate interactions between the membrane and the cytoskeleton. Therefore, this initial study aimed to assess

a) if cytoskeleton-associated myelin-specific proteins are a distinct subset, as distinguished by the extent of their \textit{in vitro} phosphorylation and

b) the possible effect of phosphorylation on the degree of association of proteins with the cytoskeleton.

In order to answer these questions, rat CNS and PNS myelin was phosphorylated with \(\gamma^{32}\text{P}}\text{ATP, extracted with Triton X-100 and the proteins of the detergent-soluble fraction and the cytoskeleton were analyzed by immunoblotting and autoradiography. This study permitted a direct comparison between the amounts of myelin proteins that were either associated with the cytoskeleton or extracted by detergent and the relative extents of their \textit{in vitro} phosphorylation.
8.2 Results

MBPs that associate with the cytoskeleton are phosphorylated less heavily than Triton X-100-extractable MBPs.

The partitioning of myelin-specific proteins between the soluble and cytoskeletal fractions was independent of in vitro phosphorylation and/or the presence of cAMP (data not shown). Gillespie et al. (1989) showed identical protein distributions for non-phosphorylated 4-6 week old rat CNS myelin. Since the extent of myelin protein association with the cytoskeleton is not controlled by in vitro phosphorylation, amino acid residues at, or in proximity to, the contact sites with the cytoskeleton might not be phosphorylated.

The MBPs are the major group of phosphorylated myelin proteins in the soluble fraction (Fig. 44, Panel A2 and B2). Of the four MBP variants (21.5, 16.5, 17.0, and 14.0 kDa) found in rat CNS and PNS myelin, the 21.5 kDa MBPs are exclusively and the 17.0 kDa MBPs predominantly associated with the cytoskeleton (Panel A3 and B3). Although the 16.5 and the 17.0 kDa MBPs from both CNS and PNS myelin are enriched in the cytoskeleton, these proteins are more heavily phosphorylated in the soluble fraction. In contrast, the extent of phosphorylation of the 14.0 kDa MBP reflects its relative abundance in the soluble and cytoskeletal fractions, both in CNS and PNS myelin. As a general rule, the MBPs which are enriched in the soluble fraction are phosphorylated to a greater extent than their cytoskeleton-associated counterparts.

PLP and DM20 are not phosphorylated in CNS myelin and detergent-soluble Po is phosphorylated to a greater extent than cytoskeleton-associated Po.

When phosphorylated or non-phosphorylated rat CNS myelin is extracted with Triton X-100, PLP and DM20 are completely solubilized, as was also previously shown by Gillespie et al. (1989) for non-phosphorylated myelin. PLP and DM20 are not phosphorylated by [γ-32P]ATP in vitro (Fig. 45, Panel A2).

Although Po, the major protein in PNS myelin, is enriched in the cytoskeleton (Fig. 45, Panel B1 and B3), detergent-soluble Po is phosphorylated to a greater extent (Fig. 45, Panel B2).

In summary, the predominant CNS and PNS myelin proteins that were phosphorylated.
Fig. 44: The distribution of phosphorylated MBPs between the Triton X-100-soluble (S) and insoluble cytoskeleton (C) fractions of CNS and PNS myelin.

Rat CNS (A) and PNS (B) myelin was phosphorylated with $[\gamma-^{32}P]$ATP in vitro. The distribution of proteins between the detergent-soluble (S) and cytoskeleton (C) fractions was analyzed SDS-PAGE, Western blotting and autoradiography.

Panel A1 and B1: Nitrocellulose transfers of soluble and cytoskeletal fractions stain with 0.1% (w/v) Amido Black. Panel A2 and B2: Autoradiograms of the transfers shown in Panel A1. Panel A3 and B3: Western blots showing the distribution of MBPs between the soluble and cytoskeletal fractions. Detergent-soluble MBPs incorporated more $[\gamma-^{32}P]$ label than the cytoskeletonally-associated counterparts.
Fig. 45: The distribution of PLP and DM20 (CNS myelin) and Po (PNS myelin) between the detergent-soluble (S) and -insoluble cytoskeleton (C) fractions is independent of in vitro phosphorylation.

Rat CNS (A) or PNS (B) myelin was phosphorylated in vitro with \({\gamma}^{32}P \)ATP and the distribution of proteins between the soluble and cytoskeleton fractions was analyzed by Western blotting and autoradiography.

Panel A1 and B1: nitrocellulose transfers of soluble and cytoskeleton fractions stained with 0.1% Amido Black. Panel A2 and B2: autoradiograms of the transfers in Panel 1. Panel A3 and B3: Western blots showing the distributions of PLP and DM20 (A) and Po (B) between the soluble and cytoskeletal fractions. PLP and DM20 were totally extracted by Triton X-100 (Panel A3) and were not phosphorylated (Panel A2). Although Po was enriched in the cytoskeletal fraction (Panel B3), more \({\gamma}^{32}P \) label was incorporated in soluble Po (Panel B2).
in vitro (the MBPs and Po) also associated with the cytoskeleton, and the detergent-soluble proteins were phosphorylated more heavily.

The cytoskeletal association of phosphorylated CNP2 in the presence of cAMP.

The 46.0 kDa (CNP1) and 48.0 kDa (CNP2) polypeptides of phosphorylated CNS and PNS myelin do not associate with the cytoskeleton to the same extent (Fig. 46, Panels A4 and B4); identical results were obtained for non-phosphorylated myelin (data not shown). CNP1 partitions equally between the soluble fraction and the cytoskeleton, whereas CNP2 is enriched in the cytoskeleton, both in CNS and PNS myelin; analogous distributions were shown for the CNPs of rat and rabbit CNS myelin (Gillespie et al., 1989; Pereyra et al., 1898, respectively). Fig. 46 (Panels A1 and B1, A2 and B2; A3 and B3) shows that CNP2 from CNS myelin is the main myelin protein that can be phosphorylated in a cAMP-dependent manner in vitro, and that in CNS and PNS myelin CNP2 is the major phosphorylated form of CNP. Although some stimulation of CNP2 phosphorylation by cAMP is observed in PNS myelin (Fig. 46, Panel B3), this effect is much less pronounced than the corresponding one in CNS myelin (Fig. 46, Panel A3). Remarkably, the enrichment of phosphorylated CNP2 in the detergent-soluble fraction of PNS myelin does not reflect the enrichment of this polypeptide in the cytoskeletal fraction (Fig. 46, Panel B4). These results show that in the presence of cAMP, CNP2 from CNS myelin incorporates much more [\(^{32}\)P] label than CNP2 from PNS myelin. The CNP2 polypeptides from CNS and PNS myelin also differ in that the main phosphorylated species associates with the cytoskeleton in CNS but is detergent-soluble in PNS myelin.
Phosphorylation of myelin in the presence of cAMP and the distribution of CNP between the detergent-soluble (S) and -insoluble cytoskeleton (C) fractions.

Rat CNS (A) and PNS (B) myelin was phosphorylated in vitro with [γ-32P]ATP in the presence (+) or absence (-) of cAMP then extracted with Triton X-100. The distribution of proteins between the soluble (S) and cytoskeletal (C) fractions was analyzed by immunoblotting and autoradiography.

Panels A1 and B1 are autoradiograms of myelin proteins resolved by SDS-PAGE after phosphorylation. cAMP predominantly stimulated the phosphorylation of CNP2 from CNS myelin. The distribution of phosphorylated CNPs between the soluble and cytoskeletal fractions in the absence or presence of cAMP is shown in Panel A2 and B2, and A3 and B3, respectively. Western blotting (Panels A4 and B4) shows that in both CNS and PNS myelin, CNP1 distributes equally between the soluble and cytoskeleton fractions while CNP2 is enriched in the cytoskeleton.
8.3 Discussion

This study showed that most myelin-specific proteins, with the notable exceptions of PLP and DM20, are phosphorylated *in vitro* in agreement with the consensus of previously published data (Agrawal et al., 1982, 1990; Martenson et al., 1983; Ulmer et al., 1987; Vartanian et al., 1986; Deibler et al., 1990; Ramwani and Moscarello, 1990; Wiggins and Morell, 1980; Bradbury et al., 1984).

With the exception of CNP2, phosphorylated myelin-specific proteins partitioned between the detergent-soluble fraction and the cytoskeleton. Since the proteins in the soluble fraction were phosphorylated to a greater extent and their degree of association with the cytoskeleton was independent of phosphorylation, contact with the cytoskeleton may inhibit phosphorylation for steric reasons. Alternatively, or perhaps additionally, different charge isomers of proteins such as the MBPs (Martenson et al., 1989) that are phosphorylated on different amino acid residues (Ramwani and Moscarello, 1990), may have conformations that either permit or forbid association with the cytoskeleton. In support of the involvement of phosphorylation in conformational changes in MBPs, Deibler et al. (1990) have shown that when component 3 of the 18.5 kDa bovine MBP is monophosphorylated on threonine 97 *in vitro*, its CD spectrum changes to a 13% more structured conformation involving 17 amino acid residues in β-structures. Gillespie et al. (1989) have shown that a specific subset of sphingolipids also associates with the myelin cytoskeleton, therefore the availability of a complex mixture of MBPs with an inherent high degree of conformational adaptability controlled by phosphorylation, could be a distinct advantage during the interaction of the MBPs with various combinations of proteins and lipids in the bilayer. Therefore, associations that may involve phosphorylation in control of dynamic interactions in the cytoskeleton may also contribute to myelin flexibility.

The CNPs are phosphorylated *in vivo* by protein kinase A in the PNS and by protein kinase C in the CNS (Agrawal et al., 1990). In contrast to CNP1, CNP2 in CNS myelin has multiple phosphorylation sites and its cAMP-dependent phosphorylation *in vitro* is exclusively by an intrinsic Type I kinase (Bradbury et al., 1984). CNPs primarily associate with single or loosely wrapped ATP-rich membranes in contact with Schwann cells or oligodendrocyte cytoplasm (Trapp et al., 1988), which makes these proteins ideal
Phosphorylation/dephosphorylation targets by resident kinases and phosphatases. Phosphorylation of CNP may therefore be important in regulating cell-cell interactions by causing reorganization of the myelin membrane via the cytoskeleton. CAMP-dependent phosphorylation for CNP2 may be a specific CNS requirement, enabling the oligodendrocyte to respond to cyclic nucleotide signals sent from various axonal contacts by selectively altering its cytoskeleton. Phosphorylation of CNP might affect all the types of cytoskeletal elements, since Dyer and Benjamins (1989a) have shown that CNP, microtubules, microfilaments and MBP may be linked in oligodendrocytes. Phosphorylation of CNP may also be involved in the regulation of microfilament-dependent process extension and the delivery of components from young oligodendrocytes to myelin, since Wilson and Brophy (1989) have shown that CNP reacts strongly with microfilaments in the extremities of elongating myelin-like processes.

PLP and DM20 are not phosphorylated in vitro and do not partition with the myelin cytoskeleton in rat, lending further support to the proposal that phosphorylation may be a mechanism responsible for controlling dynamic processes between the cellular membrane and the cytoskeleton. By contrast, the major PNS myelin transmembrane glycoprotein Po, which was previously implicated in homotypic cell-cell interactions in transfected HeLa cells (D'Urso et al., 1990) is phosphorylated in vitro and a significant portion of Po partitions with the cytoskeleton; these results suggest that the cytoskeleton of PNS myelin and possibly Schwann cells might be involved in myelin-axon interactions via the reversible phosphorylation of Po.

Since protein cycling between the membrane and the cytoskeleton may also be important for myelin function, phosphorylation might additionally represent a simple way for myelinating cells to partition solely membrane from cytoskeleton-associated proteins.

Phosphorylation of myelin-specific proteins can now be considered in terms of their association with the cytoskeleton, and it is possible that phosphorylation may be a general mechanism in control of specialized and/or dynamic functions for cytoskeletonally associated proteins in most cells.
Myelin and its associated cytoskeleton: a comparative study of the protein and lipid compositions in wild type (wt) and rumpshaker (rsh) mouse
9.1 Introduction

The rumpshaker (rsh) mouse was recently recognized as a CNS myelin mutant with an X-linked inheritable defect in PLP gene expression (Griffiths et al., 1990). Although other X-linked PLP mutants are noted for severe lesions, in heterozygote rsh females no major CNS hypomyelinated or amyelinated areas exist, with the exception of hypomyelinated fibers in the spinal cord (Fanarraga et al., 1991). This mutant is unusual in that healthy oligodendrocytes with well preserved secretory pathway organelles are increased in number but do not elaborate normal myelin in brain. A comparative study of the optic nerve and spinal cord in rsh showed that the myelin sheath in the spinal cord is abnormally thin, probably due to an unusually large axon diameter. Immunostaining intensity was reduced for PLP and MBP but increased for GFAP, both in the optic nerve and spinal cord (Fanarraga et al., 1992). This myelin mutant is unusual in that the animal displays normal longevity and breeding and produces substantial amounts of myelin.

This study undertook to define biochemical differences between wild type (wt) and rsh mouse myelin. The lipids and proteins of brain myelin and myelin cytoskeletons were quantitated and their compositions compared in order to ascertain the presence of particular species. These analyses might help explain how the extent of protein and lipid association with the cytoskeleton contributes in making rsh such an unusual myelin mutant and further our understanding into the roles of specific molecules that associate with the myelin cytoskeleton.
9.2 Results

The lipid compositions of myelin and myelin-associated cytoskeletal in wt and rash are very different.

The protein and lipid measurements indicate that on a weight basis, the brain of P40 rash contains a lot less myelin (protein and lipid) compared to that of wt mouse of the same age (Table 8A). The myelin compositions of rash and wt mouse must also differ, since the lipid/protein ratio in rash is approximately twice that in wt. Myelin from wt mouse contains a higher proportion of cytoskeletal proteins in brain and the ratios of cytoskeletal lipid/g protein are very similar in wt and rash. However, the myelin cytoskeleton of rash has a very high lipid/protein ratio, as is also evident in rash myelin. Overall, although the brain from rash is depleted in myelin by comparison with wt mouse, the myelin and myelin cytoskeleton from rash have a higher proportion of lipid and are depleted in protein.

Lipid class analysis shows that the major lipid composition differences between wt and rash mouse myelin are in cholesterol, Cb and sulfatide (Table 8B). Although cholesterol is the predominant lipid in wt and rash myelin, the proportion of this lipid is greatly increased in rash. Such an increase is unusual, since cholesterol is present in analogous proportions in wt rat and mouse CNS myelin (Section 6 and Table 8B).

In contrast to the increase in cholesterol, the proportions of Cb and sulfatide are decreased in rash myelin by comparison to wt mouse myelin (Table 8B). However, the proportions of individual Cb classes are very similar in wt and rash mouse myelin. Total phospholipid is also very similar in wt and rash mouse myelin, with PE and PC accounting for most; however, while PE is the major phospholipid class in wt mouse, PC predominates in rash (Table 8B). In wt rat the proportion of myelin galactolipids and the PE/PC ratio (~1.2, both at P15 and P20) (Norton and Cammer, 1984) increase with age. Since a low proportion of Cbs and a low PE/PC ratio (~0.8) is also found in rash myelin, the lipid composition of rash myelin appears to resemble that in immature rather than mature wt animals. The amount and proportions of sphingolipids and phospholipids in rash myelin suggests that this might be an animal where the synthesis of myelin-specific lipids has been arrested at an early stage of myelination.
Table 8A: The lipid and protein content of CNS myelin and myelin-associated cytoskeleton (CSK) of wild type (wt) and rumpshaker (rsh)

<table>
<thead>
<tr>
<th></th>
<th>MYELIN</th>
<th></th>
<th>CSK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt</td>
<td>rsh</td>
<td>wt</td>
<td>rsh</td>
</tr>
<tr>
<td>Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg protein/g brain</td>
<td>5.8</td>
<td>0.7</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>mg lipid/g brain</td>
<td>12.2</td>
<td>3.4</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Lipid / Protein ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mg/mg)</td>
<td>2.1</td>
<td>4.9</td>
<td>0.7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table 8B: Lipid analysis of myelin and its associated cytoskeleton (CSK) in wild type (wt) and rumpshaker (rsh)

<table>
<thead>
<tr>
<th>Lipid class (Mol %)</th>
<th>MYELIN</th>
<th></th>
<th>CSK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wt</td>
<td>rsh</td>
<td>wt</td>
<td>rsh</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>38.0</td>
<td>46.0</td>
<td>34.0</td>
<td>56.0</td>
</tr>
<tr>
<td>Cerebroside</td>
<td>25.0</td>
<td>18.0</td>
<td>33.0</td>
<td>10.0</td>
</tr>
<tr>
<td>% Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GalC-non-OH</td>
<td>28</td>
<td>24</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>GalC-OH</td>
<td>69</td>
<td>72</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>GlcC</td>
<td>3</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfatide</td>
<td>4.0</td>
<td>2.0</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>33.0</td>
<td>34.0</td>
<td>27.0</td>
<td>31.0</td>
</tr>
<tr>
<td>% Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>46</td>
<td>35</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>PC</td>
<td>33</td>
<td>40</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>PS</td>
<td>13</td>
<td>15</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>PI</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SM</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Comparison of the lipid compositions of wt myelin and wt myelin cytosome in mouse (Table 8B) shows that cholesterol and total phospholipid are decreased and Cb and sulfatide increased in the cytosome. Cb is also increased and phospholipid decreased in the cytoskeleton of wt rat CNS myelin (Gillespie et al., 1989; Section 6). However, although SM is increased in the cytoskeleton of wt rat and mouse (Section 6, Table 8B), SM represents a higher proportion of the cytoskeletal phospholipid in rat.

The differences in cytoskeletal lipid composition between wt and rah mouse are even more pronounced than the corresponding differences in myelin (Table 8B). Cholesterol makes up more than half of the cytoskeletal lipid in rah, whereas Cb accounts for only 10% and sulfatide for 3%. Total phospholipid is slightly increased in the cytoskeleton of rah, where PE and PC are in approximately equal proportions (Table 8B). By contrast, PE is the major phospholipid in the cytoskeleton of wt mouse, rat and bovine CNS myelin (Table 8B; Gillespie et al., 1989; Norton and Cammer, 1984, respectively). Galactolipids are also reduced in spo, pmsad, qk, and shi but to date no other studies of cytoskeleton-associated lipid compositions are available for myelin mutants.

Protein association with the cytosome

Immunoblotting showed that actin, tubulin, MAG and CNP are present in similar proportions in wt and rah myelin (Fig. 47). The distribution of these proteins between the detergent-soluble and cytoskeletal fractions is very similar in wt and rah. The proportion of PLP is higher in wt than in rah. PLP appears during active myelination and later than other myelin proteins in the CNS (Gardiner and Macklin, 1988; LeVine et al., 1980; van Dorselaer et al., 1987), and in cultured oligodendrocytes PLP is detected after MAG but before MBP (Dubois-Dallop et al., 1986). Although some PLP was detected in the myelin cytosome of wt, the majority of PLP was extracted by Triton X-100 both in wt and rah myelin. Western blotting suggests that the difference in the relative amounts of PLP between wt and rah can probably be accounted for by the portion of PLP that associates with the cytosome in wt.

The total amounts of the 18.5 and 17.0 kDa MBPs and the distributions of these proteins between the detergent-soluble fraction and the cytosome were very similar in wt and rah. All the 21.5 kDa MBP partitioned with the cytosome, both in wt and rah, and
Fig. 47. The association of proteins with the myelin cytoskeleton in wild type (wt) and numoshaker (rsh) mouse.

Myelin postnatal day 40 (P40) from wt and rsh mouse was extracted with Triton X-100 and equal volumes of the detergent-soluble (S) and -insoluble cytoskeleton (C) fractions were electrophoresed and transferred to nitrocellulose. Western blotting with antibodies against actin (ACT), tubulin (TUB), myelin-associated glycoprotein (MAG), 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), proteolipid protein (PLP) and myelin basic protein (MBP) shows that the relative amounts of actin, tubulin and MAG in myelin and their respective distributions between the detergent-soluble and -insoluble fractions are not affected. There is a higher proportion of PLP in wt, where PLP is enriched in the soluble fraction, by contrast, rsh PLP is found exclusively in the soluble fraction. The 21.5 kDa MBP is increased relative to the other MBPs in rsh myelin and this MBP is found in the cytoskeletal fraction, both in wt and rsh. The 14.0 kDa MBP is depleted in rsh myelin but the distribution of this MBP between the detergent-soluble and -insoluble fractions is similar in wt and rsh.
there was a small proportionate increase of this MBP in rsh. Although there was a smaller proportion of the 14.0 kDa MBP in rsh myelin, this protein distributed similarly between the detergent-soluble fraction and the cytoskeleton in wt and rsh.

PLP is reduced in jp, qk and shi, MBP in jp, qk, shi and tw, whereas there is a small increase of CNP in shi and the activity of this enzyme is reduced in jp and qk (Hogan and Greenfield, 1984). The relative decreases of myelin-specific lipids and PLP in rsh, coupled with the proportionate increase of the 21.5 kDa and decrease of the 14.0 kDa MBPs, which are known to be characteristics of immature myelin (Barbarese et al., 1978; Carson et al., 1983), indicate that in the brain of rsh, myelination arrest probably occurs at an early stage. Although this stage has not been defined as yet, these data suggest that the myelination arrest in rsh might occur after MAG and CNP but before PLP and MBP have established their pattern of association with the cytoskeleton.
9.3 Discussion

This analysis shows that rnh has greatly reduced amounts of myelin compared to the normal animal, thus confirming the morphological and morphometric studies of Griffiths et al. (1990); however, rnh has considerably more myelin than other X-linked PLP mutants (for review see Skoff and Knapp, 1992). Since a high lipid/protein ratio in myelin is thought to be a function of normal development (Norton and Cammar, 1984), the presence of substantial amounts of lipid in rnh myelin may aid axonal conduction.

Myelination in rnh is thought to be halted during early development (Skoff and Knapp, 1992; Hudson and Nadon, 1992). This contention is supported by the finding that in comparison with wt animals rnh has a low content of sphingolipids, PLP (also see Griffiths et al., 1990) and 14.0 kDa MBP, but relatively high amounts of PE, PC and the 21.5 kDa MBP which are characteristic of immature myelin.

The PLP gene is also found in astrocytes, where it encodes a mRNA that is different from the PLP mRNA in oligodendrocytes (Macklin, 1988), and the previous explanation that a defect in PLP is the cause for dysmyelination in jp, qk and jpmad (i.e. no PLP = no myelin) is no longer viable (Skoff and Knapp, 1992). It is now thought that defects in the PLP gene influence the early differentiation of both astrocytes and oligodendrocytes in the mutants, and that defective astrocytes may be partly responsible for the absence of oligodendrocyte-specific differentiation signals. PLP and DM20 are also thought to promote oligodendrocyte differentiation independently and provide the structural underpinning of the myelin sheath by maintaining the correct spacing between apposed bilayers in the intraperiod zone (Hudson and Nadon, 1992). Although PLP is not associated with the CNS myelin cytoskeleton in rat (Gillespie et al., 1989), a small amount of PLP (≤10%) is found in the cytoskeleton of rabbit CNS myelin (Pereyra et al., 1988), indicating that the association of PLP with the cytoskeleton of myelin may be species-specific. It was therefore of interest that some PLP was found in the myelin cytoskeleton of wt but not rnh mouse, where the amount of cytoskeletonally-associated PLP might represent the difference in the relative amounts of PLP in wt and rnh myelin. However, the possible function of cytoskeletonally-associated PLP is unknown.
Although myelin-specific proteins (with the exception of PLP) associate to approximately the same extent with the myelin cytoskeletons both in wt and rash, there are very pronounced differences in the relative quantities and classes of lipids that associate with the cytoskeleton. The predominant differences in rash are in the Cbs which are drastically reduced and in cholesterol which is increased in the cytoskeleton. Although a great reduction in Cbs is a universal feature amongst myelin mutants, this is the first demonstration that the Cbs are also drastically reduced in the cytoskeleton of such a mutant by comparison with myelin; in contrast, in wt mouse the Cbs are greatly enriched in the cytoskeleton. Sphingolipids associate with the cytoskeleton of CNS myelin and oligodendrocytes (Gillespie et al., 1989; Dyer and Benjamins, 1989b, respectively) and such lipids are thought to be involved in cell-cell communication and the modulation of transmembrane signals in many normal and transformed cell types (Hakomori, 1989, 1990; Kolesnick, 1991; Dyer and Benjamins, 1985, 1989, 1992). Axonal and intracellular communication may therefore involve the interaction of sphingolipids with the cytoskeleton in myelin and myelinating cells. Gillespie et al., (1989) have proposed that sphingolipids in association with the cytoskeleton may also have roles in myelogenesis. Therefore, loss of sphingolipids from myelin and its associated cytoskeleton might not only affect myelinating cells but the CNS as a whole.
Conclusions and future directions
10.1 Culture systems for gial cells

The establishment and characterization of a rat CNS primary gial culture system where large
numbers of O-2A progenitors differentiated to oligodendrocytes in a sequential and
predictable manner, permitted immunocytochemical and biochemical experiments to be
carried out in parallel on cells from the same cultures during different developmental stages.

Fluorescent activated cell sorting (FACS) (Behar et al., 1988), the combined use of
mitogenic factors such as bFGF and PDGF (Böger et al., 1990; Louis et al., 1992) and
perhaps different defined media (e.g. Bottenstein and Sato, 1979) may in future permit the
isolation of large, highly purified populations of O-2A progenitors with the potential to
differentiate to oligodendrocytes, possibly under the influence of (uncharacterized as yet)
permit even more accurate immunocytochemical and biochemical investigations. In the total
absence of other cell types.

It will also be important to establish the possible presence of O-2Aadult progenitors in brain
and spinal cord (only shown in the optic nerve by Wren et al., 1992), such progenitors are
bipotential and divide asymmetrically, thus generating differentiated progeny
(oligodendrocytes) and their own replenishment throughout adult life. Studies on brain O-
2Aadult progenitors, preoligodendrocytes (O4+, GalC-) (Gard and Pfeiffer, 1989, 1990), and
oligodendrocytes which may also generate new oligodendrocytes (Wood and Bunge, 1991)
should increase our understanding of cellular regeneration in adult animals in general and
remyelination in particular. Such studies should complement transplantation technology
(Harvey et al., 1991, Bunge, 1991; Blackemore and Franklin, 1991) and could be of
potential use in curing demyelinating diseases of the CNS.

10.2 MAP1B in the CNS.

Microtubule associated proteins such as MAP1B, that probably crosslinks microtubules in
neurons (Noble et al., 1989, Sato-Yoshitake et al., 1989) and may have a role in neurite
extension and the development of polarity (Tuckier et al., 1986a, b; Malus, 1988, 1989) are
thought to play important roles during the development of the CNS. Since MAP1B is also
expressed in glia (Diaz and Avila, 1989) including oligodendrocytes (Fisher et al., 1990), but its function in these cells is unknown. It was attempted to identify the developmental point when MAP1B is first expressed in glia of the O-2A lineage and its possible function in oligodendrocytes (Section 4). Immunocytochemistry showed that although MAP1B is absent from O-2A progenitors, vigorous MAP1B expression coincides with the time when preoligodendrocytes begin to extend numerous long, pre-myelin-like processes; this suggested that MAP1B might be first expressed when myelin processes begin to enlarge.

One function of MAP1B might be to crosslink (and possibly stabilize) microtubules during processes extension by preoligodendrocytes and early oligodendrocytes, which would be similar to its proposed role in neurite extension.

The presence of MAP1B in terminally differentiated oligodendrocytes (albeit at lower levels of expression than in preoligodendrocytes) and their cytoskeletons suggests that MAP1B might have the additional specialized function of stabilizing microtubules in the processes; this idea was supported by the antisense experiments. Since microtubules are the predominant filamentous structure in mature oligodendrocytes both in vivo (Wood and Bunge, 1984) and in vitro (Wilson and Brophy, 1969, Section 7), it is possible that in these cells MAP1B may stabilize microtubules by direct crosslinking instead of via indirect association with actin and or CNP, as was suggested by Fisher et al., (1990). However, since MAP1B is absent from CNS myelin, stabilization of microtubules in myelin may be via microfilaments, CNP, MBP and/or lipids that associate with the cytoskeleton (Gillespie et al., 1989, Sections 6 and 7).

The hypothesis that MAP1B could be involved in process extension and the stabilization of microtubules in young and mature oligodendrocytes respectively, could be tested by inducing MAP1B expression in O-2A progenitors and abolishing MAP1B expression in more developmentally advanced cells. This could be accomplished by transfecting of O-2A progenitors with either sense or antisense MAP1B cDNA and then switching the expression of MAP1B on or off during development. In situ hybridization analysis, both at the light and electron microscope levels, might additionally reveal possible inter-relationships between MAP1B synthesis and the cytoskeleton.

A recent report (Mansfield et al., 1992) has shown that only the phosphorylated form of
MAP1B is present in neuronal growth cones, where some MAP1B associates with the cytoskeleton; this study suggested that the interaction of phosphorylated MAP1B with the cytoskeleton might be of importance during neurite extension. It would be therefore important to assess whether phosphorylated forms of MAP1B exist in pre-oligodendrocytes, mature oligodendrocytes and their respective cytoskeletons, since this might indicate the possible role(s) of MAP1B phosphorylation in cells of the oligodendrocyte lineage.

The relationship between cytoskeletal reorganization and morphological differentiation involving MAPs is of great general interest. When embryonal carcinoma cells are induced to differentiate in the presence of retinoic acid, they express MAP2 and they withdraw from the cell cycle (Dinsmore and Solomon, 1991). If the expression of MAP2 protein is inhibited by antisense RNA during induction, these cells express other differentiation-specific markers but they do not differentiate morphologically nor do they stop dividing (Dinsmore and Solomon, 1991). It appears that there is a fundamental interrelationship between expression of MAP2, developmentally-regulated changes in cell morphology and the prevention of cell division. The induction of MAP1B expression may have a similar function in oligodendrocytes since it precedes their terminal differentiation. Support for this view comes from studies on axonal MAP1B. Axons that grow out from newly-committed neurons contain MAP1B but axons that regrow from axotomized, terminally-differentiated neurons do not (Viereck et al., 1969, Woodhams et al., 1969). An analysis of the interactions between MAP1B and microtubules should assist our understanding of the molecular mechanisms that regulate the transition of cells of the O-2A lineage from proliferative progenitor to myelinating oligodendrocyte.

10.3 Sphingolipid metabolism and transport

The membranes of eukaryotic cells contain numerous classes of sphingolipids, which differ in the composition of their long chain base. The distribution of sphingolipids is not random, since some are enriched in the membranes of certain organelles, while asymmetric distribution occurs across lipid bilayers such as the plasma membrane. Since no intracellular membrane system can synthesize all its own sphingolipids de novo, the study of biosynthesis, translocation and sorting of sphingolipids relates to membrane biogenesis and homeostasis. The metabolism and transport of these lipids may also relate to the
biosynthesis and translocation of secretory proteins, since both processes are thought to occur through similar intracellular compartments (Simons and van Meer, 1988; Simons and Wandinger-Ness, 1990; Rosenwald et al., 1992; Kok et al., 1992). Additionally, forward transport from the ER through the Golgi to the plasma membrane may take place via bulk flow, proceeding by default without the need for a special signal, both for secretory proteins and endogenous sphingolipids (Wieland et al., 1987; Young et al., 1992, respectively). Although sphingolipids appear to utilize the secretory pathway, the transport of certain phospholipids may involve carrier proteins since in BFA-treated rat hepatocytes ER to plasma membrane traffic of PE continues normally when vesicle-mediated protein traffic is negligible (Vance et al., 1991; Vance, 1992). A better understanding of protein synthesis through the secretory pathway, possibly by approaches such as the use of viral membrane proteins to follow biosynthetic traffic (for a review see Griffiths and Sodeik, 1992) may enhance our understanding of lipid metabolism and transport.

The present study (Section 5) examined the biosynthesis and transport of sphingolipids in oligodendrocytes, since GaIC is a differentiation marker (Raff et al., 1976; Bansal and Pfeiffer, 1985; Gard and Pfeiffer, 1989) that probably interacts with the oligodendocyte cytoskeleton (Dyer and Benjamins, 1969a). In addition GaIC is characteristic of CNS myelin (Norton and Cammer, 1984), and GaIC and SM are enriched in the cytoskeleton of CNS myelin where they may interact with myelin-specific proteins (Gillespie et al., 1989).

Of the fluorescent Cer analogues that were used, Ce-NBD-Cer appears to be an excellent substrate for metabolic studies (Lipsky and Pagano, 1983; Pagano et al., 1990), but only inserts partly in biological membranes (Chattopadhyay and London, 1987, 1988) and is subject to photobleaching, while Ce-DMB-Cer has high fluorescent yields but is not representative of endogenous Cer metabolism in vitro (Pagano et al., 1991). The present study suggests that using Ce-NBD-Cer and Ce-DMB-Cer in parallel may be advantageous, since the metabolic and transport properties of different intracellular compartments can be examined on a comparative basis.

Fluorescent Cer analogues were used in combination with the O-2A lineage primary culture system and a stage of "active" metabolism to fluorescent GaIC was identified, which coincided with the expression of oligodendrocyte-specific markers by the majority of the cells.
Cultures at this stage were used to study the metabolism and transport of C6-NBD-Cer, C5-DMB-Cer and their metabolites in the presence or absence of BFA. In the absence of BFA, C6-NBD-Cer localized in the trans-Golgi and the TGN, while C5-DMB-Cer localized in Golgi compartments other than the TGN before any significant metabolism had occurred. C6-NBD-lipids were found in trans-most Golgi cisternae and in early endosomes when the maximum conversion of C6-NBD-Cer had occurred and these lipids localized in late endosomes upon further incubation. By contrast, C5-DMB-lipids were predominantly in the ER and at the plasma membrane upon maximum conversion of C5-DMB-Cer and in Golgi compartments and Golgi-derived vesicles after 5 h of incubation. Although this study was not aimed at discovering the exact sites of fluorescent Cer metabolism in oligodendrocytes, the results suggest that significant amounts of Cer may be converted to SM in the Golgi and the plasma membrane (as suggested by Koval and Pagano, 1991 for non-gliaal cells), whereas a significant amount of GaIC biosynthesis may take place at the plasma membrane and the TGN. Therefore these data are in broad agreement with immunocytochemical (Roussel et al., 1987) and fractionation studies (Nescovic et al., 1973; Constantino-Geccarini and Suzuki, 1975; Koul and Jungalwala, 1981).

While the initial localization of Cers probably depends on specific interactions between their acyl chains and Golgi compartment-specific lipids, the metabolism and transport of Cers may be determined by the intracellular compartment where they initially localize. This view might be justified, since when trans-Golgi to TGN traffic was disrupted and two separate compartments were formed, C6-NBD-Cer colocalized with the TGN/plasma membrane/endosomal compartment and its metabolism to fluorescent GaIC reflected our predicted localization of UDP-galactose ceramide galactosyltransferase. In similarly treated cells the metabolism of C5-DMB-Cer was unaffected, indicating that this lipid was probably metabolized in the ER/cis-/medial-/trans-Golgi compartment; in support, the major part of SM biosynthesis is thought to occur in the cis- and medial-Golgi (Koval and Pagano, 1991; Futureman et al., 1990; Jeckel et al., 1990) and normal lipid recycling takes place between the Golgi (excluding the TGN) and the ER (Pagano, 1990; Lippincott-Schwartz et al., 1990).

In addition to causing profound changes in organelles of the secretory pathway, BFA also affected the distribution of tubulin in oligodendrocytes, the effect on tubulin might be
mediated through the cytoskeleton and requires further investigation. Since the uptake and recycling of iron was not altered in these (and other) cells, the effects of BFA might be specific to certain cell functions only. The BFA-induced changes were reversible and the TGN recovered faster than the rest of the Golgi, indicating that organelle reassembly might occur at different rates. The return of the TGN and tubulin to their original distributions required considerable time of recovery (hours rather than minutes) and depended on the time of exposure to BFA.

These data add to the wealth of literature regarding sphingolipid biosynthesis and transport and indicate some possibly unique features of oligodendrocytes as regards the biosynthesis of GalC and the structure of the cytoskeleton. These cells will be excellent candidates for studies addressing how sphingolipids and proteins are cotransported during their biosynthesis through the Golgi, since at least at least one major oligodendrocyte protein (PLP) is synthesized and transported through the Golgi (Townsend et al., 1984). Its transport in PLP is arrested at the Golgi (Roussel et al., 1987b) and inhibition of glycosphingolipid biosynthesis affects the translocation of PLP to myelin membrane (Pasquini et al., 1989)

Future studies should additionally employ truncated Cer analogues such as CgCer (Karrenbauer et al., 1990; Brüning et al., 1992) and perhaps radioactive Cers with long chain fatty acids that may resemble endogenous Cer precursors to a greater extent.

The biosynthesis, transport and roles of sphingolipids such as GalC might also be investigated by molecular genetics, in an analogous way to the study of PE in E. coli (Dowhan, 1992); a possible approach might be to change the structure of key enzymes such as UDP-galactose-4-epimerase or UDP-galactose galactosyltransferase and either stimulate or downregulate the biosynthesis of GalC at key points in development. GalC production could be monitored via the conversion of Cg-NBD-Cer to GalC and the possible changes (in morphology, function of the secretory pathway, expression of differentiation-specific markers, etc) related to GalC biosynthesis and transport.

Past studies using fluorescent sphingolipid analogues have not examined gangliosides, possibly due to the small amounts and great variety of these glucosphingolipids in cells. The design of novel, highly fluorescent Cers that can be preferentially converted to the GluC analogue by inserting into the appropriate intracellular compartment(s) may add an extra
10.4 Sphingolipids in association with cytoskeletons

Cell surface glycosphingolipids are very immunogenic and are useful markers of differentiation and malignant transformation (Hakomori and Kanagi, 1963; Raff, 1989, Hakomori, 1989, 1990; Gillard et al., 1992). Such lipids modulate the activities of membrane-associated kinases and epidermal growth factor (EGF) (Hanai et al., 1980; Ighashi et al., 1989), while the carbohydrates moieties of glycolipids in neutrophils, platelets and T-lymphocytes mediate adhesive reactions to endothelium (Phillips et al., 1990; Larsen et al., 1990).

Although it has been known for sometime that sphingolipids associate with cytoskeletons (Sakakibara, 1981; Burn and Burger, 1985), the possible importance of such interactions is only beginning to emerge (Packham et al., 1991; Gillard et al., 1991, 1992; Mateoni and Kreis, 1987; Vale and Hotani, 1988; Steinert and Roop, 1988; Dyer and Benjamins, 1990; Gillespie et al., 1989). The cytoskeleton of CNS myelin is enriched in GaIC by comparison with the intact membrane (Gillespie et al., 1989). Although GaIC was proposed to have direct links with the oligodendrocytic cytoskeleton (Dyer and Benjamins, 1989b) and anti-GaIC causes an influx of calcium in oligodendrocytes implicating the cytoskeleton in transmembrane signaling (Dyer and Benjamins, 1990), the association of GaIC with the cytoskeleton had not been shown in a conclusive way prior to this study, possibly due to lack of sufficient material. GaIC is enriched in oligodendrocyte cytoskeletons and this sphingolipid may be associated with microfilaments and/or CNP in young cells and with microtubules and/or MBP in mature cells, such associations imply that different, specific interactions may exist between GaIC and the cytoskeletons of actively myelinating and mature cells, respectively. Cytoskeletonally-associated GaIC may therefore have a variety of roles in oligodendrocytes and myelin during development, which should be examined at specific stages of differentiation in culture. The possible importance of cytoskeletonally-associated GaIC in myelination is further underlined by the presence of GaIC in the cytoskeletons of both PNS myelin and Schwann cells; however, studies with pure Schwann cell populations in culture are hindered at present, since these cells specifically require axons or perhaps
axonally-derived signals in order to differentiate (Jessen and Minsky, 1991).

Although the association of GaIC and its possible role in the cytoskeleton are under investigation and might be further elucidated by molecular genetics (see under sphingolipid metabolism and transport), little or no attention has been paid to cytoskeletal sulfatide, SM and possibly gangliosides. Gillespie et al., (1989) have shown the presence of both sulfatide and SM (and the enrichment of SM) in the cytoskeleton of CNS myelin, and the present study suggests that these sphingolipids are present in the cytoskeletons of oligodendrocytes. The association of SM with cellular and membraneous cytoskeletons may modulate a variety of cellular interactions, since membrane proteins associate with cytoskeletal phospholipids (Moss and White, 1992) and at least two products of SM metabolism (diacylglycerol and sphingoid bases) have been implicated as biological effectors (Nishizuka, 1968; Rando, 1988; Hannun and Bell, 1989; Merrill and Stevens, 1989). The role of cytoskeletonally-associated sulfatide is not clear, but it may be similar to GaIC. Gangliosides have unique functions in several cell types (Gonatas et al., 1964; Bauer et al., 1984; Wiegandt, 1962; Sung et al., 1991); the gangliosides recognized by A2B5 and anti-Gg3 are present in O-2A progenitors (Raff, 1989; LeVine and Goldman, 1966a, b) but not in mature oligodendrocytes, while gangliosides are true constituents of CNS myelin (Norton and Cammer, 1964). Gangliosides may therefore be transported to myelin immediately after O-2A progenitors begin to differentiate to oligodendrocytes. Future studies should investigate whether gangliosides interact with the cytoskeletons of O-2A progenitors and myelin and assess the possible functions of such associations.

Phospholipids containing saturated FAs are enriched in the cytoskeleton of CNS myelin, and significant amounts of Cg-DMB- but not Cg-NBD-lipids accumulate into the cytoskeletons of myelinating cells after overnight incubation. These findings suggest that the preferential association of sphingolipids with the cytoskeleton may depend on acyl chain composition in specialized membranes (such as myelin), and on continuous recycling as well as acyl chain composition in cells. The possibility that fluorescent lipid molecules may preferentially associate with specific proteins of the cytoskeleton could be further explored by using probes such as 5-[125I]iodonaphthyl-1-azide (INA) (Bercovici and Gittler, 1978) that can be photoactivated in the presence of fluorescent lipids with UV light (Rosenwald et al.
Extraction with non-ionic detergent prior to photoactivation might indicate which cytoskeletal proteins are in close proximity to fluorescent lipids. Additionally, since INA is membrane-permeant, photoactivation in intact cells may show which intracellular, compartment-specific proteins, are involved in sphingolipid metabolism and transport.

10.5 The association of proteins with cytoskeletons during development

Linker proteins have been implicated in mediating cytoskeletonally-driven movements in animal cells (for a review see Bray and White, 1988). Such proteins have been identified by their association with Triton X-100 insoluble residues in several cell types (Fulton et al., 1980; Apgar et al., 1986; Bennet, 1985; Jesaitus et al., 1984; Fox et al., 1988; Wilson and Brophy, 1989, Manfield et al., 1992) and in specialized membranes such as CNS myelin (Pareyra et al., 1988; Gillespie et al., 1989). The extension of oligodendrocyte processes and that of neurites have strong similarities as regards their cytoskeletal elements: while microtubules are abundant in the growing axons of Aplysia, growth cones are devoid of microtubules but rich in microfilaments (Forscher and Smith, 1988); CNP-associated microfilaments are enriched in the termini of myelin-like processes in young oligodendrocytes, while MBP-associated microtubules are found in the processes of mature cells (Wilson and Brophy, 1989). Oligodendrocytes and neurons may be derived from a common progenitor cell (for a review see Cameron and Pakic, 1991) and may therefore have similar mechanisms for process extension, however oligodendrocytes may utilize their own specialized cytoskeletonally-associated proteins and possibly lipids. Additionally, oligodendrocytes may have evolved specialized mechanisms whereby isoprenylated proteins (such as CNP) may have roles in signal transduction and the regulation of the cell cycle via the cytoskeleton.

The association of specialized linker proteins with the cytoskeleton may be even more complex in mature CNS myelin, where microtubules, microfilaments, CNP, MBP and MAG associate with the Triton X-100-insoluble residue that also contains GalC and SM (Gillespie et al., 1989). Examination of the cytoskeleton during development reveals a possible association between microtubules, early MBPs and S-MAG in early myelin, with microfilaments, CNP, L-MAG and the 14.0 kDa (late) MBP added to the cytoskeleton during active myelination. Such a developmental rearrangement of the cytoskeleton would conform
with the idea of myelin membrane sheets forming as MBPs accumulate and microfilaments depolymerize in the cell processes (proposed by Wilson and Brophy, 1969). This would permit the attachment of loose (immature) myelin to axons during early myelination, when microfilaments together with microtubules would determine the shape and, possibly via linker proteins, flexibility of compacting and compact myelin. Future experiments could address these possibilities by specifically inhibiting or promoting the expression of myelin-specific (proposed linker) proteins in culture, and also perhaps in mutants where the expression of such proteins is normally inhibited (such as shi, an MBP mutant): the possible observed changes would be related to the extent of protein expression and cytoskeletal association. Such investigations should also examine which lipids may associate with the cytoskeleton of myelin and myelinating cells during development, since sphingolipids in particular may have directive roles relating to process extension via the cytoskeleton. Although such studies are possible and certainly worthwhile, their results may only be suggestive at best due to the inherent complexity of cellular and specialized membrane interactions. The identification of specific lipid-protein interactions that involve the cytoskeleton during myelination in brain and also perhaps of a host of specific lipid-protein interactions in other tissues, will most probably be achieved by analysis of simple reconstituted systems such as the ones that have been used to identify the dynamics and specificity of lipid interactions with either PLP or MBP (for review see Brophy, 1992). Candidate molecules for studying such interactions should include GalC, SM, gangliosides, CNP and MAG.

10.6 Protein phosphorylation and association with cytoskeletons

Phosphorylation has been long known to alter the biological functions of various proteins, probably by introducing changes in their conformation. This idea is supported by studies on the molecular basis of phosphorylation reactions in a number of enzyme and/or receptor systems, showing that the reactions or responses are controlled, at least partly, by attainment of required conformations in enzymes or protein substrates (Kandekar and Jacobson, 1989; Holt and Sawyer, 1968; Pedman et al., 1989; Hanson et al., 1989). Certain myelin-specific proteins may act as linkers and their phosphorylation (Bradbury et al., 1984; Ulmer et al., 1987; Vartanian et al., 1988; Deibler et al., 1990; Ramwani and Moscarello, 1990;
Agrawal et al., 1982, 1990; Martenson et al., 1983; Wiggins and Morell, 1980) may mediate interactions between the membrane and its associated cytoskeleton. These proteins interact with the myelin cytoskeleton (Perez et al., 1988; Gillespie et al., 1989) and phosphorylation causes extensive conformational changes in at least one (MBP) isoform (Deibler et al., 1990). Since analogous linker proteins were found in a variety of animal cells (Mansfield et al., 1992; Fulton et al., 1980; Apgar et al., 1986; Bray and White, 1988; Bennet, 1985; Jesaitus et al., 1984; Fox et al., 1988), the study of phosphorylation as a possible mechanism for controlling cytoskeleton-membrane interactions should be of universal interest in cell biology.

Protein phosphorylation can determine association with the cytoskeleton as well as preferential association with membranes: phosphorylation of band 4.1 reduces its ability to bind spectrin (Eder et al., 1986) and promotes spectrin binding to microfilaments (Ling et al., 1988), while phosphorylation of tubulin with calmodulin-dependent kinase exposes hydrophobic domains that enable the phosphorylated protein to interact with membranes (Hargreaves et al., 1985). Reversible phosphorylation of myelin proteins may alter their conformation such that association with membranes is favored, while association with the cytoskeleton is hindered. This scenario might explain why cytoskeleton-associated myelin proteins are phosphorylated less heavily than detergent-extractable forms in vitro, although it does not explain why the relative degree of protein association with the cytoskeleton is not influenced by phosphorylation. Such issues might be resolved and this study furthered if phosphorylation was to be additionally carried out in culture and in vivo; since in the MBPs at least phosphorylation is short-lived (DesJardins and Morell, 1983), a time course of label incorporation may be necessary during each experiment. Such studies might also show whether cytoskeleton-associated myelin proteins are a truly underphosphorylated subset (as was shown by the in vitro phosphorylation of myelin) and whether association with the cytoskeleton may only be characteristic of some isoforms. The possibility that some MBP charge isoforms (Martenson et al., 1989) may preferentially associate with the cytoskeleton can be examined by subjecting detergent-soluble and -insoluble myelin fractions to two-dimensional gel electrophoresis.

Amongst CNS myelin proteins, only the phosphorylation of CNP2 is stimulated by cAMP in
cAMP however inhibits MBP phosphorylation in cultured oligodendrocytes (Ulmer et al., 1987) via galactosylsphingosine, a potential catabolite of GaIC, interfering with the release of diacylglycerol from phosphatidylinositol thus affecting protein kinase C (Vartanian et al., 1989). Therefore, future phosphorylation experiments involving cultured cells should include cAMP, and might additionally investigate the possible link between the induction of GaIC biosynthesis during development and cytoskeletal changes that might be caused by cAMP.

Phosphorylation/dephosphorylation of myelin-specific proteins should also be considered in terms of the locations of specific enzymes, since preferential modification of myelin proteins could be due to the topology of such enzymes in the membrane. The presence and localizations of phosphorylation-related enzymes can be established by immunocytochemistry. Disruption of the functions of such enzymes might indicate how they affect the association of myelin proteins with the cytoskeleton.

10.7 Myelin mutants and the cytoskeleton

Mutations affecting myelination in the nervous system have been discovered in a number of species, with the extent of dysmyelination and its effect on lifespan varying considerably among mutants. Such animals are particularly suitable for biochemical investigations, since they provide sufficiently homogeneous material and the defect is usually in a single gene locus.

The most severe cases of dysmyelination are found amongst the X-linked recessive disorders, which only appear to affect the CNS. Such mutations with the exception of rsh are lethal, which makes the study of rsh unique. The present results show that in addition to the defect in PLP expression in rsh (Griffiths et al., 1990), cytoskeletonally-associated PLP is absent and there is a small increase in the 21.6 kDa MBP and a considerable decrease in the 14.0 kDa MBP, thus indicating a possible arrest during early myelination. Such an arrest is also indicated by the decrease in the PE/PC ratio and the decrease of Cbs in myelin. Further studies, possibly using CNS myelin from wt animals during early myelination (P7-P9) should indicate how the Cbs in the myelin cytoskeleton of rsh compare with those in wt.
Such studies would also be interesting from the developmental point of view, since they
might indicate the amounts and classes of lipids that associate with the early CNS myelin
cytoskeleton (made up of microtubules, early MBPs and S-MAG, see Section 7).

Cytoskeletonally-associated PLP may have a role in mouse and rabbit but not rat myelin
The PLP gene is highly conserved (for a review see Macklin, 1992), therefore the possibility
that species-specific posttranslational modifications may determine the partial association of
PLP with the cytoskeleton needs to be examined. Such modifications may be substituted in
rat myelin PLP and their absence may affect myelination in rat mouse. The possible defect
in MBP gene expression in rat certainly requires further investigation, since such a study
may ultimately lead to the discovery of the molecular basis for the alternative splicing of the
primary MBP transcript; considering the complex structure and regulation of the MBP gene
(for a review see Kamholz and Wrabetz, 1992), such a study should also be of great general
interest in molecular biology. In addition, the relative amounts of the mRNAs coding for L-
and S-MAG, the amounts of the respective protein isoforms and their degree of association
with the cytoskeleton must be assessed in rat myelin, since such a study might further our
knowledge on the developmental regulation of MAG and its role in the cytoskeleton.
References
Agrawal, H. C., Sprinkle, T.J. and Agrawal D. (1990a) J. Biol. Chem. 265, 11849-11853
Apgar, J.R. & Mesher, M.F. (1988), In Membrane Skeletons and Cytoskeletal-Membrane
Associations (Bennett, V., Cohen, C.M., Lux, S.E & Palek, J., eds.), pp 293-305, Alan R
Liss, New York.
(Siegel G J ed.) pp 91-107 Raven Press, New York
1183-1195
6427-6433
the New York Academy of Sciences 605 409-411
Res. 24, 546-557
3364
Behar, T., F. A. McMorris, E. A Novotny, J. L. Barker, and M. Dubois-Dalq (1968) J.
Neurosci. Res. 21, 168-180
Bell, M. V., Simpson, C. M. F. and Sargent, J. R. (1963) Lipids 18, 720-726
Neuroimmunol. 14, 325-338
Bernet, L., Alvarez, F., Norgard, E. M., Raible, D. W., Mentanberry, A., Schembri, J. G.,
7 401-409.
87: 6368-6372

230
Constantino-Coccarini, E. and Suzuki, K. (1975) Brain Res. 93, 358-362
de Fella F., Engh, H., Hudson, L., Kamhoz, J., Puckel, C., Molinaux, G. and Lazzarini, R.

232
Eylar, J. (1972) In "Functional and Structural Proteins of the Nervous System" (Davison, A.,
Johnson, G. V. W. and Jope, R. S. (1988) Brain Research, 456, 95-103
Keen, E. C. (1968) J. Lipid Res. 9, 319-327

238
Neurosci. Res. 18, 395-401
Neurochem. 48, 1-7
Comm. 152, 837-842
Larsen E., Palabrica, T., Sajer, S., Gilbert, G. E., Wagner, D. D., Furie, B. C. and Furie, B
(1990) Cell 63, 467-474
2916
Pienum Press, New York

239
CRC Press Inc.
Maturana, R. H. (1960) J. Biophys Biochem Cytol 7, 107-120
LI

Nussbaum, J. and Mandel, P. (1973) Brain Res. 61, 295-308
Orci, L., Tagaya, M., Amherdt, M., Perriset, A., Donaldson, J., Lippincott-Schwartz, J.,
Pagano, R. E. and Slesight, R. G. (1985b) Science 229, 1051-1057
Charlee C. Thomas Springfield
Rothman, J. E. and Orci, L. (1990) FASEB J. 4, 1460-1468
Sooling, N. J., Frith, S., Linnington, C., Morgan, B. P., Campbell, A. K. and Crompton, D. A.
Sperry, W. M. Brand, F. C. (1943) J. Biol. Chem. 150, 315-324

247
Thompson, R. J., Bradbury, R. J. and Richardson, P. J. (1986) Biochem. Soc. Trans. 14, 351-352

249
Virchow, R (1854) "Veben das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in der tierischen Geweben". Virchow's Arch. Path. Anat. 8, 582
Waeber, J. T. and Malouk, J. (1980) Brain Res. 189, 582-587
Williams, A. F. (1987) Today 8, 298-303
Plenum Press, New York
Acknowledgments

I am truly grateful to the Science and Engineering Research Council (SERC), whose financial support enabled me to carry out this work.

My supervisor Dr. Peter J. Brophy is thanked for providing a stimulating work environment, top class supervision and vast amounts of help throughout the project.

I also thank my co-supervisor Professor J. R. Sargent and his team at the NERC Unit of Aquatic Biochemistry, in particular Drs. Jim Henderson and Mike Bell, for helpful advice and making use of their facilities.

Thanks to Drs R. Pagano, I. Sommer and R. McKinnon for offering advice and materials at key points of my project.

I acknowledge the goodwill of Dr. R. Wilson, who gave up precious time to teach me lipid analysis techniques.

I thank all the staff members in the Department of Biological and Molecular Sciences (DBMS), who helped in creating an atmosphere of goodwill thus making my work more enjoyable.

The members of our group Drs Bernadette Kelly and Stewart Gillespie, Ms Diane Sherman and Fiona McAllistair as well as Mr Robert McDermott are thanked for being tolerant co-workers and helpful friends. I feel privileged to have worked with them.

I also thank Mr L. Taylor for printing the photographs contained within this thesis.