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Abstract 

We examine the predictive ability of stock price ratios, stock return dispersion and distribution 

measures for firm level returns. Analysis typically focusses on market level returns, however, 

for the underlying asset pricing model to hold, firm-level predictability should be present. 

Additionally, we examine the economic content of predictability by considering whether the 

predictive coefficient has the theoretically correct sign and whether it is related to future output 

growth. While stock returns reflect investor expectations regarding future economic conditions, 

they are often too noisy to act as predictor. We use the time-varying predictive coefficient as it 

reflects investor confidence in the predictive relation. Results suggest that a subset of stock 

price ratios have predictive power for individual firm stock returns, exhibit the correct 

coefficient sign and has predictive power for output growth. Each of these ratios has a measure 

of fundamentals divided by the stock price and has a positive relation with stock returns and 

output growth. This implies that as investors expect future economic conditions to improve and 

earnings and dividends to rise, so expected stock returns will increase. This supports the cash 

flow channel as the avenue through which stock return predictability arises. 
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1. Introduction. 

An increasing amount of literature examines the predictability of stock returns and argues that 

valuation ratios have predictive power. Most prominent among these include the dividend-price 

ratio, the price-earnings ratio and the latter’s cyclically adjusted version. Other ratios utilised 

often include the dividend payout ratio and the Fed model. More recently, measures of 

dispersion are considered and reported as successful in providing predictive power.1  

The vast majority of this work focuses on predicting market level stock return 

behaviour. This paper deviates from that approach by considering panel regression model based 

evidence for individual stocks across ten international stock markets. Thus, one aim of this 

paper is to examine whether the predictor variables often reported at the market level also hold 

at the firm-level. This is important as our understanding of asset pricing must ultimately to be 

able to explain movements in firm-level valuation. Moreover, as expressed by Jung and Shiller 

(2005), we would expect firm-level stock prices to have a closer link with fundamentals 

compared to market level index values. Thus, greater evidence of predictive power should be 

found at the firm-level if the identified predictor variables act as good proxies for fundamental 

information.    

An overriding concern within the predictability literature is whether the existence of 

any predictive power has a wider economic meaning. The movement of stock market returns 

is a window on to future economic behaviour as it represents investor expectations of future 

economic conditions. Thus, movement in current stock returns reflects changes in investor 

views of future cash flow and risk as their expectations of future economic performance 

changes. This implies two important elements that we would expect to find with respect to the 

nature of the predictive regression. First, the estimated coefficients should be consistent with 

                                                           
1 See, for example, Campbell and Shiller (1988), Lewellen (2004), Kellard et al (2010), Cochrane (2011), Maio 

(2013, 2016) and McMillan (2014a, 2015). 
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any economic interpretation that is afforded them. Second, the estimated coefficients should 

be related to future movements in economic behaviour. For example, a strengthening of the 

predictive relation would imply greater confidence in the information concerning future 

economic conditions that arises from movements in the predictor variable. 

Therefore, a further aim of this paper is to conduct time-varying rolling regressions and 

to analyse the behaviour of the predictive coefficients and whether they are related to future 

output growth. Of note, while there exists a raft of research that links movements in output to 

future stock returns (see, for example, Rangvid, 2006; Cooper and Priestley, 2009, 2013), there 

is less evidence showing the predictive power of stock returns on output growth (examples 

include, Mauro, 2003; Henry et al, 2004). Evidence of such a relation would support linkages 

between stock market dynamics and the macroeconomy consistent with those implied within 

asset pricing models. 

This paper thus contributes to our understanding of financial markets and the links with 

the macroeconomy is several ways. Asset pricing models argue that movement in stock returns 

are linked to expectations regarding subsequent movements in cash flows and risk premium. 

Hence, support for key asset pricing models can be found through evidence of predictability 

arising from variables that can proxy for cash flow and risk. Crucially, we not only consider 

whether there is support for predictability but also whether the sign of the predictive coefficient 

has economic meaning. Moreover, additional supportive evidence for asset pricing models is 

considered by linking the predictive relations with subsequent movements in output growth. 

This further enhances our understanding of the links between financial markets and the 

macreoconomy. Current evidence focuses on market level stock return data, so this paper adds 

to the weight of evidence by considering firm-level data. To date, the majority of work that 

considers firm-level data see, for example, Bulkley and Taylor (1996), Vuolteenaho (2002) and 

Nasseh and Strauss (2004) for the US and Goddard et al (2008) for the UK, test the present 
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value model, the existence of a long-run relation between stock price and dividends and the 

drivers of stock returns. This work does not explicitly consider predictive regressions in the 

manner examined here. Laopodis (2016) for the US and McMillan (2010) for the UK consider 

predictability at the sector or industry level. Thus, this paper extends the existing work by 

considering firm-level predictability across a range of countries and predictor variables. 

The results of this paper, which consider stock return predictability and its links to the 

wider economy will, in turn, further inform the debate regarding the cash flow and risk channels 

of asset price movement (see, for example, Cochrane, 2011; Ang, 2011; Rangvid et al, 2014). 

This is key in our understanding of the drivers of asset price movement and will be of interest 

to academics involved in asset pricing research both at a theoretical and empirical level and 

investors who wish to know the factors that govern stock price movement.   

 

2. A Brief Literature Review on Stock Return Predictability. 

As noted in the Introduction, the majority of research in this area focuses on market level stock 

index behaviour. The literature using financial ratios to predict stock returns largely began with 

Campbell and Shiller (1988) and Fama and French (1988) who consider dividend- and 

earnings-price ratios. Subsequent research (e.g., Lamont, 1998; Ang and Bekaert, 2007; 

Campbell and Thompson, 2008; Kellard et al, 2010; Maio, 2013) considers these and related 

ratios with mixed evidence on predictive success. The majority of the research in this area 

limits the analysis either in terms of the market examined or the explanatory variables 

considered and typically focuses on the US and the dividend- (or earnings-) price ratio. In 

contrast, Welch and Goyal (2008) consider a wider range of explanatory variables for the US 

and report limited evidence of predictability. Hammerschmid and Lohre (2018) likewise 

consider a range of explanatory variables for the US market but argue in favour of greater 

predictability when allowing for macroeconomic regimes of behaviour. Hjalmarsson (2010) 
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considers a range of markets (with fewer explanatory variables) and again reports only limited 

supportive evidence. Moreover, both Welch and Goyal and Hjalmarsson specifically argue that 

financial ratios are poor predictors 

 In considering the mixed nature of the predictability results, several papers argue that 

the predictive relation is characterised by time-variation. This variation could arise in the 

predictor variables (Lettau and van Nieuwerburgh, 2008) or the predictive coefficient (Paye 

and Timmermann, 2006). Others argue that evidence for the presence of predictability arises 

only in short time periods (Timmermann, 2008), switches with periods of dividend growth 

predictability (Chen, 2009, McMillan and Wohar, 2013) or varies with the economic cycle 

(Henkel et al, 2011; Hammerschmid and Lohre, 2018). Beyond this, several researchers specify 

explicit non-linear models that may be related to the state of the market or wider economy (see, 

for example, McMillan, 2003; Psaradakis et al, 2004; McMillan and Wohar, 2010). 

The above cited work considers the ability to predict market-level stock returns. In 

respect of more disaggregated data, existing work typically considers the nature of the relation 

between prices and dividends (or earnings) and the implications for the present value model 

rather than stock return predictability itself. Notably, Bulkley and Taylor (1996) argue that 

firm-level US stock prices do not follow the present value model, while Nasseh and Strauss 

(2004), also examining individual stocks for the US, argue the present value model relation 

broke down in the 1990s. Goddard et al (2008) conduct a similar exercise for individual UK 

firms and report more supportive evidence for the present value model. In a different tact, 

Vuolteenaho (2002) uses the underlying present value model description to identify the drivers 

of firm-level stock returns and argues that cash flow news plays a larger role. This contrasts 

with the market level arguments of Cochrane (2011), where movements in the risk premium 

(expected returns) play a dominant role. In terms of stock return predictability itself, McMillan 

(2010) for the UK and Laopodis (2018) for the US examine the ability of financial ratios and 
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a small set of macroeconomic data to achieve this. However, this work takes place at the sector 

level rather than the individual stock level.  

Aside from financial ratios, Maio (2016) considers the use of stock return dispersion 

for stock return predictability. Maio uses style portfolios (size and value) and considers whether 

the cross-section standard deviation predicts the market-level return. Maio argues that this 

measure does indeed outperform financial ratios and a selection of other predictors. Although 

not in the predictive regression setting, Amaya et al (2015) consider whether skewness can 

explain the cross-sectional behaviour of US stocks. They argue that portfolios constructed 

according to the degree of stock return skewness can lead to improved performance.  

 This paper, therefore, seeks to bring together and the expand upon the several strands 

of the above lineage of research. The existing predictive regression research considers market 

(e.g., Welch and Goyal, 2008) and sector (e.g., McMillan, 2010) level data, which we extend 

by firm-level data. In turn, existing firm-level research (e.g., Nasseh and Strauss, 2004) 

focusses on the relation between stocks and dividends, which we extend by considering 

predictive regressions. We utilise predictive variable across financial ratios (e.g., Campbell and 

Shiller, 1988), measures of dispersion (e.g., Maio, 2016) and additionally consider the 

distribution. In examining the predictive regressions, we consider both variation across time 

(e.g., McMillan and Wohar, 2013) but also across firms. Furthermore, we link the predictive 

regressions to measures of output and thus seek to provide further evidence on the main driver 

of stock market return movements (e.g., Vuolteenaho, 2002). 

 

3. Theoretical Motivation. 

The present value, dividend discount model (Campbell and Shiller, 1988) forms the underlying 

approach that motivates both the predictability regression and the links between stock returns 

and macroeconomic variables more widely. The fundamental stock price is given by: 
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where k is a linearisation parameter and ρ a constant discount factor. Imposing the 

transversality condition, which rules out explosive behaviour in order to only consider 

fundamental information, equation (2), in terms of the log price-dividend ratio, is given by: 
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Intuitively, this relation states, that if dividends are expected to grow or the future discount rate 

is expected to be low (or some combination of both), then current prices will be higher, and the 

price-dividend ratio will be high. More generally, following equation (3), Lamont (1998) shows 

that the time t expectation of time t+1 returns can be written as: 
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Again, this equation shows the relation between stock returns and future dividends (more 

generally, cash flow) and returns (risk premium). Moreover, this implies that after controlling 

for the time t stock price, any variable known at time t can only predict returns at time t+1 if it 

proxies for expected future discounted cash flow or expected future returns.  

Furthermore, this model motivates our key research interests within the paper. First, 

equation (4) indicates that expected stock returns should contain predictive power for future 

macroeconomic conditions. An improving future economic outlook will lead to higher 
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expected dividends and lower expected risk, which in turn are related with stock returns. 

Moreover, the sign of the relation between expected stock returns and output differs depending 

on whether the cash flow or risk channel dominates. Specifically, while higher dividends and 

risk both exhibit a positive relation with stock returns, they operate over different phases of the 

business cycle, with the risk premium rising during an economic downturn and dividends (cash 

flow) rising during a period of economic growth. Second, equation (4) motives the predictive 

regression typically seen in the asset pricing literature: 

(5)  rt+1  =  α + β xt + εt+1 

where rt+1 is next periods return and xt the predictor variable, which is typically taken to be the 

log dividend-price but more generally can be any variable that proxies for expected returns.  

 

4. Empirical Methodology. 

Based on the above discussion, our analysis utilises the usual predictive equation, albeit in a 

pooled context for individual firms. Thus, the general form of the model is given by:  

(6)  rit = α + β xit-1 + εit 

Where rit refers to the stock return for firm i at time t, xit-1 refers to the predictor variables, and 

εit is the random error term.    

 In estimating the above model, there are several considerations with regard to the 

specification. A key motivation for using a pooled regression is to increase the available 

degrees of freedom in estimation and thus improve the statistical reliability of the estimates. 

Ang and Bekaert (2007) note that the use of pooled data should increase our confidence in the 

results, while it overcomes the small sample bias inherent in predictive regressions (Nelson 

and Kim, 1993). Given this, our pooled estimate of the slope parameter should be a reliable 

indicator of the average response across all firms. The next consideration is constant term. A 

pooled regression imposes a common constant and thus, under the null hypothesis, the same 



8 
 

average return across all firms. This, of course, seems unrealistic and suggests the use of fixed 

(or random) effects within the regression model.2 However, with respect to this specific 

context, Hjalmarsson (2010) demonstrates the potential for bias within the fixed effects 

regression that can arise due to potential persistence and endogeneity in the predictor variable. 

Although, we demonstrate below that persistent is less likely to be an issue here, endogeneity 

may still be present. Hjalmarsson notes that the pooled regression with a common constant 

does not suffer from the same issue. Hence, one approach is to estimate a common constant 

pooled regression, such a model, with robust standard errors, is also suggested by Beck and 

Katz (1995). Alternatively, given that it may be preferable to eliminate firm specific 

information, Hjalmarsson notes, following Moon and Phillips (2000) and Sul et al (2005) that 

a (forward) recursive demeaning (rd) approach circumvents the bias. Thus, the series are 

demeaned as: 

(7)  𝑟𝑖,𝑡
𝑟𝑑 = 𝑟𝑖,𝑡 −

1

𝑇−𝑡+1
∑ 𝑟𝑖,𝑠
𝑇
𝑠=𝑡  . 

 A further consideration concerns the potential for cross-section dependence in the data. 

Again, such effects can lead to bias in the results. Therefore, we follow the approach taken in 

Hjalmarsson (2010) and based on that of Pesaran (2006), in which we apply the pooled 

estimator to the residuals obtained from a regression of the original returns data on the cross-

section average of the regressors. This implies that there are common factors within the original 

data and thus this procedure effectively orthogonalises the data. In reporting the estimated 

pooled results, we present them for three specifications, first the usual fixed effects (FE) 

approach, second, using the recursively demeaned (RD) data and third, using the cross-section 

cleaned recursively demeaned (RD-Adj) data.3   

                                                           
2 In considering the use of, for example, a fixed effects approach, a substantial literature has developed that seeks 

to identify the most appropriate empirical approach, see, for example, Cameron and Miller (2105), Onali et al 

(2017) and Petersen (2009). In application of the fixed effects regression here, we follow this work and obtain 

standard errors clustered at the firm-level. 
3 Of course, further specifications could be considered, for example, using the common constant model, including 

period fixed effects or considering random effects. We believe the common constant approach does not make 
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In the above panel regression, there are two types of variation that we can consider, 

providing a deeper examination of the data. From equation (6) we obtain the predictive 

coefficient, β, over the full sample period. This, of course, is a single constant value. However, 

it is likely that the coefficient will change both over individual firms within the sample and 

over time as both the stock market and economy go through cyclical phases. Therefore, we re-

estimate equation (6) in two dimensions. First, we estimate the equation for each firm 

individually and second, we estimate the slope parameter in equation (6) for each year 

separately. Hence, respectively, our equation becomes: 

(8)  rit = αi + βi xit-1 + εit 

(9)  rit = α + βt xit-1 + εit 

in which either firm or time sub-scripts on the slope coefficient highlight the variation in this 

parameter across individual firms or time.4  

We can subsequently use the varying slope parameters to examine the economic 

significance of the predictive variables. Notably, we can ask whether the parameter sign is 

consistent across the majority of the firms and time. Further, we can use the time-varying slope 

parameter to examine whether it has any predictive ability for future output growth, which 

defines the economic state variable that underpins the predictive regression.  

A given predictor variable for stock returns is likely to exhibit periods of stronger and 

weaker predictability. While we expect a predictive coefficient to take a particular sign 

consistent with its economic meaning, the magnitude and, indeed, sign of the coefficient may 

vary depending on the phase of the business cycle. As an example, we expect a positive 

coefficient in the stock return predictive equation using the dividend-price ratio. A higher ratio 

signals either higher dividends or lower prices, both of which suggest higher future stock 

                                                           
economic sense to pursue, the recursive demeaning as well as further analysis below takes consideration of time-

variation, while random effects may re-introduce bias as they are unlikely to be independent of the predictor 

variables and are not considered in this context.  
4 Equation (9) is estimated using a pool of two years in order to capture the lagged effect. 
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returns. This is because either the higher dividends signal improving future economic 

conditions and higher future prices and returns or the lower prices suggest an increase in risk 

and thus higher future expected returns as compensation.5 Within the literature examining 

dividend-price ratio predictability, several authors have argued that the relation is time-

varying.6 Notably, Henkel et al (2011) argue that the presence of counter-cyclical risk 

premiums means that predictability increases in a recessionary period and disappears in an 

expansionary one. To support the viewpoint of Henkel et al, we would expect a negative 

relation to exist between the dividend-price ratio predictive coefficient and output growth, i.e., 

there is stronger evidence of positive stock return predictability when output growth is 

negative. To consider this issue, we therefore, estimate: 

(10)  yt = µ + δ βt-1 + νt 

where yt refers to output growth and βt is the fitted value obtained from equation (9). We can 

estimate this regression for each of the time-varying predictive parameters and examine their 

ability to predict future output growth while also exhibiting economically sensible values. 

In terms of the predictor variables, we include a range of financial ratios, measures of 

dispersion and distributional characteristics. Specially, this includes the dividend-price ratio 

(DP), the price-earnings ratio (PE), the cyclically adjusted price-earnings ratio (CAPE), the 

payout ratio (DE), the PE to earnings growth ratio (PEG), the Fed model (Fed), returns 

dispersion (RD), the maximum minus minimum return (Ma-Mi), the absolute median deviation 

(AMD), two measures of skewness (Skew NP, Skewness) and kurtosis (Kurtosis). The full 

definitions of these measures are presented in Table 1 together with the expected signs from 

the predictive regression for stock returns given in equation (6). 

                                                           
5 There is a notable debate in the literature as to which one of these avenues dominates the expected positive 

relation (see for example, Cochrane, 2008; Ang, 2011; Rangvid et al, 2014).  
6 See, for example, Chen (2009), Guidolin et al (2013), McMillan and Wohar (2013), McMillan (2014a, 2015). 
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Thus, we have a range of predictor variables, this includes measures that incorporate a 

ratio between the stock price and a variable that represents fundamental value. We also have 

measures that capture the variability (or risk) within stock returns and those that examine the 

distributional characteristic of the return series.7 In motivating the choice of these variables, 

we make recourse to the theoretical model outlined in Section 3. Hence, for example, each of 

the predictor variables can act as a proxy for future cash flow or risk in equation (4) and is 

linked to both future stock returns and economic conditions. This, in turn, determines the 

expected coefficient signs noted in Table 1.  

The DP and PE (and CAPE) measures are considered within the context of the present 

value model, in which prices depend upon future discounted cash flows as measured by 

earnings or dividends (Campbell and Shiller, 1988). To make the results comparable, we invert 

the PE ratio and CAPE (i.e., we use the EP and CAEP ratio, or the earnings yield and cyclically 

adjusted earnings yield respectively). Thus, we expect the coefficient on each of these predictor 

variables to be positive. Following the present value model, a rise in dividends or earnings is 

associated with improving economic conditions and higher future returns, while a fall in prices, 

is associated will poorer economic prospects, an increase in the risk premium and a rise in 

future (expected) returns. Using the same theoretical approach, Lamont (1998) argues that the 

DE will have greater predictive power for stock returns than the DP or PE measures. In terms 

of the sign of the coefficient, Lamont argues in favour of a positive relation where high 

dividends forecast high future returns, while high earnings are associated with high current 

prices, low macroeconomic risk and low future returns. The PEG ratio (Farina, 1969) is defined 

as the PE ratio divided by earnings growth and is often favoured within the practitioner 

literature. It is argued that this ratio allows comparison between firms that have different 

                                                           
7 There exists a wider literature that incorporates other predictor variables, notably macroeconomic series, see, for 

example, Patelis (1997) who considers the role of monetary policy and Rangvid (2006) who uses a price-output, 

while Welch and Goyal (2008) consider a wide range of variables. 
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growth rates as higher growth firms would have a higher PE ratio but are not necessarily 

overvalued in comparison to a lower growth firm. In the context here, a higher PEG ratio, in 

which a firm would have a higher price relative to fundamentals, will be associated with a 

lower future returns and thus a negative coefficient. The Fed model is constructed by the ratio 

of the earnings yield (EP) to the 10-year Treasury bond. There is a significant debate about 

whether the Fed model is either theoretically consistent or empirical useful, but recent work 

reports supportive evidence (e.g., Bekaert and Engstrom, 2010; McMillan, 2012; Maio, 2013).8 

Within this approach, a higher Fed value implies lower current stock prices and thus higher 

future expected returns, hence, we would expect to find a positive coefficient value.  

The above predictor variables are based on ratios between proxies for fundamentals and 

stock prices. The next set of measures are designed to capture risk within the returns series as 

proxied by dispersion. Thus, for each of these variables, we would expect a positive coefficient 

in the regression with stock returns. Returns dispersion is measured as the cross-sectional 

standard deviation across all stocks for each year in the sample and has recently found favour 

as a predictor variable (e.g., Maio, 2016). Given this, we therefore also consider other measures 

of dispersion, namely, the spread between the maximum and minimum value in each year and 

the median absolute deviation. The median absolute deviation is believed to be a more robust 

measure of dispersion as it is less affected by outliers, in comparison to the standard deviation. 

The last set of predictor variables concern distributional characteristics of the returns 

data. We define two measures of skewness and consider kurtosis. The first measure of 

skewness can be thought of as an older skewness measures and, more appropriately, the non-

parametric skew statistic. This measure is the difference between the mean and median, divided 

by the standard deviation. The advantage of this measure is that it provides a straightforward 

                                                           
8 For a flavour of the debate see, for example, Asness (2003), Estrada (2006) and Thomas and Zhang (2008) in 

addition to the above papers. 
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description of which way the distribution leans with respect to the mean. The second measure 

of skewness is the more common Pearson’s (third) moment coefficient of skewness. For both 

series, we would expect a negative coefficient as negative skewness is associated with a larger 

number of negative returns and thus higher risk. Our measure of kurtosis is the common 

Pearson (fourth) moment. A larger kurtosis value is consistent with a greater number of 

observations in the tails and thus more extreme values. As such, we would expect a positive 

coefficient value, with higher kurtosis implying greater risk and thus higher expected returns. 

Therefore, for each of our firms, in addition to the stock price, we collect data on 

earnings and dividends, while for each market we collect 10-year Treasury bond data. This 

allows us to construct the different predictor variables discussed above. We also collect GDP 

data for each market to examine the behaviour between the predictive regression and output 

growth. The data is sourced from DataStream and each country’s central bank and official 

statistics database for the interest rate and output series respectively. We also considered OECD 

output data, with similar results to those reported below. 

 

5. Stock Market Predictability. 

5.1. Data 

The stock return, dividend and earnings data are annual observations over the time-period 

1990-2014 for individual firms within key indices for ten international stock markets. We have 

data for Australia, Canada, France, Germany, Hong Kong, Italy, Japan, South Korea, the UK 

and the US.9 Specifically, we take data for all available firms in the S&P 500 for the US, the 

FTSE 350 for the UK, the DAX, MDAX and SDAX for Germany, the SBF 120 for France, the 

MIBTEL for Italy, the TSXCOMP for Canada, the Nikkei 225 for Japan, the ASX 200 for 

                                                           
9 The choice of countries is determined by taking the G7 markets and then the three largest markets outside of 

Europe and North America for which reliable data is available (the Chinese and Indian markets would be 

considered the largest non-G7 markets, but data availability precludes them from this analysis). The sample period 

is largely determined by ensuring reasonable data coverage. 
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Australia, the Hang Seng for Hong Kong and the KOSPI for South Korea.10 As noted above, 

this data is obtained from DataStream, while we also collect data on 10-year Treasury Bonds 

and GDP. Table 2 presents summary statistics for the stock returns, with the usual 

characteristics of a mean value dwarfed by the standard deviation, negative skewness and 

evidence of non-normality provided by the Jarque-Bera statistics.11   

 The selection of countries analysed also provides a cross-section of markets that exhibit 

different characteristics that may inform any differences in results. Firms across the sample are 

subject to different legal and accounting standards and this may affect the reporting of earnings 

and the issuing of dividends. Thus, it is of interest to observe whether the results reveal 

systematic differences that separate along these lines. Notably, two main legal systems exist 

across the sample countries. Australia, Canada, Hong Kong, the UK and US are (largely) 

governed by common law, while France, Germany, Italy, Japan and South Korea are (largely) 

governed by civil law. The former system, for example, has been recognised as giving greater 

protection to shareholders (La Porta et al, 1999). This also promotes a market orientated 

financial system as opposed to a bank dominated system and the separation of countries 

between these two systems falls in the same fashion as the legal separation.12 A further key 

distinction between the countries in our sample, concerns the adoption of different accounting 

rules. Specifically, while IFRS has become the dominant global accounting standard in terms 

of country adoption, both Japan and the US, the largest two stock markets, are currently non-

adopters. Whether these differences impact the results, we will consider below. 

                                                           
10 The data set includes all firms for which sufficient data on stock prices, dividends and earnings exists and is 

available through the DataStream main database and ‘dead’ firm files.  
11 Our data sample includes all available firms in each index. Thus, we do not specifically exclude financial firms 

as often occurs in cross-sectional studies (e.g., Fama and French, 1992). We believe that the asset pricing model 

equally apples across different types of firm and is consistent with Nasseh and Strauss (2004) who consider all 

firms in the S&P100 (except tech stocks) and McMillan (2010) who includes the financials sector in a sectoral 

analysis of the present value model.    
12 McMillan (2014b) considers a dummy for Anglo-Saxon markets when examining predictability for stock 

returns, dividend and consumption growth across fifteen markets. 
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5.2. Empirical Results 

Before estimating the pooled regression models, we consider the degree of persistence within 

the predictor variables. This is because within market-level studies it is often noted that the 

explanatory variable, typically the dividend-price, or a similar, ratio, exhibits very high 

persistence. As noted above, such high persistence could bias the regression coefficient in an 

empirical model such as equation (6) towards rejecting the null hypothesis of no 

predictability.13 Thus, Table 3 presents the first-order autoregressive coefficients for each of 

the predictor variables.14 These persistence parameters show a noticeable discrepancy with the 

results reported at the market level. In Table 3, with only a few exceptions, the degree of 

persistence varies from being very low (and even negative) to moderate but less than 0.6. This 

contrasts with the typical values of around 0.99 found for market-level studies. Thus, the bias 

reported for market level studies is less likely to affect the regressions here. Notwithstanding 

this, as discussed above and following the work of Hjalmarsson (2010) we adjust our data to 

account for potential bias that may arise from persistence and endogeneity within the predictor 

variables. Furthermore, Hjalmarsson notes that in the context of a pooled model, the bias does 

not arise if the equation is estimated as a pooled regression. Thus, while we report results 

accounting for cross-sectional effect, we also consider a pooled regression, with the results, 

which are qualitatively similar to those reported below, available upon request. 

Tables 4-7 present the panel predictive regression results for our twelve predictor 

variables across ten markets.15 In examining these results, we expect each of the parameters to 

exhibit a positive sign (except for the PEG ratio and the two skewness measures) and to be 

                                                           
13 This often referred to as the Stambaugh (1999) bias. 
14 The AR(1) models are estimated using the GMM dynamic panel model of Arellano and Bover (1995). This is 

to avoid potential bias in the autoregressive coefficient of a fixed effects panel model (Nickell, 1981).  
15 In estimating these models, we begin the sample period in 1995 to account for the rolling time period used for 

some predictors. 



16 
 

statistically significant for the predictors to have meaningful economic and statistical content.16 

We can also compare the nature of the results across the different estimation techniques and 

examine if, for example, the fixed effects approach provides misleading results. In Table 4, we 

can see that the DP is positive and significant for nine of the ten markets using the fixed effects 

(FE) and adjusted recursive (RD-Adj) approaches, while for the recursive de-meaning (RD) 

approach, seven markets are statistically significant. For the (inverted) PE and CAPE ratios 

respectively, all ten and seven (with a further one at the 10% significance level) are positive 

and statistically significant using the FE approach. For the RD and RD-Adj methods and the 

PE ratio, six and eight markets (with two further markets at the 10% level) are statistically 

significant respectively. Using the RD and Rd-Adj estimators for the CAPE ratio, six markets 

are statistically significant (with a further market significant at the 10% level). In all cases, the 

parameter values are positive. Thus, these well-established ratios appear to have general 

predictive power for the stock returns of individual firms. 

Table 5 contains a further set of financial ratios that have been suggested to contain 

predictive power. The payout (DE) ratio is statistically significant (at the 5% or higher level) 

for two, three and five markets respectively across the three estimation methods (FE, RD and 

RD-Adj). Moreover, the sign of the coefficient is typically (but not universally) negative when 

the coefficient is significant (the coefficient is also negative for markets that are significant at 

the weaker 10% level). The PEG ratio is statistically significant for four, three and four markets 

respectively across the estimation methods, with a positive coefficient for one market (two for 

the RD-Adj method, which is 10% significant for the FE and RD methods) and a negative 

coefficient elsewhere. Thus, these two ratios appear to convey little predictive information 

across our markets. That is, both in terms of statistical and economic significance, the latter 

                                                           
16 In Tables 4-7 we also note the number of observations used in estimation. These vary across the models used 

depending on availability of the data for dividend and earnings across not only firms that exit the index use but 

also for those that are no longer trading. 
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being in regard of the coefficient sign. In contrast, the Fed ratio, which is a ratio of the equity 

yield to the bond yield and has garnered much debate in academic circles, is positive and 

statistically significant for all ten markets for the FE approach and nine for the RD and Rd-Adj 

methods.  

The results in these two tables cover predictability from financial ratios, we also 

consider measures of dispersion in Table 6 and the distribution in Table 7. Across both tables 

we find some generally supportive evidence of predictability, although the results are less 

consistent than those reported for the DP, (CA)PE and Fed measures. In Table 6, for return 

dispersion, seven, eight and nine markets respectively have a significant coefficient across the 

FE, RD and RD-Adj methods. However, among these significant results, several markets 

exhibit a negative coefficient value. This pattern is repeated across the results for the alternative 

dispersion predictor variables, i.e., those based on the difference between the maximum and 

minimum return values and the absolute median deviation. The majority of the market exhibit 

statistical significance (eight, seven and nine respectively for the former predictor variable and 

ten, nine and nine respectively for the latter across the FE, RD and RD-Adj approaches), but 

within these results several markets report a negative coefficient value. Thus, although 

generally supportive, the presence of negative coefficient signs casts doubt on the economic 

validity of these predictor variables. 

In Table 7, the measures of skewness and kurtosis equally provide some evidence of 

predictive power for stock returns, but again, we can observe inconsistency in the sign of the 

estimated coefficients. Thus, while we see a high degree of statistical significance, with seven 

markets exhibiting at least 10% significance for the non-parametric measure of skewness, nine 

or ten markets for the second measure of skewness and at least seven markets for the measure 

of kurtosis, in each case the wrong sign can be observed for at least one market, limiting the 

economic significance. The only exception to that is for the RD-Adj results for the Pearson’s 
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skewness measure. However, for the non-parametric skewness and kurtosis measures, 

approximately half of the coefficients across the significant results are of the wrong sign. For 

example, for the non-parametric skewness measure of the twenty statistically significant, at the 

5% or higher, results, nine have the wrong sign. The equivalent figure for the kurtosis measure 

is ten out of twenty-two significant values.   

This section examines predictability within firm-level stock returns for ten international 

markets using twelve predictor variables. Our interest here, is not just whether the predictor 

variables provide a significant relation with stock returns but, more importantly, whether the 

coefficient has the appropriate sign with respect of the underlying theoretical model and thus 

whether the predictor variable has economic content for stock returns. Our results suggest that 

the DP, PE, CAPE and Fed measures all exhibit the correct sign across the ten markets and are 

significant for the majority of the markets. Indeed, across at least two empirical methods, for 

the DP, PE and Fed ratios, the coefficients are statistically significant for at least nine and, on 

at least one empirical method, all ten markets. For the remaining predictor variables, they either 

exhibit very limited statistical significance (for example, the DE and PEG ratios) or exhibit 

mixed coefficient signs (for example, the measures of dispersion and distribution). Thus, for 

these latter measures, with one exception noted below, while statistical significance supports a 

predictive effect, the inconsistent coefficient signs, cast doubt on the economic content of these 

predictor variables.  

We can consider this latter point further and whether there is any commonality across 

the markets with wrong signed or insignificant coefficients in respect of the country 

characteristics identified in Section 5.1.  We can see, above, that the DE ratio is predominately 

negative but with limited significance, whereas Lamont (1988) argues in favour of a positive 

sign. The PEG ratio is mixed in terms of coefficient sign and significance and suggests little 

predictive power. The measures of dispersion typically have the correct sign, however, across 
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each measure there is at least one instance of a significant wrong signed coefficient. Likewise, 

for the measures of distribution, there is evidence of significant positive and negative 

coefficient signs. An exception to this is the RD-Adj approach for rolling (Pearson) skewness, 

which is correctly signed and significant for all markets. In asking whether there is any 

commonality across the markets, we can see that no such consistency is evident. For example, 

across the DE results we see a significant negative coefficient for Australia, Germany, Japan 

and the US and thus these markets cross the common and civil law and adoption and non-

adoption of IFRS characteristics noted above. Likewise, as a further example, for the non-

parametric skewness measure, Australia and the UK have opposing coefficient signs but are 

both characterised by common law systems and IFRS adoption. Instead, the nature of the 

results may simply reflect the ability of the given series to proxy for expected returns across a 

broad range of international markets. 

Of further interest, we can consider whether the results obtained from the different 

empirical approaches reveal consistent results. Across the FE, RD and RD-Adj approaches, we 

see a broadly consistent pattern in both the sign and significance of the coefficients. While 

there are some differences, the overall picture across markets and predictors is qualitatively 

similar. That said, the most noticeable difference is observed with the Pearson skewness 

measure, which under the RD-Adj approach does provide a consistent (negative) coefficient 

sign and is statistically significant for all ten markets.17 Thus, while most of results are 

consistent, this does suggest the importance of properly addressing any econometric concerns 

to ensure inference is robust.  

 

 

 

                                                           
17 A change in sign is also observed for the return dispersion predictor for the US. 
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6. Variation. 

The results presented above in the pool regressions essentially capture the average response of 

all firms in each market across the full sample period. The use of pooling techniques has the 

advantage of increasing the degrees of freedom in estimation and thus the accuracy of the 

coefficient values. However, a downside to pool estimation is that there will exist variation in 

the cross-section elements, such that there is some loss of information within the results. That 

is, the estimated pool coefficient represents an average response and within that average there 

will be dispersion among the coefficients of individual firms. There will also exist variation 

across time (although this applies equally to all regressions and not just pool models). Indeed, 

this issue has been considered before by, among others, Park (2010), McMillan (2014a, 2015), 

McMillan and Wohar (2013). Therefore, to address these issues, we first, estimate the 

predictive equation across all individual firms, equation (8), and second, we estimate the 

regression over time. Moreover, we consider this time-variation in two ways, first, we isolate 

the financial crisis period by introducing a dummy variable for the years 2007-2009 and 

second, we estimate equation (9) that allows the slope coefficient to vary with each year. 

Table 8 presents a description of the results for equation (8) where we estimate our 

predictive equation for each individual firm. We report in this table the proportion of positive 

coefficient values for each market for all cross-sections, recalling that for the estimation results 

to have any economic meaning we would expect the slope coefficients to be positive (except 

for the PEG ratio and the two measures of skewness). Specifically, we estimate the predictive 

equation individually for each firm in our sample and the number reported in Table 8 is the 

number of times, as a percentage, the predictive coefficient in the individual firm regressions 

is positive across all firms in each market. 

Before we examine the results within the table, Figure 1 illustrates the general pattern 

we find across the different markets and predictor variables. Figure 1 presents the individual 
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firm coefficients for the UK using the (inverse) price-earnings ratio. Evident in this figure is 

that while most of firms exhibit the correct positive coefficient sign, nonetheless, a number of 

firms report a negative value. Thus, while the predictor variable has a consistent economic 

message for most firms, it is not the case for every firm.   

Taking a view of the number of times each predictor variable has the correct sign, we 

can see that the CAPE ratio is preferred, obtaining an average number of correct signs in 84% 

of the regressions for all individual firm cross-sections (reported in the last column of the table). 

An above 70% average is also achieved by DP, PE, Fed and (Pearson) Skewness (recalling that 

its sign should be negative). The rest of the predictor variables fall below an average 70% sign 

success rate, which would question their ability to provide a robust economic reason for 

predictability. Taking these preferred five models and looking closer at their performance 

across the ten markets, we can consider their lowest success rate and the number of times the 

success rate for any given market falls below 70%. For the DP, the lowest percentage of 

positive coefficients is 62% for Australia, while for three markets the percentage falls below 

70% (Australia, Canada and Italy). For PE, the lowest success rate is 57% (Italy), while success 

falls below 70% for four markets (Australia, Canada, Germany and Italy). For CAPE, the 

lowest proportion of correct signs is 70% (Italy) and thus no market falls below that level. For 

the Fed and Skewness predictor variables the lowest correct signs rate is 58% and 41% 

respectively (both Italy), while sign success falls below 70% four times for the Fed variable 

(Australia, Canada, Italy and South Korea) and three times for Skewness (Canada, Hong Kong 

and Italy). 

These results thus reveal that the CAPE predictor variable performs the best in 

economic terms by obtaining the correct coefficient sign the most times across the ten markets. 

Of the alternative predictor variables, the ratio measures of the DP, PE and Fed perform well 

while the Skewness variable is the only distributional variable that achieves a reasonable 
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performance. These results thus provide some consistency with the full sample results and 

further support for the DP, PE, CAPE and Fed ratios. Equally, the support for the Skewness 

measure here is consistent with the RD-Adj results reported above.  

As noted, we consider time-variation in two ways. Table 9 repeats the estimation results 

of Tables 4-7 but now including a dummy variable (both intercept and slope) for the financial 

crisis years of 2007-2009, while Table 10 presents a similar exercise to that reported in Table 

8 but for the time-varying coefficients. In analysing the results in Table 9, we can see a 

distinction between the results for the ratios and those for dispersion and the distribution (with 

one exception) that largely reflect the full sample results above. Examining the results for the 

DP, PE, CAPE and Fed ratios, we can see that the positive relation reported in Tables 4 and 5 

is strengthened during the financial crisis period with a positive and nearly wholly significant 

coefficient. For the DE and PEG ratios, the mixed picture of results from Table 5 is repeated, 

with evidence of a significant financial crisis dummy occurring for less than half the markets 

considered and with no consistent coefficient sign. For the dispersion measures, we see a 

positive and frequently significant coefficient during the crisis period. However, there are 

exceptions to this, for example the Max-Min variable for Canada and the US. Moreover, we 

observe a more mixed picture during the non-crisis periods than suggested by the results in 

Table 6, with the coefficient now typically insignificant. This suggests that the predictive power 

of dispersion variables largely only arises during a crisis when dispersion across individual 

stocks in heightened.18 For the distribution series, we see that the result for the rolling skewness 

measure is similar to that of the ratio series. The strength of the expected (negative) coefficient 

is heightened during the crisis period and indeed for Canada and France it overturns the positive 

                                                           
18 For example, the average value for US return dispersion during the crisis is 0.38 in contrast to 0.20 in the period 

after and 0.31 in the period prior (which also includes the dotcom bubble crash). 
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non-crisis period sign. For the non-parametric skewness measure and the kurtosis measure, the 

signs and significance of the coefficients remain mixed as observed for the full sample results. 

The entries in Table 10 represent the percentage number of times the coefficient for 

each predictor variable and market are positive across a pool regression over each time period 

as given by equation (9). Again, we can illustrate the nature of the results in Figure 2, which 

reports the coefficient for the (inverse) price-earnings ratio for the UK, together with two times 

the standard error bands. Here, we can observe time-variation, with the coefficient becoming 

negative around notable periods of market stress such as the dotcom crash and the financial 

crisis. The inclusion of the standard error bands also allows us to observe that statistical 

significance also varies over time. 

In Table 10, we can see that the financial ratios, except PEG, tend to report the expected 

coefficient sign over time more than the distributional variables (recalling that the PEG ratio 

and the two skewness measures are expected to have a negative sign). Notably, the average 

percentage number of correct signs are 65%, 64% and 63% for CAPE, DP and PE respectively. 

The DE and Fed perform slightly worse at 61%, while the best performing distributional 

variable is Skew NP at 60% (again, we expect a negative coefficient).  

 Examining these results in greater detail, we can see that the same four predictor 

variables, DP, PE, CAPE and Fed ratios, appear to perform better than all other predictor 

variables. Here, they all achieve a success rate in terms of the positive coefficient of no lower 

than 50% (55% for the DP and CAPE ratios). Every other predictor exhibits a less than 50% 

success rate for at least one market. Of interest, of the remaining, distributional, variables, the 

non-parametric skewness measure now performs best in contrast to the Pearson skewness 

measure that previously had performed well. 

These results suggest greater variation in the coefficient values across time than across 

individual firms, although it should be borne in mind that there is significantly fewer time series 
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periods than cross-section observations and thus a comparison may be misleading. 

Notwithstanding this, and looking across both these tables, these results continue to support 

the use of the key financial ratios used within the literature as providing economic content, 

notably the DP, PE and CAPE ratios. The results also support the Fed ratio as providing 

economically meaningful coefficients, thus, supporting its use despite its contentious nature as 

noted above. The DE and PEG ratios are less successful in providing the expected coefficient 

sign. The distributional variables typically achieve the correct sign in over half the cases, 

although they generally perform worse the above noted financial ratios and often perform 

particularly poorly for at least one market, casting doubt on their general use. 

 

7. Predictive Power and Output. 

In the above section, we examine the economic significance of the predictor variables by 

considering whether they report the expected coefficient sign. In this section, we consider the 

economic significance of the predictor variables from a different perspective. A predictive 

relation exists as expectations about future economic performance are reflected in the predictor 

variables and stock returns. As can be seen by equation (4) in Section 2, stock return 

predictability arises through variables that proxy for future cash flow and risk, and thus future 

economic conditions. The strength of the predictive relation will reflect the confidence 

investors feel about their future expectations. Thus, a strengthening of the predictive relation 

should itself have predictive power for output growth. For example, we expect a positive 

relation between DP and stock returns, which can arise either through a cash flow or risk 

premium channel. An increase in the slope coefficient within this relation implies that the 

economic strength of predictive power increases. This can then have a positive predictive effect 

on output growth through the cash flow channel where higher dividends signal improving 

expected economic performance, or a negative predictive effect through the risk channel where 
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lower prices signal a weakening of economic conditions. We can make similar arguments 

across the predictor variables and thus for the predictive relation to have economic content, we 

would expect the time-varying coefficient to be related with future output growth.  

  An increasing amount of empirical evidence at the market level has identified time-

variation within the predictive relation (as we do here) and link that time-variation with the 

state of the economy. Henekel et al (2011) argue the predictive relation of equation (5) is only 

evident during an economic contraction. Guidolin et al (2013) show that movement in the time-

varying predictive parameter is related to output as measured by the growth rate of industrial 

production. A further line of research shows that the predictor variables (typically the dividend-

price ratio) may be related to macroeconomic variables, typically consumption (e.g., Campbell, 

2003; Bansal and Yaron, 2004; McMillan, 2013). The nature of this relation again arises 

through expectations surrounding future economic conditions. A rising dividend-price ratio can 

be positively related to future output (and consumption) through the cash flow channel as 

higher dividends signal an improving economy and higher future output (consumption). 

Alternatively, the relation can be negative as a falling stock price indicates poorer future 

economic conditions and lower output (consumption). Empirical evidence equally shows that 

this relation can be time-varying (McMillan, 2014b, 2015).  

 Thus, the predictor variables for stock returns can also predict future output and in both 

cases the relation is time-varying. Furthermore, stock returns can predict future output (Mauro, 

2003; Henry et al, 2004; Tay, 2007) with the generally supported view that such predictability 

arises as positive economic news is reflected in stock prices before it can be seen in output 

measures. Tying these strands together, we argue that an increase in the strength of stock return 

predictability (an increase in the absolute value of the predictive coefficient) implies that 

investors are more confident in their view of future economic conditions and the time-varying 

coefficient should, therefore, have predictive power for output growth. Hence, we estimate 
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equation (10) and consider whether the predictor variables and the resulting the time-varying 

parameters contain any economic information.  

Table 11 reports the results of equation (10) across all our markets and predictive 

variables. Taking an overall view for each predictor variable, for the variable to contain 

economic meaning, we would expect it to have the same sign across all markets and exhibit 

statistical significance. In terms of the relation between output growth and predictive strength, 

for DP, PE, CAPE and the Fed ratios, there is a positive sign for all ten markets. Furthermore, 

these relations are statistically significant at the 5% level (or higher) for eight, seven, nine and 

five markets respectively. In addition, several results are also significant at the 10% level, for 

the PE (one market), CAPE (one market) and Fed (four markets), indicating a reasonable level 

of statistical significance across almost all markets. For the DE and PEG ratios, nine and eight 

markets have the same signed relation with output growth, although the level of statistical 

significance is notably reduced, with only five and two markets respectively significant at the 

5% level (with an additional two and one markets significant at the 10% level respectively). 

These results support the view that movement in the strength of predictive power arising from 

financial ratios is linked to movements in expected future economic conditions.   

For the predictor variables based on stock return dispersion and distributional 

characteristics, there is notably less consistency in the results between predictive strength and 

output growth. For example, the return dispersion predictive coefficient has five markets with 

a positive relation and five with a negative relation, but very limited significance, both one 5% 

significant positive and negative relation. The same pattern is seen across the other predictor 

variables. The absolute median deviation, which has the highest number of similar signs (seven 

positive relations), only has two statistically significant relations at the 5% level. Equally, for 

the skewness and kurtosis predictor coefficients, there is only very limited evidence of 

significance and that occurs for both positive and negative values. 
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We can consider the nature of the relations for the above four identified predictor 

variables, DP, EP, CAPE, Fed, in greater detail. Each of these variables has a positive 

predictive relation with stock returns. This implies that an increase in dividends or earnings is 

associated with an increase in expected future stock returns. An alternative view is that the 

positive relation with stock returns arises from falling stock prices. These two justifications for 

the positive relation essentially capture the cash flow versus discount rate views of asset price 

movement. As noted above, we also observe a positive relation between the predictive 

coefficient and output growth. This suggests that a strengthening of stock return predictive 

power is associated with an increase in future economic conditions (equally, a weakening of 

predictive power is associated with poorer expected economic conditions). This viewpoint is 

more consistent with the cash flow route in explaining stock return predictability. Thus, a 

strengthening of the predictive relation occurs as investors become more certain about the 

future course of the economy. A rise in dividends is associated with higher future stock returns 

and the nature of that relation strengthens as investors become confident about an upturn in 

future economic conditions. If predictability arose through the discount rate channel, then we 

would expect to see a negative relation between the strengthening of predictability and future 

output growth as the predictability arise due to an increase in economic risk.19 

 

8. Summary and Conclusion. 

This paper considers whether popular predictor variables for market level index returns also 

exhibit predictive power for individual firm level returns across a range of international 

markets. We obtain firm level data for ten international stock markets. This includes price, 

earnings and dividend data. We also obtain data on 10-year Treasury bond yields and output. 

Using this data, we generate twelve predictor variables, including price ratios and measures of 

                                                           
19 This counter-cyclical risk premium view is espoused by Henkel et al (2011). 
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dispersion and distribution. Using three pool regression approaches, we estimate stock return 

predictive models for each variable individually and consider both the statistical and economic 

significance, the latter is achieved through an examination of the coefficient sign. In addition 

to the pool regression, we consider variation within the nature of the results by conducting the 

predictive regression across both individual firms and time periods, including a separate 

analysis for the financial crisis. Subsequently, we use the time-varying coefficients to examine 

their relation with future output growth, enhancing the economic interpretation of the results.  

 Our results suggest the following key conclusions. Over the full sample, four predictor 

variables have estimated coefficients that are consistently of the expected sign and are 

statistically significant across markets and estimation methods. These are the DP, PE, CAPE 

and Fed ratios. The same four variables are also notable in having the economically correct 

sign for the greatest number of firms and time periods when examining variation within the 

predictive relations. Equally, these four variables exhibit a significant positive relation with 

future output growth and thus provide a set of results that demonstrates both statistical and 

economic significance. It is also notable that other price ratio measures (DE and PEG ratios) 

as well as measures of both dispersion and distribution do not provide such supportive evidence 

of both statistical and economic significance. These results thus provide evidence that only 

some of the predictor variables examined within the literature contain economic significance 

and could be regarded as meaningful predictors that are likely to exhibit continued 

predictability in future samples of data as they are linked to the underlying economic state 

variable. Of further interest, the results across the three estimation methods are broadly 

consistent in terms of coefficient sign and significance. However, one exception exists (for the 

skewness measure) where the preferred cross-section adjusted recursive de-meaned approach 

differs from the fixed effects or non-adjusted recursive de-meaned approaches. Although this 
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difference is only noted for one of the twelve predictor variables it does highlight the need to 

ensure robust estimation in order to arrive at the correct inference.   

 We can also use our results to draw inference about the nature of the relation between 

financial markets and the real economy. The results from the above four (DP, PE, CAPE and 

Fed) ratios all exhibit a positive relation with stock returns. Each ratio is constructed with 

dividends or earnings as a ratio to stock prices (and for the Fed ratio, then to 10-year Treasury 

bonds). The positive relation with stock returns arises either from a rise in dividends or earnings 

or a fall in stock prices and, hence, either positive expected future economic conditions (thus, 

rising dividends and earnings) or negative future expectations (thus, falling prices). These two 

alternative views are referred to as the cash flow and risk premium channels. To understand 

which of these avenues explains the positive stock return relation, we can use the output growth 

and time-varying coefficient results. Here, the positive relation between output growth and the 

time-varying predictive coefficient across all series, suggests that the expectation of improving 

future economic conditions, leads to a strengthening of the positive stock return predictive 

relation and thus, the cash flow channel dominates.  

 The results here provide some general implications that are of relevance to both 

academics and investors. In academic research, there is a desire to understand the drivers of 

stock price movement and the theoretical models that link stocks with the wider economy. For 

investors, while much academic research examines market level index behaviour, such indices 

are not investible (notwithstanding ETFs). Therefore, there is a need to understand the 

behaviour of (investible) stocks, which may display different characteristics from indices.  The 

strong results for the price ratios (and the dividend-price and price-earnings ratios in particular) 

provide support for the present value model. This supports previous research that confirms this 

relation at the firm level more than at the market level. The supportive results for the Fed model 
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highlight the importance of the relation with interest rates.20 In developing this research, it is 

of interest to examine further predictor variables, including those linked more explicitly to the 

macroeconomy including, for example, output growth, unemployment and inflation. Further, 

expanding the range of market to include emerging (and frontier) markets, would provide a 

fuller understanding of stock return movements. In addition, a further extension would be to 

conduct a more detailed investigation into the observed cross-country differences in some 

results. While, we observe broad consistency in coefficient sign and significance for several 

ratios (for example, the DP, PE, CAPE and Fed measures), there is more distinction across 

countries in the dispersion and distribution variables. Our results suggest that such a distinction 

cannot be explained by differences between common and civil laws and IFRS adoption and 

thus leaves open as an avenue of further research to explain such differences.  

 

  

                                                           
20 For example, Harvey (1989) argues that the bond market can provide greater predictive power for output than 

the stock market. 



31 
 

References 

 

Amaya, D., Christoffersen, P., Jacobs, K., & Vasquez, A. (2015). Does realized skewness 

predict the cross-section of equity returns? Journal of Financial Economics, 118, 135-167. 

 

Ang, A. (2011). Predicting dividends in log-linear present value models. Pacific-Basin Finance 

Journal, 20, 151-171. 

 

Ang, A., & Bekaert, G. (2007). Stock return predictability: Is it there? Review of Financial 

Studies, 20, 651-707. 

 

Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of 

error-components models. Journal of Econometrics, 68, 29-51. 

 

Asness, C. (2003). Fight the Fed model: the relationship between future returns and stock and 

bond market yields. Journal of Portfolio Management, 30, 11–24. 

 

Bansal, R., & Yaron, A. (2004). Risks for the long run: A potential resolution of asset pricing 

puzzles. Journal of Finance, 59, 1481-1509. 

 

Beck, N., & Katz, J.N. (1995). What to do (and not to do) with time-series cross-section data. 

American Political Science Review, 89, 634-647. 

 

Bekaert, G., & Engstrom, E. (2010). Inflation and the stock market: Understanding the Fed 

model. Journal of Monetary Economics, 57, 278-294. 

 

Bulkley, G., & Taylor, N. (1996). A cross-section test of the present value model. Journal of 

Empirical Finance, 2, 295-306. 

 

Cameron, A.C., & Miller, D.L. (2015). A practitioner’s guide to cluster-robust inference. 

Journal of Human Resources, 50, 317-372. 

 

Campbell, J.Y. (2003). Consumption-based asset pricing. In G. Constantimidis, M. Harris, & 

R. Stulz (Eds), Handbook of the Economics of Finance (pp. 803-887). Amsterdam: North-

Holland. 

 

Campbell, J.Y., & Shiller, R.J. (1988). The dividend-price ratio and expectations of future 

dividends and discount factors. Review of Financial Studies, 1, 195-228. 

 

Campbell, J.Y., & Thompson, S.B. (2008). Predicting excess stock returns out of sample: Can 

anything beat the historical average? Review of Financial Studies, 21, 1509-1531. 

 

Chen, L. (2009). On the reversal of return and dividend growth predictability: A tale of two 

periods. Journal of Financial Economics, 92, 128-151. 

 

Cochrane, J. (2008). The dog that did not bark: A defense of return predictability. Review of 

Financial Studies, 21, 1533-1575. 

 

Cochrane, J. (2011). Discount rates: American finance association presidential address. 

Journal of Finance, 66, 1047-1108. 



32 
 

Cooper, I., & Priestley, R. (2009). Time-varying risk premiums and the output gap. Review of 

Financial Studies, 22, 2801–2833. 

 

Cooper, I., & Priestley, R. (2013). The world business cycle and expected returns. Review of 

Finance, 17, 1029–1064. 

 

Estrada, J. (2006). The Fed model: The bad, the worse and the ugly. IESE Business School 

working paper. 

 

Fama, E.F., & French, K.R. (1988). Dividend yields and expected stock returns. Journal of 

Financial Economics, 22, 3-25. 

 

Fama, E.F., & French, K.R. (1992). The cross-section of expected returns. Journal of Finance, 

47, 427-465. 

 

Farina, M.V. (1969). A Beginner's Guide to Successful Investing in the Stock Market. New 

Jersey: Investors’ Press.  

 

Goddard, J., McMillan, D.G., & Wilson, J. (2008). Dividends, prices and the present value 

model: Firm-level evidence. European Journal of Finance, 14, 195-210. 

 

Guidolin, M., McMillan, D.G., & Wohar, M.E. (2013). Time-Varying Stock Return 

Predictability: Evidence from US Sectors. Finance Research Letters, 10, 34-40. 

 

Hammerschmid, R., & Lohre, H. (2018). Regime shifts and stock return predictability. 

International Review of Economics and Finance, 56, 138-160. 

 

Harvey, C.R. (1989). Forecasts of economic growth from the bond and stock markets. 

Financial Analyst Journal, 45, 38-45. 

 

Henkel, S.J., Martin, J.S., & Nardari, F. (2011). Time-varying short-horizon predictability. 

Journal of Financial Economics, 99, 560-580. 

 

Henry, O.T., Olekalns, N., & Thong, J. (2004). Do stock market returns predict changes to 

output? Evidence from a nonlinear panel data model. Empirical Economics, 29, 527–540. 

 

Hjalmarsson, E. (2010). Predicting global stock returns. Journal of Financial and Quantitative 

Analysis, 45, 49-80. 

 

Jung, J., & Shiller, R.J. (2005). Samuelson’s dictum and the stock market. Economic Inquiry, 

43, 221-228. 

 

Kellard, N.M., Nankervis, J.C., & Papadimitriou, F.I. (2010). Predicting the equity premium 

with dividend ratios: Reconciling the evidence. Journal of Empirical Finance, 17, 539-551. 

 

Lamont, O. (1998). Earnings and expected returns. Journal of Finance, 53, 1563-1587. 

 

Laopodis, N.T. (2016). Industry returns, market returns and economic fundamentals: Evidence 

for the United States. Economic Modelling, 53, 89-106. 

 



33 
 

La Porta, R., Lopez-deSilanes, F., Shleifer, A., & Vishny, R.W. (1999). Investor Protection: 

Origins, Consequences, and Reform. NBER Working Paper No. 7428. 

 

Lettau, M., & Van Nieuwerburgh, S. (2008). Reconciling the return predictability evidence. 

Review of Financial Studies, 21, 1607-1652. 

 

Lewellen, J. (2004). Predicting returns with financial ratios. Journal of Financial Economics, 

74, 209-235. 

 

Maio, P. (2013). The Fed model and the predictability of stock returns. Review of Finance, 17, 

1489-1533. 

 

Maio, P. (2016). Cross-sectional return dispersion and the equity premium. Journal of 

Financial Markets, 29, 87-109. 

 

Mauro, P. (2003). Stock returns and output growth in emerging and advanced economies. 

Journal of Development Economics, 71, 129-153. 

 

McMillan, D.G. (2003). Non-linear predictability of UK stock market returns. Oxford Bulletin 

of Economics and Statistics, 65, 557-573. 

 

McMillan, D.G. (2010). Present value model, bubbles and returns predictability: Sector‐level 

evidence. Journal of Business Finance and Accounting, 37, 668-686. 

 

McMillan, D.G. (2012). Does non-linearity help us understand, model and forecast UK stock 

and bond returns: evidence from the BEYR. International Review of Applied Economics, 26, 

125-143. 

 

McMillan, D.G. (2013). Consumption and stock prices: Evidence from a small international 

panel. Journal of Macroeconomics, 36, 76-88. 

 

McMillan, D.G. (2014a). Modelling time-variation in the stock return-dividend yield predictive 

equation. Financial Markets, Institutions and Instruments, 23, 273-302. 

 

McMillan, D.G. (2014b). Stock returns, dividend growth and consumption growth 

predictability: Variation across markets and time. International Review of Financial Analysis, 

35, 90-101. 

 

McMillan, D.G. (2015). Time-varying predictability for stock returns, dividend growth and 

consumption growth. International Journal of Finance and Economics, 20, 362–373. 

 

McMillan, D.G., & Wohar, M.E. (2010). Stock return predictability and dividend-price ratio: 

A nonlinear approach. International Journal of Finance and Economics, 15, 351-365. 

 

McMillan, D.G., & Wohar, M.E. (2013). A panel analysis of the stock return dividend yield 

relation: predicting returns and dividend growth. Manchester School, 81, 386-400. 

 

Moon, H.R., & Phillips. P.C.B. (2000). Estimation of autoregressive roots near unity using 

panel data. Econometric Theory, 16, 927-998. 

 



34 
 

Nasseh, A., & Strauss, J. (2004). Stock prices and the dividend discount model: Did their 

relation break down in the 1990s? Quarterly Review of Economics and Finance, 44, 191-207. 

 

Nelson, C.R., & Kim, M.J. (1993). Predictable stock returns: the role of small sample bias. 

Journal of Finance, 48, 641-661. 

 

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49, 1417-1426. 

 

Onali, E., Ginesti, G., & Vasilakis, C. (2017). How should we estimate value-relevance 

models? Insights from European data. British Accounting Review, 49, 460-473. 

 

Park, C. (2010). When does the dividend-price ratio predict stock returns? Journal of Empirical 

Finance, 17, 81-101. 

 

Patelis, A.D. (1997). Stock return predictability and the role of monetary policy. Journal of 

Finance, 52, 1951-1972. 

 

Paye, B., & Timmermann, A. (2006). Instability of return prediction models. Journal of 

Empirical Finance, 13, 274–315. 

 

Pesaran, M.H. (2006) Estimation and inference in large heterogeneous panels with a 

multifactor error structure. Econometrica, 74, 967-1012. 

 

Petersen, M.A. (2009). Estimating standard errors in finance panel data sets: Comparing 

approaches. Review of Financial Studies, 22, 435-480., 

 

Psaradakis, Z., Sola, M., & Spagnolo, F. (2004). On Markov switching error-correction models, 

with an application to stock prices and dividends. Journal of Applied Econometrics, 19, 68-88. 

 

Rangvid, J. (2006). Output and expected returns. Journal of Financial Economics, 81, 595-

624. 

 

Rangvid, J., Schmeling, M., & Schrimpf, A. (2014). Dividend predictability around the world. 

Journal of Financial and Quantitative Analysis, 49, 1255-1277.  

 

Stambaugh, R. (1999). Predictive regressions. Journal of Financial Economics, 54, 375-421. 

 

Sul, D., Phillips, P.C.B., & Choi, C.Y. (2005). Prewhitening bias in HAC estimation. Oxford 

Bulletin of Economics and Statistics, 67, 517-546. 

 

Tay, A.S. (2007). Mixing frequencies: Stock returns as a predictor of real output growth. 

Discussion Paper, SMU. 

 

Timmermann, A. (2008). Elusive return predictability. International Journal of Forecasting, 

24, 1-18. 

 

Thomas, J., & Zhang, F. (2008). Don’t fight the Fed model! School of Management, Yale 

University, Working Paper. 

 



35 
 

Vuolteenaho, T. (2002). What drives firm-level stock returns? Journal of Finance, 57, 233-

264. 

 

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity 

premium prediction. Review of Financial Studies, 21, 1455-1508. 

  



36 
 

Table 1. Predictor Variable Definitions and Expected Coefficient Signs 

 

Predictor Variable Definition Expected Sign 

Dividend-Price Ratio (DP) The latest announced 

dividend divided by the 

latest (current) price 

Positive  

Inverted Price-Earnings 

Ratio (PE) 

The latest announced 

earning divided by the latest 

(current) price 

Positive 

Inverted Cyclically Adjusted 

Price-Earnings Ratio 

(CAPE) 

Trailing five year moving 

average of announced 

earning divided by the latest 

(current) price 

Positive 

Payout, or Dividend to 

Earnings, Ratio (DE) 

The latest announced 

dividend divided by the 

latest announced earnings 

Positive  

Price to Earnings Growth 

Ratio (PEG) 

The PE ratio dividend by the 

latest announced earnings 

growth 

Negative 

The Fed Ratio (Fed) The earnings yield (latest 

announced earnings 

dividend by the current 

price) dividend by the 10-

year Treasury bond yield 

Positive 

Returns Dispersion (RD) The cross-sectional standard 

deviation for each year in 

the sample 

Positive 

Maximum minus Minimum 

Stock Returns (Ma-Mi) 

The difference in the cross-

sectional maximum and 

minimum stock return 

values 

Positive 

Absolute Median Deviation The cross-sectional median 

value of the absolute 

deviation of stock returns 

from their median value 

Positive 

Non-Parametric, or Old, 

Skewness measure (Sk NP) 

The difference between the 

mean and median values 

divided by the standard 

deviation 

Negative 

Pearson’s Moment 

Coefficient of Skewness 

measure 

The third conditional 

standardised moment; ratio 

of the third cumulant to the 

1.5th power of the second 

cumulant 

Negative 

Pearson’s Moment 

Coefficient of Kurtosis 

measure 

The fourth conditional 

standardised moment. 

Positive 
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Table 2. Summary Statistics for Stock Returns 

 

Market Mean Standard 

Deviation 

Skewness Kurtosis Jarque-Bera 

Australia 0.031a 0.614 -0.197 3.053 37.29a 

Canada 0.094a 0.486 -0.256 3.574 88.50a 

France 0.053a 0.374 -0.597 3.866 64.36a 

Germany 0.056a 0.364 -0.494 3.655 32.28a 

Hong Kong 0.094a 0.447 -0.188 3.153 5.14c 

Italy -0.025b 0.451 -0.236 3.198 46.55a 

Japan -0.001 0.402 -0.099 3.450 40.96a 

South Korea 0.051a 0.526 -0.043 2.762 7.85b 

UK 0.057a 0.418 -0.369 3.735 414.41a 

US 0.099a 0.381 -0.385 3.918 517.19a 

Notes: Entries are summary statistics for stock returns within each country. The superscript 

letters a, b, c refer to 1%, 5%, and 10% statistical significance level respectively. 
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Table 3. GMM AR(1) Parameter of Financial Ratios 
 

 Aus Can Fra Ger HK Ity Jp S. Kor UK US 

DP 0.164a 

(5.84) 

0.338a 

(9.38) 

0.474a 

(6.98) 

0.477a 

(5.20) 

0.216a 

(4.01) 

0.228a 

(6.01) 

0.516a 

(8.27) 

0.292a 

(10.96) 

0.217a 

(5.99) 

0.113b 

(2.04) 

PE 0.013 

(0.82) 

0.045 

(1.05) 

0.195a 

(5.06) 

0.286a 

(6.79) 

0.317a 

(4.55) 

0.049b 

(2.55) 

0.170a 

(5.52) 

0.004 

(0.40) 

0.293a 

(3.93) 

0.029 

(1.18) 

CAPE 0.177a 

(4.27) 

0.454a 

(17.56) 

0.535a 

(14.28) 

0.784a 

(4.86) 

0.686a 

(32.35) 

0.492a 

(7.10) 

0.809a 

(4.64) 

0.496a 

(13.67) 

0.290a 

(13.89) 

0.491a 

(16.48) 

DE 0.047 

(1.40) 

0.034 

(1.13) 

0.084b 

(2.12) 

0.092a 

(8.60) 

0.178a 

(3.55) 

-0.004 

(-0.12) 

0.002 

(0.82) 

0.011a 

(2.91) 

0.018 

(0.28) 

0.001 

(0.05) 

PEG 0.015 

(1.42) 

-0.077 

(-0.86) 

0.021 

(0.54) 

-0.003 

(-0.11) 

-0.027 

(-0.84) 

-0.236a 

(-4.37) 

0.004a 

(5.83) 

-0.002 

(-0.72) 

0.015 

(0.54) 

0.041a 

(2.68) 

Fed 0.006 

(0.45) 

0.054 

(1.07) 

0.298a 

(5.25) 

0.619a 

(10.93) 

0.087a 

(3.49) 

0.044 

(1.54) 

0.326a 

(4.79) 

-0.004 

(-0.67) 

0.159a 

(4.79) 

0.008 

(0.47) 

RD 0.361a 

(2.58) 

0.597a 

(4.64) 

0.480a 

(3.47) 

0.374a 

(2.59) 

0.339a 

(8.52) 

0.186 

(1.58) 

0.213b 

(2.18) 

0.608a 

(4.64) 

0.384a 

(3.86) 

0.718a 

(6.38) 

Ma-Mi -0.136 

(-1.13) 

0.207 

(1.48) 

0.291c 

(1.86) 

0.217c 

(1.86) 

-0.071 

(1.03) 

0.131 

(1.02) 

0.273c 

(1.66) 

0.175a 

(4.62) 

0.133b 

(2.19) 

0.607a 

(4.21) 

AMD 0.210b 

(2.56) 

0.567a 

(5.23) 

0.356a 

(5.41) 

0.316c 

(1.79) 

0.280c 

(1.67) 

0.064 

(0.35) 

0.025 

(1.32) 

0.382b 

(1.98) 

0.524a 

(4.73) 

0.654a 

(4.55) 

Sk NP -0.087b 

(2.13) 

0.085 

(0.65) 

-0.142c 

(-1.87) 

0.146 

(1.54) 

-0.110 

(-0.83) 

0.481b 

(1.98) 

-0.119 

(-0.65) 

0.239 

(1.56) 

-0.258b 

(-2.04) 

-0.261b 

(-2.48) 

Skewness 0.448a 

(3.25) 

0.792a 

(3.86) 

-0.025 

(-1.01) 

0.508a 

(5.10) 

0.680b 

(2.05) 

0.810a 

(3.54) 

0.581a 

(3.94) 

0.435b 

(2.35) 

0.492b 

(2.01) 

0.360a 

(2.95) 

Kurtosis 0.520a 

(4.15) 

0.780a 

(5.28) 

0.482a 

(4.38) 

0.709a 

(3.05) 

0.478b 

(2.17) 

0.912a 

(5.36) 

0.601a 

(4.24) 

0.483a 

(3.67) 

0.396a 

(3.06) 

0.309a 

(3.01) 

Notes: Entries are the AR(1) coefficient (with t-statistic) for each predictive variable listed in Table 1. The results are based on a GMM dynamic 

panel regression for each country. The superscript letters a, b, c refer to 1%, 5%, and 10% statistical significance level respectively. 
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Table 4. Panel Regressions: Ratios 

 

 DP PE CAPE 

 FE RD RD-Adj # Obs FE RD RD-Adj # Obs FE RD RD-Adj # Obs 

Australia 0.396b 

(2.44) 

0.129b 

(2.09) 

0.222b 

(2.40) 

5853 0.091b 

(1.98) 

0.072c 

(1.84) 

0.082c 

(1.89) 

5562 0.059a 

(2.65) 

0.044a 

(2.71) 

0.047a 

(2.94) 

4152 

Canada 0.093 

(0.33) 

-0.108 

(-0.83) 

0.353b 

(2.53) 

3651 0.361b 

(2.26) 

0.342b 

(2.19) 

0.403b 

(2.34) 

3218 0.990a 

(3.07) 

0.628a 

(3.04) 

0.805a 

(3.21) 

2569 

France 0.170b 

(2.02) 

0.031 

(0.44) 

0.171b 

(2.37) 

716 0.114a 

(4.30) 

0.064a 

(3.59) 

0.097a 

(6.32) 

709 0.139a 

(4.66) 

0.048a 

(3.01) 

0.093a 

(4.62) 

657 

Germany 0.199a 

(2.92) 

0.066 

(1.06) 

0.220a 

(3.47) 

551 0.050b 

(2.30) 

0.035c 

(1.90) 

0.082a 

(4.53) 

548 0.059 

(1.51) 

0.012 

(0.42) 

0.061 

(1.37) 

509 

Hong 

Kong 

0.616a 

(3.13) 

0.264a 

(2.88) 

0.370a 

(4.78) 

754 0.149b 

(2.32) 

0.108b 

(2.41) 

0.123a 

(3.25) 

735 0.185a 

(3.22) 

0.099a 

(3.50) 

0.189a 

(7.33) 

616 

Italy 0.089a 

(2.59) 

0.075b 

(2.20) 

0.110a 

(3.24) 

4264 0.118b 

(2.33) 

0.078 

(1.51) 

0.147b 

(2.36) 

4138 0.049 

(0.65) 

-0.020 

(-0.20) 

0.052 

(0.46) 

3365 

Japan 0.066a 

(5.30) 

0.034a 

(4.49) 

0.058a 

(5.38) 

4159 0.116a 

(8.46) 

0.076a 

(6.97) 

0.127a 

(9.10) 

4142 0.160a 

(7.13) 

0.059a 

(4.07) 

0.137a 

(6.52) 

4029 

South 

Korea 

0.038a 

(7.27) 

0.027a 

(6.82) 

0.032a 

(7.90) 

3080 0.019b 

(2.45) 

0.009 

(1.64) 

0.009c 

(1.66) 

3013 0.070b 

(2.56) 

0.019 

(1.30) 

0.021 

(1.35) 

2643 

UK 0.139a 

(4.22) 

0.096a 

(4.29) 

0.107a 

(4.62) 

9179 0.378b 

(2.47) 

0.227b 

(2.17) 

0.260b 

(2.31) 

8928 0.239c 

(1.81) 

0.123c 

(1.65) 

0.141c 

(1.77) 

7751 

US 0.177a 

(6.23) 

0.039b 

(2.01) 

0.063b 

(1.98) 

8722 0.059a 

(2.68) 

0.034b 

(2.22) 

0.050a 

(2.71) 

8619 0.083b 

(2.18) 

0.031a 

(2.88) 

0.064b 

(2.24) 

7894 

Notes: the entries are coefficient values (and t-statistics) from a pool regression as given by equation (1) for each country. The standard errors 

are clustered at the firm-level. The predictor variables are DP (dividend-price ratio), PE (price-earnings ratio) and CAPE (cyclically adjusted 

PE ratio). In reporting the results, these later two are inverted for the sake of consistency in understanding the coefficient signs. The estimation 

methods are the fixed effects (FE), the recursive de-meaned (RD) and orthogonalised and then de-meaned (RD-Adj) approaches respectively. 

The superscript letters a, b, c refer to 1%, 5%, and 10% statistical significance level respectively. 
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Table 5. Panel Regressions: Further Ratios 

 

 DE PEG Fed 

 FE RD RD-Adj # Obs FE RD RD-Adj # Obs FE RD RD-Adj # Obs 

Australia -0.004 

(-1.49) 

-0.004b 

(-2.31) 

-0.005b 

(-2.53) 

3931 -0.002 

(-0.40) 

-0.001 

(-0.47) 

-0.001 

(-0.51) 

3347 0.059a 

(2.62) 

0.043a 

(3.52) 

0.046b 

(2.44) 

5562 

Canada -0.001 

(-0.30) 

-0.004 

(-1.24) 

-0.002 

(-0.87) 

2586 -0.001 

(-0.02) 

0.001 

(0.18) 

0.001 

(0.19) 

2402 0.014a 

(3.38) 

0.013a 

(3.17) 

0.016a 

(3.76) 

3218 

France -0.005 

(-1.05) 

-0.007 

(-0.99) 

-0.006 

(-0.87) 

637 0.006 

(-0.32) 

0.001 

(0.02) 

-0.001 

(-1.48) 

581 0.045a 

(4.77) 

0.025a 

(3.98) 

0.039a 

(6.91) 

709 

Germany -0.010 

(-0.93) 

-0.015 

(-1.63) 

-0.015c 

(-1.66) 

505 0.003b 

(2.49) 

0.003a 

(2.75) 

0.003a 

(3.19) 

462 0.021a 

(4.65) 

0.011a 

(2.62) 

0.014a 

(3.40) 

548 

Hong 

Kong 

-0.015 

(-0.23) 

-0.033 

(-0.62) 

-0.048 

(-0.87) 

710 -0.005a 

(-2.68) 

-0.003 

(-1.60) 

-0.003 

(-1.57) 

620 0.012a 

(5.29) 

0.018a 

(5.58) 

0.014a 

(6.37) 

636 

Italy 0.003 

(0.50) 

-0.002 

(-0.42) 

-0.002 

(-0.43) 

2842 -0.001a 

(-5.12) 

-0.001a 

(-3.73) 

-0.001a 

(-3.63) 

2361 0.008a 

(3.30) 

0.005b 

(2.04) 

0.008a 

(2.60) 

4138 

Japan -0.003a 

(-4.81) 

-0.002a 

(-4.52) 

-0.002a 

(-4.39) 

3423 -0.002a 

(-9.00) 

-0.002a 

(-8.36) 

-0.002a 

(-8.33) 

3388 0.016a 

(7.51) 

0.011a 

(7.24) 

0.012a 

(7.45) 

4142 

South 

Korea 

0.015b 

(2.04) 

0.010 

(1.49) 

0.015b 

(1.99) 

2585 0.003c 

(1.69) 

0.002c 

(1.70) 

0.003b 

(2.53) 

2462 0.010a 

(2.82) 

0.053 

(1.30) 

0.066 

(1.48) 

2321 

UK -0.001 

(-0.59) 

-0.001 

(-1.14) 

-0.001 

(-1.04) 

8157 0.001 

(0.94) 

0.001 

(1.45) 

0.001 

(1.52) 

7788 0.013a 

(2.71) 

0.008b 

(2.53) 

0.009a 

(2.60) 

8928 

US -0.002c 

(-1.72) 

-0.002b 

(-1.98) 

-0.003b 

(-2.14) 

7857 0.001 

(0.18) 

0.001 

(0.11) 

0.001 

(0.06) 

7630 0.017b 

(2.41) 

0.010b 

(2.02) 

0.014b 

(2.27) 

8619 

Notes: the entries are coefficient values (and t-statistics) from a pool model as given by equation (1) for each country. The standard errors are 

clustered at the firm-level. The predictor variables are DE (dividend-earnings ratio), PEG (PE ratio divided by earnings growth) and Fed (equity 

yield divided by the 10-year bond yield). The estimation methods are the fixed effects (FE), the recursive de-meaned (RD) and orthogonalised 

and then de-meaned (RD-Adj) approaches respectively. The superscript letters a, b, c refer to 1%, 5%, and 10% statistical significance level 

respectively. 
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Table 6. Panel Regressions: Dispersion 

 

 RD Max-Min Abs Median Deviation 

 FE RD RD-Adj # Obs FE RD RD-Adj # Obs FE RD RD-Adj # Obs 

Australia 0.969a 

(9.98) 

0.803a 

(8.77) 

1.115a 

(12.34) 

6076 0.115a 

(14.97) 

0.107a 

(14.73) 

0.095a 

(13.15) 

6076 2.088a 

(14.20) 

1.756a 

(12.64) 

2.231a 

(16.69) 

6076 

Canada 0.910a 

(11.98) 

0.702a 

(9.98) 

0.728a 

(10.35) 

3676 0.037a 

(5.33) 

0.034a 

(5.19) 

0.033a 

(4.95) 

3676 0.557a 

(3.93) 

0.229c 

(1.72) 

0.799a 

(6.03) 

3676 

France 0.674a 

(3.07) 

0.666a 

(3.14) 

0.996a 

(4.72) 

697 0.031 

(0.84) 

0.052 

(1.46) 

0.069b 

(1.97) 

697 1.082a 

(4.11) 

0.795a 

(3.13) 

1.156a 

(4.61) 

697 

Germany 0.099 

(0.46) 

-0.099 

(-0.47) 

0.621a 

(2.97) 

539 0.174a 

(3.54) 

0.119b 

(2.52) 

0.226a 

(4.81) 

539 -0.924a 

(-3.91) 

-1.012a 

(-4.32) 

-0.497b 

(-2.11) 

539 

Hong 

Kong 

0.316 

(1.63) 

0.087 

(0.49) 

0.074 

(0.42) 

756 0.074a 

(2.67) 

0.045c 

(1.73) 

0.049c 

(1.86) 

756 0.685a 

(2.99) 

0.436b 

(2.07) 

0.455b 

(2.16) 

756 

Italy 0.964a 

(11.21) 

0.289a 

(3.76) 

0.885a 

(11.52) 

4351 0.045a 

(9.94) 

0.004 

(0.98) 

0.021a 

(5.35) 

4351 0.864a 

(5.87) 

0.562a 

(3.96) 

0.743a 

(5.26) 

4351 

Japan 0.169a 

(3.02) 

0.161a 

(2.98) 

0.192a 

(3.55) 

3994 0.034a 

(4.42) 

0.021a 

(2.82) 

0.026a 

(3.44) 

394 0.511a 

(6.99) 

0.434a 

(6.15) 

0.445a 

(6.30) 

3994 

South 

Korea 

-0.107 

(-1.04) 

-0.396a 

(-4.03) 

-0.403a 

(-3.95) 

3060 -0.018 

(-1.42) 

-0.052a 

(-4.15) 

-0.051a 

(-3.90) 

3060 -0.253b 

(-1.99) 

-0.551a 

(-4.50) 

-0.527a 

(-4.14) 

3060 

UK 0.659a 

(14.41) 

0.667a 

(15.06) 

0.909a 

(20.88) 

9146 0.087a 

(15.51) 

0.087a 

(16.12) 

0.083a 

(15.54) 

9146 0.195b 

(2.30) 

0.210b 

(2.57) 

0.645a 

(7.91) 

9146 

US -0.228a 

(-7.14) 

-0.213a 

(-6.67) 

0.098a 

(3.07) 

8499 -0.047a 

(-14.84) 

-0.044a 

(-14.35) 

-0.021a 

(-6.69) 

8499 -0.710a 

(-10.41) 

-0.676a 

(-9.91) 

0.012 

(0.17) 

8499 

Notes: the entries are coefficient values (and t-statistics) from a pool model as given by equation (1) for each country. The standard errors are 

clustered at the firm-level. The predictor variables are RD (cross-sectional returns dispersion), Max-Min (the cross-sectional difference between 

the maximum and minimum returns) and Abs Median Deviation (absolute median deviation). The estimation methods are the fixed effects (FE), 

the recursive de-meaned (RD) and orthogonalised and then de-meaned (RD-Adj) approaches respectively. The superscript letters a, b, c refer to 

1%, 5%, and 10% statistical significance level respectively. 
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Table 7. Panel Regressions: Skew / Kurt 

 

 Skew NP Skewness Kurtosis 

 FE RD RD-Adj # Obs FE RD RD-Adj # Obs FE RD RD-Adj # Obs 

Australia -0.892a 

(-13.88) 

-0.766a 

(-12.50) 

-0.692a 

(-11.26) 

6076 -0.173a 

(-13.33) 

-0.146a 

(-12.35) 

-0.179a 

(-15.23) 

6076 0.005c 

(1.82) 

0.003 

(1.15) 

0.003 

(1.32) 

6076 

Canada 0.110b 

(2.06) 

0.170a 

(3.31) 

0.103b 

(2.02) 

3676 -0.029a 

(-3.46) 

-0.018b 

(-2.16) 

-0.025a 

(-6.19) 

3676 -0.003c 

(-1.72) 

-0.001 

(-0.54) 

-0.005a 

(-3.41) 

3676 

France 0.026 

(0.35) 

0.095 

(1.32) 

0.099 

(1.38) 

697 -0.217a 

(-7.70) 

-0.186a 

(-6.83) 

-0.182a 

(-6.69) 

697 -0.085a 

(-9.40) 

-0.069a 

(-7.97) 

-0.062a 

(-7.15) 

697 

Germany -0.020 

(-0.27) 

0.057 

(0.81) 

-0.011 

(-1.53) 

539 -0.054a 

(-2.66) 

-0.030c 

(-1.78) 

-0.060a 

(-3.59) 

539 0.035a 

(3.16) 

0.024b 

(2.33) 

0.038a 

(3.65) 

539 

Hong 

Kong 

-0.154 

(-1.51) 

-0.158 

(-1.63) 

-0.177c 

(-1.86) 

756 -0.064a 

(-3.75) 

-0.080a 

(-5.14) 

-0.121a 

(-8.05) 

756 0.016c 

(1.94) 

0.005 

(0.67) 

-0.012 

(-1.60) 

756 

Italy 0.178a 

(3.69) 

0.297a 

(6.27) 

-0.256a 

(-5.49) 

4351 0.024a 

(2.75) 

0.042a 

(4.95) 

-0.080a 

(-9.61) 

4351 0.012a 

(6.16) 

-0.014a 

(-8.96) 

-0.014a 

(-9.02) 

4351 

Japan 0.298a 

(4.20) 

0.378a 

(5.44) 

0.554a 

(7.99) 

3994 -0.059a 

(-8.04) 

-0.032a 

(-4.63) 

-0.057a 

(-8.09) 

3994 0.006a 

(3.22) 

0.008a 

(4.43) 

0.004b 

(2.37) 

3994 

South 

Korea 

-1.231a 

(-9.83) 

-1.035a 

(-8.54) 

-1.663a 

(-13.36) 

3060 -0.440a 

(-21.86) 

-0.413a 

(-21.28) 

-0.380a 

(-18.94) 

3060 -0.056a 

(-11.66) 

-0.057a 

(-12.34) 

-0.033a 

(-6.90) 

3060 

UK -0.141a 

(-3.50) 

-0.139a 

(-3.56) 

0.229a 

(5.87) 

9146 -0.127 

(-20.80) 

-0.124a 

(-21.29) 

-0.124a 

(-21.44) 

9146 0.007a 

(5.38) 

0.008a 

(5.78) 

0.007a 

(5.21) 

9146 

US -0.402a 

(-10.01) 

-0.300a 

(-7.72) 

-0.022 

(-0.58) 

8499 -0.075a 

(-12.95) 

-0.048a 

(-8.96) 

-0.077a 

(-14.44) 

8499 0.044a 

(17.64) 

0.036a 

(15.67) 

0.036a 

(15.66) 

8499 

Notes: the entries are coefficient values (and t-statistics) from a pool model as given by equation (1) for each country. The standard errors are 

clustered at the firm-level. The predictor variables are Skew NP (non-parametric skewness), Skewness (Pearson’s measure) and Kurtosis. The 

estimation methods are the fixed effects (FE), the recursive de-meaned (RD) and orthogonalised and then de-meaned (RD-Adj) approaches 

respectively. The superscript letters a, b, c refer to 1%, 5%, and 10% statistical significance level respectively. 
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Table 8. Cross-Section Variation – The Percentage of Positive Values 

 

 Aus Can Fra Ger HK Ity Jpy SK UK US Ave. 

DP 62 66 85 87 82 63 92 80 84 76 78 

EP 65 60 75 67 90 57 79 77 81 75 73 

CAPE 75 76 85 83 90 70 91 90 90 85 84 

DE 43 43 50 67 48 52 46 54 34 47 48 

PEG 56 50 43 37 56 46 50 48 49 56 49 

Fed 69 61 83 83 76 58 88 68 85 74 75 

DISP 68 86 73 43 72 80 68 47 74 35 65 

Ma-Mi 78 63 50 80 72 75 73 48 74 21 63 

AMD 73 61 70 23 78 68 69 46 51 31 57 

Skew NP 20 61 58 50 36 57 66 23 42 35 49 

Skewness 19 39 8 20 34 59 28 11 14 25 26 

Kurtosis 51 44 5 77 56 67 67 24 63 84 54 

Notes: Entries are the percentage of positive values for each country and predictor variable for the individual firm regression given by equation 

(8).  
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Table 9 – Panel Regressions: All Predictors Including Financial Crisis Dummy 

 
 DP EP CAPE DE PEG Fed RD Max-Min AMD Skew NP Skew Kurt 

 Australia 

β 0.688b 

(2.01) 

0.495b 

(2.32) 

0.052a 

(5.01) 

-0.005b 

(1.98) 

0.002 

(0.51) 

0.021b 

(2.05) 

0.082 

(0.78) 

0.002 

(0.21) 

0.449b 

(2.49) 

-0.407a 

(-6.89) 

-0.081a 

(-8.07) 

0.003 

(1.06) 

β * FC 0.440a 

(3.66) 

0.384a 

(5.89) 

-0.030 

(-1.24) 

-0.003 

(-0.60) 

-0.001b 

(-2.38) 

0.189a 

(6.42) 

4.012a 

(21.77) 

0.418a 

(25.92) 

3.747a 

(15.33) 

-1.252a 

(-9.84) 

-0.867a 

(-29.95) 

-0.051b 

(-2.54) 

 Canada 

β 0.074b 

(2.28) 

0.219c 

(1.92) 

0.388a 

(3.09) 

-0.005 

(-1.35) 

0.004 

(0.19) 

0.079b 

(2.56) 

0.418a 

(5.22) 

0.049a 

(7.65) 

-0.049 

(-0.31) 

0.181a 

(3.27) 

0.049a 

(4.82) 

0.010a 

(5.09) 

β * FC 0.349a 

(2.97) 

0.777a 

(3.29) 

0.826 

(2.44) 

0.010c 

(1.70) 

-0.001 

(-0.94) 

0.253a 

(4.82) 

3.422a 

(12.23) 

-0.828b 

(-20.65) 

5.817a 

(14.81) 

-1.673a 

(-9.01) 

-0.353a 

(-15.34) 

-0.054a 

(-10.58) 

 France 

β 0.063b 

(2.02) 

0.072a 

(2.91) 

0.062a 

(3.27) 

-0.009 

(-0.82) 

-0.004 

(-1.20) 

0.023a 

(3.23) 

0.319 

(1.44) 

0.038 

(1.04) 

-0.419 

(-1.18) 

-0.045 

(-0.65) 

0.215a 

(4.65) 

-0.003a 

(-3.39) 

β * FC 0.628a 

(6.36) 

0.091b 

(2.23) 

0.183a 

(2.79) 

-0.001 

(-0.01) 

0.004 

(1.28) 

0.037a 

(2.70) 

4.319a 

(6.39) 

0.345c 

(1.93) 

7.395a 

(8.52) 

0.115b 

(2.15) 

-0.610a 

(-10.01) 

-0.157a 

(-6.85) 

 Germany 

β 0.106c 

(1.95) 

0.055a 

(2.98) 

0.027 

(1.16) 

-0.019c 

(-1.67) 

0.003a 

(2.68) 

0.010c 

(1.84) 

-0.083 

(-1.28) 

0.077 

(1.32) 

-1.507a 

(4.26) 

0.255b 

(2.37) 

-0.008 

(-0.43) 

0.005 

(0.55) 

β * FC 0.612a 

(3.79) 

0.039 

(0.93) 

0.314a 

(4.33) 

0.022 

(0.39) 

-0.014 

(-1.45) 

0.022c 

(1.87) 

1.552a 

(3.62) 

0.304a 

(3.79) 

3.236a 

(5.38) 

-0.777a 

(3.73) 

-0.451a 

(-9.53) 

0.184a 

(8.32) 

 Hong Kong 

β 0.267a 

(3.53) 

0.096a 

(3.81) 

0.120a 

(3.98) 

-0.028 

(-0.52) 

-0.001 

(-1.37) 

0.008b 

(2.29) 

-0.063a 

(-4.21) 

-0.096a 

(-3.25) 

-0.373 

(-1.46) 

-0.171 

(-1.08) 

-0.043b 

(-2.34) 

0.014c 

(1.88) 

β * FC 0.365b 

(2.23) 

0.131b 

(2.37) 

0.478a 

(5.76) 

-0.186 

(-1.04) 

-0.004b 

(-2.34) 

0.032a 

(4.30) 

0.011a 

(8.71) 

0.152a 

(15.82) 

8.889a 

(9.61) 

-0.039 

(-0.06) 

-0.484a 

(-10.49) 

-0.417a 

(-4.09) 

 Italy 

β 0.089a 

(6.02) 

0.043b 

(2.01) 

-0.014 

(-0.52) 

-0.007 

(-0.94) 

-0.001 

(-0.71) 

0.003c 

(1.87) 

0.225b 

(2.07) 

0.003 

(0.49) 

-1.322a 

(-7.24) 

-0.383a 

(-6.84) 

-0.071a 

(5.87) 

-0.024a 

(12.38) 

β * FC 0.063b 

(2.42) 

0.343a 

(4.27) 

0.167b 

(2.20) 

-0.005 

(-0.24) 

0.003 

(0.13) 

0.014a 

(3.84) 

1.488a 

(9.30) 

0.100a 

(9.49) 

4.879a 

(17.32) 

0.929a 

(5.38) 

-0.689a 

(-11.04) 

0.149a 

(9.41) 

 Japan 

β 0.040a 

(7.84) 

0.106a 

(7.95) 

0.094a 

(7.05) 

-0.007b 

(1.97) 

-0.002 

(-1.60) 

0.011a 

(8.45) 

-0.007 

(-0.14) 

0.016a 

(5.68) 

0.060 

(0.64) 

0.459a 

(6.65) 

-0.036a 

(-5.34) 

-0.001 

(-0.08) 

β * FC 0.106a 0.101a 0.312a 0.006 -0.001 0.013a 2.259a 0.289a 2.253a 2.708a -0.379a -0.450a 
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(9.25) (4.11) (9.25) (1.60) (-0.13) (4.74) (12.13) (8.34) (11.09) (3.41) (-13.77) (-13.55) 

 South Korea 

β 0.033a 

(8.85) 

0.006 

(1.62) 

0.017 

(1.02) 

0.010b 

(2.18) 

0.001a 

(2.64) 

0.016 

(1.34) 

-0.190c 

(-1.79) 

-0.059a 

(-3.99) 

-0.063 

(-0.45) 

-1.350a 

(-10.98) 

-0.365a 

(-18.28) 

-0.034a 

(-7.42) 

β * FC -0.009 

(-0.87) 

0.161a 

(6.63) 

0.091a 

(4.21) 

0.031 

(1.55) 

0.013 

(0.98) 

0.838a 

(6.84) 

-4.642a 

(-9.70) 

0.148c 

(1.82) 

-4.757a 

(-10.76) 

-3.212a 

(-8.65) 

-0.837a 

(-10.16) 

-0.003 

(-0.11) 

 UK 

β 0.168a 

(4.99) 

0.152a 

(3.91) 

0.074a 

(3.52) 

-0.001 

(-0.65) 

0.001 

(0.55) 

0.008a 

(7.65) 

0.404a 

(7.11) 

0.014b 

(2.57) 

0.381a 

(3.23) 

0.277a 

(6.05) 

-0.095a 

(-16.08) 

0.002 

(1.35) 

β * FC 0.059a 

(3.47) 

0.179a 

(3.52) 

0.272a 

(6.53) 

0.050b 

(2.16) 

0.001b 

(2.35) 

0.027c 

(1.83) 

1.574a 

(17.28) 

0.458a 

(3.85) 

2.171a 

(9.77) 

-0.340a 

(3.85) 

-0.392a 

(-8.35) 

0.058a 

(4.38) 

 US 

β 0.019c 

(1.75) 

0.055a 

(5.47) 

0.052a 

(6.80) 

-0.004b 

(1.98) 

-0.001 

(-0.74) 

0.012a 

(7.01) 

0.099b 

(2.41) 

0.001 

(0.17) 

0.008 

(0.89) 

0.014b 

(2.49) 

-0.009 

(-1.54) 

0.004 

(1.54) 

β * FC 0.143a 

(5.14) 

0.011 

(0.91) 

0.031b 

(2.52) 

0.003 

(1.10) 

0.001a 

(3.34) 

0.015a 

(3.69) 

0.089 

(0.86) 

-0.090a 

(-9.77) 

0.090 

(0.44) 

-0.186a 

(-8.02) 

-0.362a 

(-28.53) 

0.247a 

(18.35) 

Notes: the entries are the coefficient values (and t-statistics) from the panel regression of equation (1) using the cross-section adjusted forward recursively demeaned (RD-

Adj) approach. In addition, we include a dummy variable for the financial crisis (FC, 2007-2009). The superscript letters a, b, c refer to 1%, 5%, and 10% statistical 

significance level respectively. 
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Table 10. Time-Variation – Percentage of Positive Values 

 

 Aus Can Fra Ger HK Ity Jpy SK UK US Ave 

DP 65 55 60 80 70 65 70 60 60 55 64 

EP 65 50 75 55 70 60 65 65 60 65 63 

CAPE 70 70 65 70 65 60 65 60 55 70 65 

DE 75 65 55 65 55 100 55 50 55 35 61 

PEG 80 50 53 47 26 58 50 70 55 60 55 

Fed 65 50 75 55 60 60 65 55 55 65 61 

DISP 61 78 72 61 50 72 44 33 56 56 58 

Ma-Mi 61 67 56 61 44 61 56 50 67 44 57 

AMD 56 56 78 44 72 61 44 39 44 61 56 

Skew NP 39 44 50 50 39 33 44 17 44 44 40 

Skewness 39 61 44 39 50 39 39 33 39 61 44 

Kurtosis 67 67 39 61 44 33 50 44 67 50 52 

Notes: Entries are the percentage of positive values for each country and predictor variable for the time-varying regression given by equation 

(9). 
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Table 11. GDP and Predictive Coefficients 

 

Pred AUS CAN FRA GER HK ITY JP SK UK US 

DP 0.431a 

(3.56) 

0.396 

(1.56) 

0.143a 

(7.11) 

0.159a 

(4.01) 

0.214a 

(4.09) 

0.306a 

(5.58) 

0.089b 

(2.51) 

0.165 

(1.52) 

0.249a 

(3.50) 

0.133b 

(2.50) 

EP 0.665a 

(8.74) 

0.567 

(1.54) 

0.445a 

(5.67) 

0.487a 

(3.68) 

0.550a 

(4.22) 

0.766a 

(2.97) 

0.306b 

(2.24) 

0.831b 

(2.08) 

0.383 

(1.63) 

0.291c 

(1.80) 

CAPE 0.367a 

(8.97) 

0.457a 

(3.95) 

0.282a 

(6.56) 

0.326a 

(3.94) 

0.381a 

(3.20) 

0.573a 

(9.72) 

0.236a 

(2.58) 

0.943c 

(1.89) 

0.520a 

(6.40) 

0.277b 

(2.45) 

DE 0.109a 

(3.53) 

0.596 

(1.38) 

0.274a 

(7.87) 

0.339a 

(8.00) 

0.398a 

(4.19) 

-0.286 

(-0.98) 

0.267 

(1.51) 

0.233c 

(1.85) 

0.463b 

(2.35) 

0.589c 

(1.87) 

PEG 0.640 

(0.72) 

0.236 

(1.57) 

-0.276 

(-0.66) 

0.164c 

(1.81) 

0.169 

(0.49) 

0.382a 

(6.76) 

0.592a 

(2.92) 

-0.474 

(-1.09) 

0.980 

(1.32) 

0.165 

(0.92) 

Fed 0.113a 

(9.94) 

0.102 

(1.09) 

0.102a 

(6.47) 

0.099a 

(2.78) 

0.139a 

(4.16) 

0.110c 

(1.91) 

0.153b 

(2.19) 

0.477c 

(1.65) 

0.105c 

(1.70) 

0.061c 

(1.80) 

RD -0.054b 

(-2.51) 

0.111 

(1.39) 

-0.67 

(-0.93) 

-0.016 

(-0.05) 

0.138 

(0.96) 

0.075c 

(1.74) 

-0.098 

(-0.93) 

0.002 

(1.56) 

0.241b 

(2.20) 

-0.090 

(1.05) 

Ma-Mi 0.062 

(0.49) 

0.037b 

(2.03) 

0.283c 

(1.95) 

0.134 

(0.61) 

-0.243 

(-0.89) 

-0.001 

(-0.23) 

-0.290 

(-0.72) 

-0.003 

(-0.68) 

-0.144 

(-0.25) 

0.017 

(0.73) 

AMD 0.64a 

(4.55) 

-0.037c 

(-1.67) 

-0.028 

(-1.64) 

0.054 

(0.67) 

0.018 

(0.73) 

-0.005 

(-0.26) 

0.060 

(1.28) 

0.030 

(0.38) 

0.032a 

(3.10) 

0.004 

(0.26) 

Skew NP 0.031a 

(3.28) 

0.104a 

(2.71) 

0.002 

(0.16) 

-0.152 

(-0.88) 

-0.227a 

(-5.42) 

-0.078 

(-0.69) 

0.117a 

(2.78) 

0.072 

(0.82) 

0.124c 

(1.84) 

-0.116 

(-0.88) 

Skewness 0.096a 

(3.92) 

-0.428c 

(-1.88) 

0.058 

(0.44) 

-0.067 

(-0.63) 

0.158 

(1.33) 

0.105a 

(2.71) 

0.320c 

(1.88) 

-0.128 

(-1.38) 

0.223c 

(1.80) 

0.031 

(0.19) 

Kurtosis -0.150a 

(-3.12) 

-1.037 

(-1.38) 

0.965 

(0.87) 

0.038 

(0.55) 

0.518a 

(6.10) 

0.654a 

(6.23) 

0.112a 

(5.71) 

-0.016 

(-0.78) 

0.884 

(0.73) 

-0.795c 

(-1.88) 

Notes: the entries are coefficient values (and t-statistics) from the regression model as given by equation (4) for each country and predictor 

variable. The time-varying predictive coefficients are obtained from the procedure in equation (3). The superscript letters a, b, c refer to 1%, 

5%, and 10% statistical significance level respectively. 
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Figure 1. Individual Firm Coefficients for Stock Returns Regressed against EP Ratio - UK 
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This figure shows the coefficient values obtained from equation (2) across all UK firms for the EP predictor variable   
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Figure 2. Time-Varying Coefficient for Stock Returns Regressed against EP Ratio - UK 
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This figure shows the coefficient values (with two times the standard error bands) obtained from equation (3) across time-periods for UK firms 

for the EP predictor variable 
 
 
 
 
 
 
 
 
  


