Accepted Manuscript

Asking for frequencies rather than percentages increases the validity of subjective probability measures: Evidence from subjective life expectancy

David A. Comerford

PII: \quad S0165-1765(19)30125-9
DOI: https://doi.org/10.1016/j.econlet.2019.04.001
Reference: ECOLET 8418

To appear in: Economics Letters

Received date: 20 February 2019
Revised date: 1 April 2019
Accepted date: 3 April 2019

Please cite this article as: Comerford DA (2019) Asking for frequencies rather than percentages increases the validity of subjective probability measures: Evidence from subjective life expectancy . Economics Letters, 180, pp. 33-35, https://doi.org/10.1016/j.econlet.2019.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Highlights:

1. Tests a novel procedure to elicit subjective life expectancy.
2. The novel frequency procedure elicits a conceptually precise measure alor s a point estimate procedure.
3. Finds that the frequency procedure is less vulnerable to a framing effe $_$$\iota$ an a percentage procedure.
4. Finds that the frequency procedure is more sensitive to age than a μ r.cen ..ge procedure.

Asking for Frequencies rather than Percentages Increases the Validit of Subjective Probability Measures: Evidence from Subjective Life Expnctancy

David A. Comerford PhD^{1}

Abstract

Survey measures of subjective expectations manifest anu. alies in how people report percentages. The current research finds that frequency-l ased m sasures deliver more valid subjective probabilities of living to a given age than to r. ese ions that elicit a percentage chance.

JEL Codes: D15, D84, D91

Keywords: Expectations; Subjective Probabilit. es: suivival expectations; Numeracy

[^0]
Asking for Frequencies rather than Percentages Increases the Validity of Subjective Probability Measures: Evidence from Subjective Life Expectancy

1. Introduction

Behaviour is informed by subjective expectations. Despite the importaı. .e ol ..ccurately eliciting subjective expectations, there is a lack of consensus on $\mathrm{t}^{\mathrm{l}} \mathrm{e} \mathrm{m}$ st suitable approach. In the domain of life expectancy elicitation, for instance, the F ealth a ad Retirement Survey (HRS) and the English Longitudinal Study of Aging (ELS $\%$.) ase a percentage procedure that asks people to estimate the percentage chance that they $\imath: 11$ be -ive at a given age whereas the Survey of Consumer Finances and the Health and A_{e} ing ; . Scotland survey (HAGIS) ask respondents for a point estimate of how long they viu inve. This difference in approach has consequences: studies that have compared the $\mathrm{I}^{+} \mathrm{e}$ e ypetancies implied by these two procedures find a large and systematic diverg. $\mathrm{n} \cdot$ (Nu , Stevens and Thorp, 2015; Comerford and Robinson, 2017).

Each of the point-estimate procedu , and tl e percentage procedure has its disadvantages. The point-estimate procedure is cor ept ${ }^{\dagger}$ all ambiguous: it could be eliciting a mode, median, mean or something else (Dc $\underset{y}{ }: \wedge \varsigma$, Comerford and Bell, 2018). Numerical probabilities are conceptually precise but in r actice, survey questions that ask people to report percentages deliver noisy and bia'ed r ssponses. For instance, many respondents report 50% to indicate that they have no : in ot ie correct probability (Fischhoff and Bruine de Bruin, 1999). This " 50% blip" in resp nee, to life expectancy questions led the HRS survey administrators to add a follow- v que ,tion to determine what respondents actually meant by answering " 50% ". In 2006, 2. v rcent of respondents reported their probability of living to 75 as 50%. Just 37 percent of those went on to report that it was as likely as not that they would live to 75 (Hurd, 2009).

The contribution of the current research is to offer evidence on the validity of a novel approach to eliciting life expectancy. I ask people for a frequency measure of their likelihood of being alive at age 75 . Experiments show that laypeople make more norr atı iudgments when presented with statistical information as a frequency (e.g. 1 in 100_{1} th n when presented with the same information as a percentage (e.g. 1%). With the 1. quency format, people are less likely to neglect base rates and their judgments mon - osely approximate Bayesian reasoning (e.g. Gigerenzer \& Hoffrage, 2005). I prec ict that the frequency procedure will deliver more valid measures of life expecte 1cy an 1 the percentage procedure, while also avoiding the conceptual ambiguity of the point-u. +imate procedure.

To assess the validity of the frequency format, I compaı it against the percentage procedure for sensitivity to a) a framing effect that should not precict life expectancy and b) a respondent characteristic that would be exp $\cdot{ }^{+2} d t$ predict life expectancy, age.

Before introducing the study, let me clarify $1 . \cdot \mathrm{w}$ the framing effect and respondents' age relate to the current research. The fr ming ffect is that subjective life expectancy tends to be years shorter when respondents re s skea about the percentage chance they will be dead by age x than when asked about ne per ntage chance of being alive at age x (Payne et al., 2013). Difficulties with re ting percentages appear to be a cause of this effect because the effect reduces in magr:tugu $\cdot n d$ reverses direction when subjective life expectancies are elicited by a point-estı. ate , srocedure i.e. what age will you [live to /die at?] (Comerford and Robinson, 2017) A vali elicitation procedure should attenuate this live-to / die-by framing effect.

Responden. 's' age should predict their subjective life expectancy because objective life expectancy at birth increased in the US by 0.19 years each year between 1950 (current age: 68) and 2000 (current age: 18) (National Vital Statistics Report, 2002). If the respondents in
my study, 98 percent of whom are aged between 18 and 68, are sensitive to this increase in life expectancy then we would expect to see a negative coefficient on respondents' current age in our subjective life expectancy measure.

In summary, if the frequency procedure is less sensitive to the framing en t and more sensitive to age than the percentage procedure, then the frequency roc adure looks to be eliciting more meaningful measures of life expectancy than the -rcell. ge procedure.

2. Study

I manipulate whether respondents are asked the chance that .'ey will live to age 75 or die by age 75. In an orthogonal manipulation, I vary whethe espundents are asked to report a percentage chance or a frequency.

2.1. Methods

I recruited 566 US-based respondents on Amı"on Mechanical Turk on February $18^{\text {th }} 2019$. To insure that my respondents werf attentı e, I included an instructional manipulation check at the beginning of the survey (\ulcorner ppf aheimer, Meyvis and Davidenko, 2009) and 104 respondents who failed this : tention check were routed out of the survey, leaving 462 respondents (67 percent f in le, mean age $=39$, age range: $18-87$).

The survey opened w th ${ }^{+}$.e following text:

This is a questio to elic t your estimate of how likely it is that you will still be alive by a given age.

This sort nf auesuon is asked in certain surveys to estimate people's decisions and behaviors around heal. retirement etc.

Table 1: Question wordings by condition

Condition Question wording

Percentage Taking into account genes, habits, preferences health history etc., the cond. live-to percentage chance that I will live to be 75 years $1 \mathrm{l}_{\mathrm{r}} \mathrm{r}$: older is ...

Percentage Taking into account genes, habits, preferel. $s \mathrm{~s}$, hf alth history etc., the cond. die-by percentage chance that I will die at 75 yea. olu or younger is ...

Frequency Imagine 100 people who are absolut ${ }^{1} \mathrm{~V} 1 \mathrm{~L} \cdot{ }^{n}$. cal to you right now - they have cond. live-to the same genes, habits, preferences, hear: history etc. Of those 100 , how many will live $_$be 75 years old or older?

Frequency Imagine 100 people who are abs w iely identical to you right now - they have cond. die-by the same genes, habits, pref. nces health history etc.
Of those 100 , how many will cie a: 75 years old or younger?

2.2. Results

I subtracted the raw responses : 'ad in the die-by conditions from 100 to deliver subjective probabilities of being alive $\cdot a_{c}^{-7} 7$. Subjective probability of being alive at age 75 is the dependent measure in al' ana yses reported below.

Figure 1 graphs this ter indfat variable by condition. Each condition should show an equal likelihood of bei g alive at age 75 because the randomization process did not result in any observable di rerenses across the live-to/ die-by conditions in terms of age, gender or numeracy (all $p_{\mathrm{s}}: 0.30$).

Figure 1: Subjective Probability of Being Alive as Age 75

Figure 1 shows a live-to / die-by framing ef. $+\mathrm{co}_{\text {. }}$ sistent with that reported in Payne et al. (2013): the live-to frame had a significan noin e effect in the percentage condition ($b=22$, $t=6.85, p<.001)$ and also had a sig$r^{\wedge} \ldots, ~ n t$, though smaller, effect in the frequency condition $\left(b=7, t=2.18, p=.03^{*}\right) \quad$ i. :s ive-to/ die-by framing effect was attenuated by the frequency condition. An OLS eeg. ssir n shows that, after controlling for age, gender, numeracy and main effects of the : 've-to frame and the percentage change procedure, the interaction of the live-to $\cdot r$ dition and the percentage condition is positive and statistically significant $\left(t=3.34 \quad n=.00^{\dagger}\right.$, see Table 2, Model 1$)$.

This result is not ${ }^{x}$ plair ed by a difference across procedures in the likelihood of responding " 50 "; the tw proce ' ures performed similarly in this respect (frequency procedure: 16%; percentas p- nodure: $15 \% ; z=.45, p=.651)$.

In the percentage condition, a regression that controls for the live-to frame and gender finds that the coefficient on age is of the wrong sign; those born earlier, who mortality tables

	Model 1	Moi ${ }^{-1} 2$	Model 3	Model 4
Percentage condition	$\begin{aligned} & \hline-5.383 \\ & (3.159) \end{aligned}$			$\begin{aligned} & \hline-9.233 \\ & (6.862) \end{aligned}$
Live-to condition	$\begin{aligned} & 7.245^{*} \\ & \text { (3.180, } \end{aligned}$	$\begin{aligned} & 22.411 \\ & (3.181)^{* *} \end{aligned}$	$\begin{aligned} & 7.323 \\ & (3.184)^{*} \end{aligned}$	$\begin{aligned} & 14.884 * * \\ & (2.273) \end{aligned}$
Percentage cond*live-to cond	$\begin{aligned} & 15.006^{* *} \\ & \left(4.45 ?^{?}\right. \end{aligned}$			
Age	0.040	0.172	-0.110	-0.123
	(0.6.2)	(0.113)	(0.120)	(0.121)
Gender	1.92	-0.782	4.425	1.888
	(2.2'8)	(3.447)	(3.256)	(2.390)
Numeracy	1 564*	1.384	1.817	1.649*
	('1.694)	(0.990)	(0.973)	(0.701)
Age*Percentage condition				0.287^{a}
				(0.166)
Constant	46.514**	47.570**	41.094**	48.973**
	(5.755)	(7.717)	(8.246)	(6.591)
R^{2}	0.12	0.05	0.19	0.10
N	459	230	229	459

Notes: coefficients r° aligh \pm in bold are those referred to in the text.
$* p<.05, * * p<.1,^{a} p<05$ in one-sided test
predict will die younger, estimated a higher probability of living to 75 than those born later (model 2: $b=0.172, t=1.52, p=.129$). In the frequency condition, an analogous regression finds the expected sign (model 3: $b=-.110, t=.92, p=.359)$. Model 4 of ${ }^{7}$ abı ${ }^{7}$ assesses whether respondents' age is a stronger negative predictor of probability of 1 ving to 75 in the frequency condition than in the percentage condition. The independent va. : able of interest is the Age *percentage condition interaction, which shows that age is :: nificantly less negative a predictor in the percentage condition than in the frequency c inditio) (model 4: $b=.287, t=$ 1.73, one-sided $p=.042$).

Table 2: OLS regressions of Self-reporte: Probs sility of Living to 75

Discussion

Previous resec ch suggests that researchers face a trade-off when choosing how to elicit subjective expectations: they can either use a percentage chance procedure that respondents struggle to answer but that asks about a conceptually precise measure; or else they can use a
point-estimate procedure that is easier for the respondent to answer but is less conceptually meaningful (Douglas, Comerford and Bell, 2018). The current research suggested that eliciting a frequency might offer the best of both options - a question that \quad esp - dents can meaningfully answer and that delivers an unambiguous numerical estir te tor construction of a full probability distribution. In support of this suggestion, I found tha. the frequency elicitation procedure yielded estimates of life expectancy that were ${ }^{\circ} \circ$, s sensitive to a framing effect and were more sensitive to an objective predictor of life expect. ncy than did the widely-used percentage chance procedure. These results a e cr . 1 s . stent with evidence that laypeople better approximate Bayesian reasoning when wor ${ }^{\text {ring }}$ with frequencies than when working with percentages (Gigerenzer \& Hoffrage, $\mathrm{L}^{\text {n }}$)).

References

Comerford, D. A., \& Robinson, J. (2017). Dic - b, Framing both Lengthens and Shortens Life: Further Evidence on Constructed Beliefs * . $\boldsymbol{\Gamma}$ ife Expectancy. Journal of Behavioral Decision Making, 30(5), 1104-1112.

Douglas, E., Comerford, D.A., Bell D. ($\iota^{\wedge} 18$) Characterising subjective life expectancy: A cross-country analysis of elicitation? proc dures and population characteristics. Paper presented at Conference on Cros -Cnunus Analysis of Retirement, Health, and Well-being.

Fischhoff, B., \& De Bruin, W B. ('99'). Fifty-fifty= 50\%? Journal of Behavioral Decision Making,12(2), 149-163.

Gigerenzer, G., \& Hoffra „̌, 'J. (1995). How to improve Bayesian reasoning without instruction: Frequency f rm .ts. Psychological Review, 102(4), 684.

Hurd, M. D. (2009). 'sub ective probabilities in household surveys. Annual Review of Economics, l, 543.

National Vital S1 tistics Reports, Vol. 50, No.6. Life Expectancy at Birth, by Race and Sex, Selected Years 15:O-99.

Oppenheime ; D. M , Meyvis, T., \& Davidenko, N. (2009). Instructional manipulation checks: Detectı ~ atisficing to increase statistical power. Journal of Experimental Social Psycholos.', 4 , 八.), 867-872.

Payne, J. W., Jagara, N., Shu, S. B., Appelt, K. C., \& Johnson, E. J. (2013). Life expectancy as a constructed belief: Evidence of a live-to or die-by framing effect. Journal of Risk and Uncertainty, 46(1), 27-50.

142 Weller, J. A., Dieckmann, N. F., Tusler, M., Mertz, C. K., Burns, W. J., \& Peters, E. (2013).

143 Development and testing of an abbreviated numeracy scale: A Rasch analysis approach. Journal of Behavioral Decision Making, 26(2), 198-212.

Wu, S., Stevens, R., \& Thorp, S. (2015). Cohort and target age effects on s. © tive survival probabilities: Implications for models of the retirement phase. Journal of Fronomi
Dynamics and Control, 55, 39-56.

[^0]: ${ }^{1}$ Economics Division and Behavioural Science Centre, University of Stirling, FK9 4LA, UK. 01786-467317. David.comerford@stir.ac.uk; There are no financial supports to report.

