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The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in

which way a body interacts with its environment, in particular how it responds to solar irradiation and

how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile

over a certain depth can be measured in situ, this gives important information about the heat flux from

the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and

planned planetary lander missions experiment packages for determining thermo-mechanical proper-

ties are part of the payload. Examples are the experiment MUPUS on Rosetta’s comet lander Philae, the

TECP instrument aboard NASA’s Mars polar lander Phoenix, and the mole-type instrument HP3 currently

developed for use on upcoming lunar and Mars missions. In this review we describe several methods

applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced

when these properties have to be measured in a low pressure and low temperature environment. We

point out the abilities and disadvantages of the different instruments and outline the evaluation

procedures necessary to extract reliable thermal conductivity and heat flux data from in situ

measurements.

& 2011 Elsevier Ltd. Open access under CC BY-NC-ND license.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

2. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

3. Theory of thermal sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

3.1. Formulae where sensor thermal properties are negligible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641

3.2. Formulae with thermal resistance and non-ideal sensor properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

3.3. Axisymmetric configurations with finite length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

4. Probes for geophysical and planetary applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

4.1. Laboratory prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

4.2. Bullard probe for terrestrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

4.3. Lunar thermal probes on the Apollo missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

4.4. TECP thermal probe on the Phoenix mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

4.5. MUPUS probe on the Rosetta/Philae mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

4.6. Thermal sensors on Lunar-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

4.7. Thermal sensors on HP3-Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

4.8. Thermal sensors on Cassini/Huygens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

5. Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

5.1. Cylinder-symmetric solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
ax: þ43 316 4120690.

ömle).

 BY-NC-ND license.

www.elsevier.com/locate/pss
dx.doi.org/10.1016/j.pss.2011.03.004
mailto:norbert.koemle@oeaw.ac.at
mailto:norbert.koemle@oeaw.ac.at
dx.doi.org/10.1029/2009JE003420
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


N.I. Kömle et al. / Planetary and Space Science 59 (2011) 639–660640
5.2. Fully numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Appendix A. Temperature decay of the Apollo heat flow probes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
1. Introduction

The temperature distribution inside and near the surface of
planetary bodies is determined by various factors (see e.g.
Teisseyre and Leliwa-Kopystynski, 1992). First, it depends on
the thermal energy produced inside the body as well as the
energy received and absorbed from external radiation sources.
The former consists of the heat dissipated during the formation
phase of the planet and stored since then in the interior as well as
on the heat produced by ongoing radioactive decay of unstable
isotopes. These processes warm up a planetary body from the
interior. The second contribution is the electromagnetic radiation
emitted by the Sun and absorbed by the planetary surface or a
planetary atmosphere, where it is finally dissipated into heat.

In order to find the temperature distribution and its evolution
with time in the interior and near the surface of a planetary body
one has to apply the physical laws by which the heat is
distributed. There are three possible pathways how this can
happen:
�
 Thermal conduction—taking place in solid, liquid, and gaseous
materials. Here the energy is propagated by vibrations and
chaotic motions of the molecules. Macroscopic material
motions are absent in this mode.

�
 Convection—taking place only in liquid and gaseous materials.

Here the energy is transported by macroscopic motions of
liquids or gases, which can occur either in a smooth way
(laminar flow) or in a quasi-chaotic way (turbulent flow). It
can be considered as the most effective way of heat transport.

�
 Radiation—taking place in any body exhibiting internal or

external surfaces. It is the only process that does not demand
direct material contact between heat exchanging elements and
therefore also the only way how different celestial bodies can
exchange energy among each other (aside of solar wind and
plasma interactions). But it is also the most ineffective process
for exchanging heat, and therefore it is only important in the
absence of the other possibilities.

From the above it follows that the way in which the energy
generated in or absorbed by a planetary body is distributed as a
function of space and time is highly dependent on the nature and
structure of the body. Since we know that planets, comets, and
asteroids have formed some 4.5 billion years ago by the accretion
of a gas/dust cloud to planetesimals and finally to planets, it is
clear that they have also a very complex thermal history, which
has nowadays not yet come to an end. While the general trend is a
gradual cooling of the planetary interiors in the course of time,
this evolution also includes phases of partial or complete melting
of large parts of planetary interiors, which allows all heat transfer
mechanisms to be active.

To get a better understanding of the thermal structure and
history of the planetary bodies in our Solar System (including
Earth), extensive numerical modeling work is inevitable. How-
ever, in order to produce realistic results, any numerical model
needs appropriate boundary and initial conditions as well as
trustworthy material parameters. While—at least for Earth—

seismological methods can be used to retrieve information on
the present day interior structure, there are two other key
parameters that cannot be derived from seismological observa-
tions: (i) The heat flux from the interior and (ii) the thermal
properties of the near surface layers, in particular the thermal
conductivity of these layers. The latter are especially important
for bodies lacking an atmosphere, like the Moon, asteroids and
Mercury (Hagermann, 2005).

This review will concentrate on the methods and instruments
used in the past and developed for future missions to determine
these two key parameters. Section 2 introduces the basic physical
laws of heat transfer and the relevant material parameters
controlling heat flow both in the interior and across boundaries.
In Section 3 the theory needed for the evaluation of thermal
conductivity measurements is reviewed and explicit formulae for
various sensor configurations are given. Subsequently in Section 4
we describe laboratory prototypes of thermal conductivity sen-
sors as well as instruments that have been developed and used for
geophysical and planetary applications. Hereby some emphasis is
given to recent and upcoming space missions e.g. the TECP
instrument on NASA’s Phoenix Mars lander, the MUPUS instru-
ment on the Rosetta lander Philae, and the HP3 instrument
currently developed for applications on Moon and Mars. Finally,
Section 5 presents a comparison of different designs and evalua-
tion methods and gives some conclusions relevant for future
developments.
2. Basics

The flow of heat from one point of a solid body to another is
basically driven by the temperature differences existing inside
and at the boundaries of the body. This property is expressed
mathematically by Fourier’s law of heat transfer:

~F ¼�lrT ð1Þ

The parameter l (unit: W m�1 K�1) determining heat flow
along the direction of the temperature gradient is called thermal

conductivity. In the simplest case, i.e. for a solid body with
homogeneous structure, the variation of temperature T in space
and time is described by the so-called heat conduction equation:

RCM
@T

@t
¼ lDTþgð~r ,tÞ ð2Þ

where the term gð~rÞ (unit: W m�3) denotes the heat gain or loss
term describing the thermal power generated or consumed in a
unit volume by processes other than thermal conduction (for
example heating by an electrical current flowing in the material
or exothermal chemical reactions or phase changes). In contrast
to the equation for the heat flow, this second order partial
differential equation involves not only l, but also two additional
material parameters—density R (unit: kg m�3) and heat capacity
per unit mass CM (unit: J kg�1 K�1). Multiplication of these two
properties yields the volumetric heat capacity

CV ¼ R CM ð3Þ

(unit: J m�3 K�1). In the formulae compiled below density and
heat capacity always appear in the form (3), therefore we will
usually write CV instead of using R and CM as separate parameters.

Another combination of these three parameters which occurs
frequently in the formulae is the so-called thermal diffusivity

(unit: m2 s�1), which is analogous to a diffusion coefficient in



Fig. 1. Sketches of a point-like and a line-like heat source embedded in an infinite

medium with defined thermal properties (after Hütter, 2007).
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material flow:

k¼ l
RCM

¼
l

CV
ð4Þ

3. Theory of thermal sensors

In the following subsections we summarize known solutions of
the heat conduction equation for axisymmetric configurations, which
are commonly used to evaluate transient thermal conductivity
measurements. It should be noted that the thermal conductivity
sensors reviewed here are basically constructed to investigate solid

materials. These include materials with a porous or grainy structure,
containing voids filled by gases, as investigated e.g. by Hütter et al.
(2008). They have also been used sometimes for pure gases or liquids,
but in this case the possible influence of convective energy transport
must be carefully considered (see e.g. Phylippov et al., 1992; Hathi
et al., 2007, 2008). Most of the known solutions for the temperature
field in axisymmetric configurations can be found in the classical
book on heat conduction by Carslaw and Jaeger (1959) and in several
other reference papers (Jaeger, 1941, 1956). Another important
reference book giving the axisymmetric solutions of the heat con-
duction equation from a more generalized point of view is Özisik
(1989). The fundamental methods to obtain these solutions involve
the application of Green functions and the Laplace transformation in a
cylindrical coordinate system (r,z,j). Solutions can be typically
expressed in terms of Bessel functions, as we will see below. In
principle, by using the Green functions method, semi-analytical
solutions are obtainable not only for the one-dimensional case
(temperature T dependent only on the radial coordinate r and time
t), but also for the general axisymmetric case (T(r,z,t)) and even
for the fully three-dimensional case (Tðr,z,j,tÞ). Some years ago
Banaszkiewicz (2002a–e) has compiled the solutions for all cases.
However, the analytic formulae for the two- and three-dimensional
cases become extremely lengthy and cumbersome to use. To our
knowledge, they have hardly been used in practical work until now.
Rather, solutions for long and thin cylinders are used extensively,
even in cases where their uncritical application may be doubtful. In
this review we will first compile the formulae for long and slender
probes, where the temperature field depends only on r and t, and
subsequently analyze the case of a sensor with arbitrary z-extension.
While the Carslaw and Jaeger book contains most of the materials
needed, we will follow here a more didactic presentation style,
developing the relevant formulae step by step, from the simple to
the more complex cases.

For the one-dimensional case the time-dependent heat con-
duction equation (2) takes the form

CV
@T

@t
¼

1

r

@

@r
lr
@T

@r

� �
þgðr,tÞ ð5Þ

in the range 0rro1 and t40. In order to solve this equation for
the temperature field T(r,t), one has to define in addition initial
and boundary conditions.
3.1. Formulae where sensor thermal properties are negligible

To start with, consider a point-like heat source embedded in
an infinite solid medium with defined thermal properties. Hereby
it is assumed that a finite amount of heat energy is released inside
an infinitesimal volume within an infinitesimally short time. This
situation is illustrated in the left side of Fig. 1.

According to Carslaw and Jaeger (1959), the temperature field
in the three-dimensional space which develops as a function of
time t in response to such a heat pulse is given as a solution of the
heat conduction equation (2) by

Tðx,y,z,tÞ ¼ T1þ
Wpoint

8ðpktÞ3=2
exp �

ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

4kt

 !
ð6Þ

where T1 is the homogeneous temperature of the medium before
the release of the heat pulse. It is important to note that the
quantity Wpoint is by itself not an energy, but has the unit K m3.
The local thermal energy density at an arbitrary point in space
and time is CV ðT�T1Þ and the total energy released by the heat
pulse (unit: J) at t¼0 in the point ðx0,y0,z0Þ is obtained by
integrating this property over the entire space:Z þ1
�1

Z þ1
�1

Z þ1
�1

CV ½Tðx,y,z,tÞ�T1� dx dy dz¼WpointCV ð7Þ

Thus relation (6) can be interpreted as the temperature
distribution in an infinite medium caused by the heat energy
WpointCV released instantaneously at t¼0 at the point ðx0,y0,z0Þ.

In order to find the temperature distribution caused by an
instantaneous line heat source, one has to line up many point
sources of equal strength W dz0 along the z-axis, as sketched in
the right hand side of Fig. 1. In the infinitesimal limit this means
an integration of Eq. (6) over z0:

Tðx,y,z,tÞ ¼ T1þ
Wpoint

8ðpktÞ3=2

Z þ1
�1

exp �
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

4kt

 !
dz0

ð8Þ

With r2 ¼ ðx�x0Þ2þðy�y0Þ2 denoting the radial distance of a
point from the line source, the solution of this integral can be
written as

Tðr,tÞ ¼ T1þ
Wline

4pkt
exp �

r2

4kt

� �
ð9Þ

Note that now Wline has the unit K m2 and Wline CV is the
energy released by the line source per unit length (unit: J m�1).

Next consider the case where the line heat source does not emit
an instantaneous heat pulse, but rather generate a constant power
over a finite time interval [0,t]. In this case relation (9) has to be
integrated over t and Wline must be replaced by Wcont with the
dimension [K m2 s�1]. Correspondingly Wcont(t)CV is the power
released by the line heat source per unit length (unit: W m�1). This
gives the temperature field at any position r and time t in response to
heating by the constant power source over the time interval [0,t]:

Tðr,tÞ ¼ T1þ
Wcont

4pk

Z t

0

exp � r2

4kðt�t0 Þ

� �
t�t0

dt0 ð10Þ

This integral can be solved with the substitution x¼�r2=4k
ðt�t0Þ to give

Tðr,tÞ ¼ T1þ
Wcont

4pk

Z 1
x

expð�xÞ

x
dx¼�

Wcont

4pk
Ei �

r2

4kt

� �
ð11Þ
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Fig. 2. Influence of the finite diameter of a hollow cylindrical sensor on the
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Here �Eið�xÞ ¼
R1

x ¼ �r2=4ktðexpð�xÞ=xÞdx is the so-called expo-

nential integral function.1

For the use in thermal conductivity determination from
measurements it is convenient to express formula (11) in terms
of the (constant) power source Q¼Wcont CV [W m�1] and the
thermal conductivity l:

Tðr,tÞ ¼ T1�
Q

4pl Ei �
r2

4kt

� �
ð12Þ

Subsequently the exponential integral function is expressed by
a series expansion of the form

�Eið�xÞ ¼ �g�lnðxÞ�
X1
n ¼ 1

ð�1Þnxn

nn!
¼�g�lnðxÞþx�

1

4
x2þ � � � ð13Þ

where g¼ 0:577216 is Euler’s constant. For large values of t (small
values of x) higher order terms can be neglected and one obtains
finally

Tðr,tÞ ¼ T1þ
Q

4pl

� �
lntþ

Q

4pl
�gþ ln

4l
CV r2

� �� �
ð14Þ

Since the last term (in brackets) is a constant, it vanishes when
Eq. (14) is differentiated after the variable lnt:

dT

dlnt
¼

Q

4pl ð15Þ

This formula provides an easy way to determine the thermal
conductivity of a medium by simply measuring the temperature
increase of the probe as a function of time in response to a
constant heating rate Q. It is usually applied for standard needle
probes in homogeneous media with a constant initial tempera-
ture or a reasonably small temperature gradient over the domain
of interest.

A similar analysis can be performed to obtain the temperature
field for heat sources of finite radial extent. A case of practical
importance is that of a cylindrical surface source, where a slender
cylindrically shaped probe with radius a is considered, which is
heated by a constant power Q [W m�1] along the cylinder mantle.
In this case the temperature field in the surrounding medium
consists of two integral terms:

Tðr,tÞ ¼ T1þ
Q

4pl

Z t

t0 ¼ 0

1

ðt�t0Þ
exp �

r2þa2

4kðt�t0Þ

� �
dt0

þ
Q

4pl

Z t

t0 ¼ 0

1

ðt�t0Þ
exp �

r2þa2

4kðt�t0Þ

� �
I0

ra

2kðt�t0Þ

� �
�1

� �
dt0 ð16Þ

The first integral is similar to that for a constantly heated line
source, but modified by the radius a of the cylindrical source. The
second term is associated with the cylinder geometry of the
sensor. The temperature rise of the heated cylinder mantle is
obtained by setting r¼a in formula (16). I0 is the modified Bessel
function of the first kind and zeroth order.

In order to judge the importance of the different contributions
in real measurements, we have calculated an example using the
thermal properties of one of our well characterized test materials
(agar), whose thermal properties are the same as those for water.
The results for heating the sensor with a power of Q¼6 W/m over
a period of 105 s are displayed in Fig. 2 as a semi-logarithmic plot.
The full line represents the complete solution calculated with
formula (16) for r¼a, while the dashed and dashed–dotted lines
show the contribution of the first and the second term, respec-
tively. As can be seen, at heating times t4102 s the cylindrical
1 A suitable reference to look up the analytical representation of the integrals

and the various Bessel functions frequently occurring in this review is the

Handbook of Mathematical Functions edited by Abramovich and Stegun (1972).
surface source term approaches a constant value, while the line
source term shows a linear increase on a semi-logarithmic scale,
with an inclination very similar to that of the full solution.
Because of this fact the standard evaluation approach for a line
heat source sensor can also be used for a large hollow cylindrical
sensor like the LNP01 shown in Fig. 4, provided measurement
time is long enough.

3.2. Formulae with thermal resistance and non-ideal sensor

properties

The formulae presented up to now are idealized in the way
that they do not include any thermal properties of the sensor
itself, since they assume that the heat source is concentrated
either in a line or along the mantle of a cylinder. However, for real
sensors this is not true. Even when one remains with the
approximation of a long and thin axisymmetric sensor, the heated
sensor occupies a finite volume (per unit length) and thus has its
own characteristic thermal properties, which usually differ from
the properties of the surrounding medium. Moreover, in the case
of a cylindrical sensor with finite radius a there may also exist a
thermal resistance across the boundary between sensor and
surrounding material, which causes a temperature discontinuity.

In the following we compile the most useful formulae which
include a finite thermal surface conductance H (unit: W m�2 K�1)2

and a non-negligible sensor heat capacity S (unit: J m�1 K�1). Note
that S is the specific volumetric heat capacity of the sensor material
multiplied with the sensor cross section. Thus it is not a true material
property, but is also depends on the sensor’s geometry and size.

For a simple representation of the relevant formulae it is
convenient to define three dimensionless variables involving all
basic parameters of the problem (Jaeger, 1956):

t¼ lt

CV a2
¼
kt

a2
ð17Þ

a¼ 2pa2CV

S
ð18Þ

h¼
l

aH
ð19Þ
2 Thermal conductance and thermal resistance are defined analogous to their

counterparts in the theory of electricity. Thermal resistance is the inverse of

thermal conductance H. Thus H-1 is equivalent to ð1=HÞ-0, i.e. there is no

temperature discontinuity across the respective boundary (Incropera et al., 2007).



Fig. 3. Sketch of the axisymmetric heat conduction model with finite length.
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t can be considered as a dimensionless time and is also called the
Fourier number. It represents the characteristic time for the pro-
pagation of the heat wave in the medium surrounding the heated
cylinder with radius a. a is 2 times the ratio of the heat capacity of
the sensor to the heat capacity of an equivalent volume consisting
of the surrounding material. Finally the parameter h is propor-
tional to the thermal resistance between sensor and surrounding
medium.

First consider again an instantaneous cylindrical heat source.
This is equivalent to the case that the cylindrical sensor is initially
at a higher temperature than the surrounding medium, and that
this temperature disequilibrium is relaxed over time by heat
conduction across the thermal resistance 1/H between sensor and
medium. In formula (20) given below T0 is the initial sensor
temperature while T1 is the initial temperature of the surround-
ing medium. Moreover it is assumed that the thermal conductiv-
ity of the sensor material is very high compared to that of the
surrounding material (lsensor-1Þ so that the sensor as a whole
can always be considered as isothermal, while its temperature
adapts to that of the surroundings. With these approximations
one obtains

TðtÞ ¼ T1þðT0�T1Þ
4a
p2

Z 1
0

expð�tx2Þ dx

xf ðxÞ
ð20Þ

f ðxÞ ¼ ½xJ0ðxÞ�ða�hx2
ÞJ1ðxÞ�

2þ½xY0ðxÞ�ða�hx2
ÞY1ðxÞ�

2 ð21Þ

Again, Bessel functions appear in the solutions. J0 and J1 are the
regular Bessel functions of the first kind and order zero and one,
while Y0 and Y1 are the Bessel functions of the second kind and
order zero and one. Note that these functions are different from
the type I0(x) appearing in formula (16), where the modified Bessel
function of zeroth order appears. A generalization of this case is
discussed further in the Appendix.

For the case of a cylinder which is initially at the same
temperature as the surrounding medium and heated for a finite
time interval with a constant power Q (unit: W m�1), one obtains
the following formula for the temperature increase of the sensor
as a function of time (Jaeger, 1956):

TðtÞ ¼ T1þ
2Qa2

lp3

Z 1
0

½1�expð�tx2Þ� dx

x3f ðxÞ
ð22Þ

f ðxÞ ¼ ½xJ0ðxÞ�ða�hx2
ÞJ1ðxÞ�

2þ½xY0ðxÞ�ða�hx2
ÞY1ðxÞ�

2 ð23Þ

Here again the assumption was made that the thermal con-
ductivity of the sensor is large compared to that of the
surroundings.

Another case of interest for the development of thermal
conductivity sensors is obtained when two concentric cylinders
are surrounded by an infinite medium. This configuration resem-
bles an electrically heated cable insulated by a thin electrically
isolating sheath, which is surrounded by soil. For such a geometry
closed solutions with a similar structure as the formulae given
above can also be found. They have been explicitly worked out in
the paper by Jaeger (1956).

3.3. Axisymmetric configurations with finite length

Analytic solutions for heat conduction problems in cylindrical
geometry can also be found for the case that the temperature field
depends not only on r and t, but also on the vertical coordinate z

and the azimuth j. Solutions to this problem are given by
Banaskiewicz (2002a–e) and Woodfield et al. (2008) for different
boundary conditions.

For the theory of heat conductivity sensors, the inclusion of a
z-dependence is of particular interest, because this allows to treat
arbitrary axisymmetric configurations (including such ones
where the diameter over length ratio is not small) in a more
rigorous way. The central mathematical tools to treat such
problems are the Laplace transformation and the Green function

(Courant and Hilbert, 1962; Bayin, 2006). However, the disadvan-
tage of following this analytic approach is that formulae become
extremely lengthly and cumbersome to derive whenever one goes
beyond a pure (r,t) dependence. Therefore, we cannot give a fully
comprehensive description of the multi-dimensional problem and
its solution in the frame of this review, but rather refer to the
original sources (Carslaw and Jaeger, 1959; Jaeger, 1941) and to
the above mentioned papers by Woodfield et al. (2008) and by
Banaszkiewicz (2002a–e). In this subsection we just illustrate the
fundamental ideas underlying the solution of the axisymmetric z-
dependent problem by means of a Green function, which would
be applicable to many of the sensor designs shown in the
subsequent section.

Consider a two-component system consisting of a hollow
cylindrical sensor (Domain 1) with an inner diameter a, an outer
diameter b and a finite length L, as sketched in Fig. 3. The
surrounding medium (Domain 2) extends from the outer sensor
radius b to an arbitrary radius c, whereby typically cbb, with the
limiting case c-1 being also possible. The quantities referring to
the cylindrical sensor and the surrounding medium are marked
by the respective domain subscripts 1 and 2 e.g. T1(r,z) or T2(r,z).
We use T(r,z) to denote T1(r,z) and/or T2(r,z) when expressing
properties which hold for both domains. Similarly k and l may
represent kn and ln with n¼1 and/or n¼2, respectively.

In the relatively simple case illustrated here the whole exten-
sion of the z-domain is limited to the length L of the sensor, so
that appropriate boundary conditions have to be specified both at
these z-levels over the radial interval aoroc, and at r¼a and
r¼c over the vertical interval 0ozoL.

The heat conduction equations for the sensor and the medium
domain can then be written in the form

@Tn

@t
�r � ðknrTnÞ ¼ 0 ðn¼ 1,2Þ ð24Þ

Eqs. (24) imply that there is no heat production in the interior
of the domains. Any heat is generated at the boundaries and
enters the domains via conduction. Let Sa be the inner cylindrical
boundary of the sensor defined by r¼a, 0rzrL. Similarly, Sb

denotes the boundary between the sensor and the surrounding
medium (r¼b), and Sc the outer boundary at r¼c. Furthermore, let
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Sn0 and SnL be the lower and upper disc bordering the domains n;
e.g. S10 is defined by arrrb and z¼0, S2L by brrrc and z¼L.
The boundaries Sa, Sn0 and SnL (n¼1,2) can be specified by the
following rather general boundary conditions:

Fðr,zÞ ¼ l
@T

@n
þHðT�T1Þ ð25Þ

The surface power sources F are generated per area in the
respective boundaries, dissipating into Domain 1 or Domain 2 and
into the environment outside the Domains 1 and 2 (the environment
is assumed to be at temperature T1). H is the surface conductance
and may vary over the boundaries, which are again specified by their
respective indices. @T=@n signifies the derivative of T with regard to
the outward pointing surface normal. In terms of r and z we get the
following more specific notation for the different boundaries:

S10ðaorob,z¼ 0Þ : F10 ¼�l1
@T1

@z
þH10ðT1�T1Þ ð26Þ

S20ðboroc,z¼ 0Þ : F20 ¼�l2
@T2

@z
þH20ðT2�T1Þ ð27Þ

S1Lðaorob,z¼ LÞ : F1L ¼ þl1
@T1

@z
þH1LðT1�T1Þ ð28Þ

S2Lðboroc,z¼ LÞ : F2L ¼ þl2
@T2

@z
þH2LðT2�T1Þ ð29Þ

Sa ðr¼ a,0ozoLÞ : Fa ¼�l1
@T1

@r
þHaðT1�T1Þ ð30Þ

At the outer boundary of Domain 2 (along r¼c) we define

Sc ðr¼ c,0ozoLÞ : T2 ¼ T1 ð31Þ

which means that the temperature is not influenced by sensor
heating. Therefore, the temperature T1 of the environment is
assumed to be a constant value, which does not vary with time.
The boundary conditions (26)–(30) are the so-called radiation

boundary conditions (Carslaw and Jaeger, 1959, p. 19). In particular
Fa describes the heat supply (unit: W m�2) to the inner mantle of
the sensor tube and can be re-written as Qa ¼ 2paFa to give the
heat supply per unit length (in W m�1). The upper and lower
boundaries could be either open to empty space and receive
radiation from outside or composed of other layers of material
with specified material and contact parameters, which finally
determine the heat flow from and to the interior.

An important interior boundary is the interface between
sensor and medium (r¼ b,0ozoL), where a thermal resistance
(1/H) can be defined, implying the following interface conditions:

l1
@T1

@r

� �
¼ l2

@T2

@r

� �
ð32Þ

�l2
@T2

@r
¼HbðT1�T2Þ ð33Þ

Finally initial conditions for the sensor and the surrounding
material temperature must be defined, which can be arbitrary
functions of r and z:

Tðr,z,t¼ 0Þ ¼ f ðr,zÞ ðarrrb,0rzrLÞ ð34Þ

The above definitions specify the problem completely. To
obtain a solution for the temperature evolution in the Domains
1 and 2 in terms of the power F supplied at the boundaries, one
utilizes the Green function Gðr,z,r0,z0,t�t0Þ, which is a solution of
the inhomogeneous heat conduction equation

�
@G

@t0
�r0 � ðkr0TÞ ¼ dðr�r0Þdðz�z0Þdðt�t0Þ ð35Þ

throughout the Domains 1 and 2, satisfying homogeneous bound-
ary conditions (the boundary conditions (26)–(31) with vanishing
F terms and T1 ¼ 0) and the initial condition (at ðt�t0Þ ¼ 0Þ:

Gðr,z,r0,z0;0Þ ¼ dðr�r0Þdðz�z0Þ ð36Þ

Note how the Green function depends on the space and time
coordinates: (r,z,t) are the particular position and time of obser-
vation for which the temperature should be determined, while
ðr0,z0,t0Þ are source location and time acting as integration vari-
ables in the final formulae for the temperature T(r,z,t). Once the
Green function G in the medium and the sensor has been
determined, solutions for the temperature field as a function of
time and space variables can be calculated in terms of the initial
temperature field f ðr0,z0Þ and the surface power sources F sup-
plied to the boundaries. If the specific heat of the sensor and the
surrounding medium is the same, the following analytic expres-
sion for the time and space dependent temperature field is
obtained:

Tðr,z,tÞ ¼ T1þ

Z L

0

Z c

a
Gðr,z,r0,z0,tÞðf ðr0,z0Þ�T1Þ2pr0 dr0 dz0

þ

Z t

0

Z b

a

k1

H10
F10ðr

0,t0Þ
@G

@z0
ðr,z,r0,0,t�t0Þ2pr0 dr0 dt0

þ

Z t

0

Z c

b

k2

H20
F20ðr

0,t0Þ
@G

@z0
ðr,z,r0,0,t�t0Þ2pr0 dr0 dt0

�

Z t

0

Z b

a

k1

H1L
F1Lðr

0,t0Þ
@G

@z0
ðr,z,r0,L,t�t0Þ2pr0 dr0 dt0

�

Z t

0

Z c

b

k2

H2L
F2Lðr

0,t0Þ
@G

@z0
ðr,z,r0,L,t�t0Þ2pr0 dr0 dt0

þ

Z t

0

Z L

0

k1

Ha
Faðz

0,t0Þ
@G

@r0
ðr,z,a,z0,t�t0Þ2pa dz0 dt0

�

Z t

0

Z L

0
k2T1

@G

@r0
ðr,z,c,z0,t�t0Þ2pa dz0 dt0 ð37Þ

The derivation can be accomplished in analogy to the proce-
dure described in Chapter 14 of Carslaw and Jaeger (1959). As a
result of a lengthy calculation, the Green functions of the problem
are expressed as a sum of terms which decay exponentially in
time with r- and z-dependent coefficients expressed by Bessel
functions. More details can be found in Banaszkiewicz (2002a) for
the present case, and in Carslaw and Jaeger (1959) for several
other boundary conditions. In case of c¼1 the sum degenerates
into an integral. The summation will inevitably involve truncation
errors when it is aborted at some finite number of terms. While in
principle always an arbitrarily accurate solution can be obtained,
the influence of the truncation errors (which typically lead to
nonphysical oscillations in the vicinity of temperature disconti-
nuities) needs to be carefully investigated in any practical
application.

In principle, a similar algorithm can be used to calculate
solutions for composite regions consisting of horizontal layers
with finite vertical extent, between which the thermal properties
may vary and additional thermal resistances may exist. In this
case the upper and lower boundary conditions of the problem
described above would become interface conditions similar to the
boundary b, which connect different sublayers (Banaszkiewicz,
2002d).
4. Probes for geophysical and planetary applications

4.1. Laboratory prototypes

As already pointed out above, the most simple way to evaluate
the thermal conductivity of a solid and/or porous material is to
insert a long and thin needle sensor into a reasonably large
sample and to measure the temperature increase in response to



Fig. 4. Thermal conductivity sensors from Hukseflux. Left: commercial needle

sensors; middle: custom-made more robust needle sensors; right: hollow cylind-

rical sensor.
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a controlled heating rate over a large part of its length (see e.g.
Wechsler, 1992). As long as the measured materials are reason-
ably homogeneous over the length of the sensor, thermal con-
ductivity can be determined by using the formulae for an
infinitely long line heat source. Typical examples for such types
of sensors are the models TP02 or TP08 from the company
Hukseflux (Fig. 4, left). They have a very favorable length over
diameter ratio, which reduces measurement errors to o3%.3

This can, however, only be achieved by using thermocouples for
the temperature measurement, because they can be installed inside a
very narrow volume. The disadvantage of such commercial sensors is,
however, that they are mechanically weak, which can cause a
problem in field or space applications. Alternative versions with a
somewhat worse length over diameter ratio, but a much higher
mechanical robustness, are the custom-made sensors LNP02 and
LNP03, with a length of 100 mm and a diameter of 3.5 mm (Fig. 4,
middle). Models LNP02 and LNP03 are identical except of the outer
shape. LNP02 has the shape of an auger drill and thus could be used
as a component in a combined drilling and thermal conductivity
measurement system. In order to check if the screw-like winding on
the LNP02 as compared with the smooth surface of the LNP03 has
any influence on the thermal conductivity measurement, we com-
pared measurement results from both sensors in the same materials,
but could not find any significant difference of the measurement
values. However, it must also be noted that these sensors, due to their
less favorable length over diameter ratio, need to be calibrated, best
by using a TP02 in the same materials and under identical environ-
mental conditions.

Another type of sensor that is sometimes used in field and
possibly in future space applications are thicker hollow cylinders
as the model LNP01 (Fig. 4, right). Extensive tests on the
performance of such a sensor both in air and in low pressure
3 Favorable length over diameter ratios have been defined by the American

Society for Testing and Materials (ASTM) under numbers D9530-01 and 5334-00.

They specify that commercial thermal conductivity measurement needles should

have a length-over-diameter ratio of greater than 20 to fulfill the standards (see,

for example the websites www.thermal.decagon.com or www.hukseflux.com.
conditions have recently been performed by Hütter (2011). Aside
of its robustness, the advantage of such a sensor type is that it is
suitable for measurements in coarse-grained granular material
with grain sizes up to several centimeters (Kömle et al., 2008,
2010). Again, when using the standard evaluation method to
derive thermal conductivity from the temperature curve, calibra-
tion measurements are necessary in advance.

A typical example for the evaluation of a line heat source
measurement in a medium with a small temperature gradient is
shown in Fig. 5. It stems from a measurement in frozen agar
(which should have the same thermal conductivity as regular
water ice) and is discussed in more detail in Kömle et al. (2008).
The upper left panel shows the raw data measured by the
thermocouple positioned in the heated part of the needle sensor
Huksefux TP02. Heating starts after 1/2 of the measurement
interval has elapsed. If the temperature distribution in the sample
is not fully equilibrated at the beginning of the heating period, the
temperature data can be corrected by extrapolating the trend into
the heating interval and subtracting it from the measured
temperature (upper right panel). This results in a corrected
temperature profile (lower left panel). On this corrected plot the
suitable part for thermal conductivity determination (linear
temperature increase versus lnt) has to be identified and data
points are fitted by a linear regression line, which provides the
inclination of the curve. Using this value, formula (15) is applied
to calculate l.

However, when using the evaluation method outlined above
for determining the thermal conductivity of a material, one
always has to check in advance if the conditions for its applic-
ability are fulfilled. Aside of the thermal diffusivity k of the
sample to be measured, the geometric dimensions of sensor and
sample are the key parameters. There are two characteristic times
that should be estimated in advance, when performing such
measurements. First, there is a transient time, where the sensor
undergoes self-heating and thus the temperature increase as a
function of time is strongly influenced by the sensor properties.
For the standard evaluation procedure this time interval should
not be used for thermal conductivity determination. It can be
estimated as (Vos, 1955)

ttrans ¼
50a2

4k
ð38Þ

where a is the radius of the probe and k the thermal diffusivity of
the surrounding material. Strictly this formula applies to a full
cylinder with radius a. To describe the case of a hollow cylinder
with inner and outer radii a1 and a2 one should define an
equivalent radius

ae ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

2�a2
1Þ

q
ð39Þ

with the same cross section as the hollow tube and use it instead
of a in formula (38).

The upper limit of the measurement interval useable for data
evaluation is typically caused by the finite dimension of the
sample (this applies primarily to laboratory measurements with
samples of finite size, while for field measurements it is hardly
relevant). The reason for the existence of this upper limit is that
the heat wave might reach the boundary of the sample container
and thus the boundary conditions there begin to influence the
temperature profile in a way not included in the theory. The heat
wave may be reflected from the boundaries or other properties of
the environment can influence the solution.

An estimate for this maximum measurement time is given by
the formula (Goodhew and Griffiths, 2004; Vos, 1955):

tmax ¼
0:6ðrsample�aÞ2

4k ð40Þ
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www.thermal.decagon.com
www.thermal.decagon.com
www.thermal.decagon.com
www.hukseflux.com
www.hukseflux.com
www.hukseflux.com
www.hukseflux.com


0 1000 2000 3000 4000 5000
−0.5

0

0.5

1

1.5
Total signal versus time

t [sec]

ΔT
 [°

C
]

0 1000 2000 3000 4000 5000
−0.26

−0.24

−0.22

−0.2

−0.18

−0.16
Temperature trend versus time

t [sec]

2 4 6 8
−2

0

2

4

6

8

Signals from begin of heating
versus ln(t)

ln (t) [sec]

ΔT
 [K

]

ΔT
 [°

C
]

ΔT
 [K

]

5.5 6 6.5 7 7.5 8
1.1

1.2

1.3

1.4

1.5

1.6

Part of signals used for calculating
coductivity

ln (t) [sec]

Fig. 5. Standard evaluation procedure for a thermal conductivity measurement with a heated needle sensor (after Kömle et al., 2007).

Fig. 6. Short cylindrical thermal conductivity sensors for future space applications constructed and tested at the Space Research Centre, Warsaw, Poland. The sensors are

similar in size as the individual segments of the MUPUS probe (after Banaszkiewicz et al., 2007).
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Fig. 7. Temperature measurement during one heating cycle in a powder sample

composed of a mixture of olivin and gabbro minerals (after Banaszkiewicz et al.,

2007).

Fig. 8. Bullard’s probe for measuring the terrestrial heat flow in deep sea regions

of the Atlantic Ocean (after Bullard, 1954).
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In order to study in more detail, how short cylindrical heaters
can be reliably used as thermal conductivity sensors, Banaszkiewicz
et al. (2007) have constructed an assembly of three identical
sensors with a diameter of 15 mm and a heated length of 10 mm
each. They were stacked together axially to form a compact unit as
shown in Fig. 6.

These miniature sensors use separate electrical circuits for
heating and temperature sensing, similar as the prototypes
described above. For temperature sensing a thin (75 mm dia-
meter) platinum wire was used, connected to the measurement
electronics in a 4-wire technique. The dependence of the elec-
trical resistance of the platinum on temperature is very well
known and almost linear over a large temperature range. On the
other hand, as a heater element a 200 mm diameter ISOTAN wire
was used, whose electrical resistance is very little temperature
dependent and therefore provides a constant and stable heating
power when connected to a constant voltage source. Both wires
are electrically insulated and wound around a hollow cylindrical
tube made of fiberglass, as shown in Fig. 6.

Sensors of that kind are easy to manufacture and assure close
to constant heating power and high accuracy of temperature
determination. A numerical model has been used for determina-
tion of heat conductivity of different materials in previous
investigations (Banaszkiewicz et al., 2007). A typical plot compar-
ing measurement results with a fit by a numerical model is shown
in Fig. 7. These sensors are small and relatively flat, which is an
advantage in case of using them as a main or ‘‘piggy-back’’
payload for different kinds of low velocity penetrators being
considered for future space missions. An example is the CHOMIK
device for the Phobos-Grunt mission to the Mars satellite Phobos
(Grygorczuk et al., 2010).

4.2. Bullard probe for terrestrial applications

One of the first instruments for measuring the heat flux from
the Earth’s interior was the probe constructed and used by Bullard
(1954). It was essentially a hollow steel tube of 27 mm outer
diameter and 4.72 m length, attached to an electronics and
recording box at its top side. A photo of the apparatus is shown
in Fig. 8. Bullard’s basic goal was the measurement of the heat
flux from the Earth’s interior. After having done measurements in
deep boreholes drilled into the continental crust, he tried to
measure the heat flux from the floor of the Atlantic Ocean at
several sites, having in mind the idea that in this case external
influences (diurnal and annual heat waves caused by periodic
solar irradiation) should be negligible. To perform the measure-
ments, the probe was let down towards the seafloor in a
controlled way by a winch and allowed to penetrate the seafloor
sediments with a speed of about 3 m s�1. This was in most cases
enough to let the probe penetrate into the ocean floor over its full
length of more than 4 m. The temperature gradient over these
uppermost 4 m was then determined by recording the tempera-
ture readings of the two thermocouples installed close to the
upper and lower end of the probe, which had an axial distance of
4.58 m from each other. Usually for a single run the probe stayed
in the soil of the ocean floor for about 30 min. After this time it
was withdrawn and pulled back to the surface by the winch.

Naturally, in such an experiment some heat will be generated
during penetration of the probe into the sea floor until it comes to
rest in a stable position. This will cause the probe to be initially
warmer than the natural environment. The decline of the probe
temperature towards the undisturbed condition can be calculated
by using the axisymmetric solution for the decay of a heat pulse
as given by formulae (20)–(21).

In the case of Bullard’s measurements at the seafloor one can
expect that the thermal contact between probe and medium was
very good. Thus one could safely assume that h¼0 and the
integral (20) can be evaluated with only a and t as parameters.
However, for measurements in boreholes (especially when the
environmental gas pressure is low) h has a finite value and cannot
be neglected. We will discuss this case in more detail in the next
section.

4.3. Lunar thermal probes on the Apollo missions

The measurements of thermal conductivity and heat flux on
the Moon, performed in the frame of the manned Apollo missions
15 and 17, were the first extraterrestrial in situ heat flux and
thermal conductivity experiments performed in the history of
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space research. The measurements were performed at two lunar
sites, namely near the Hadley Rille by Apollo 15 and in the Taurus–
Littrow site by the Apollo 17 team. In this section we review the
Fig. 9. Setup of the lunar heat flux and thermal conductivity experiment pe

Fig. 10. The Apollo lunar heat flux and conduc
technical build-up and the operation of the heat flux and
conductivity probes used and some of the results obtained.
Fig. 9 shows the general setup of the heat flow experiment. Two
rformed on the Apollo 15 and 17 missions (after Langseth et al., 1972c).

tivity probe (after Langseth et al., 1972b).
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identical probes were used, which were placed within about 10 m
distance on the lunar surface and operated by a common
electronics. Both for Apollo 15 and the analogous experiment on
Apollo 17 the setup and the evaluation procedures are well
described in the preliminary science reports published as NASA
Special Publications (Langseth et al., 1972a, 1972b, 1972c). Also
the respective articles in the Lunar Sourcebook (Heiken et al.,
1991) should be mentioned here. Furthermore, all procedures
related to the experiments conducted by the astronauts during
their stay at the lunar surface are documented in great detail by
Sullivan (1994). The construction was designed to determine both
the undisturbed heat flux from the interior and the heat con-
ductivity in different depths. The performance of the experiment
consisted of two major steps: (i) A hand-held drill consisting of a
borestem and a drillhead was used to prepare a drill hole in the
lunar regolith, designed for a maximum depth of 3 m (this depth
was never reached in any of the four holes drilled for these tests,
the maximum insertion depth actually reached at one of the two
boreholes at the Apollo 17 site was 2.54 m). After drilling was
completed down to the depth that was possible, the borestem (a
tube made of epoxy material) was left inside the drillhole in order
to stabilize it and for the measurements the heat flow probes
were inserted into this tube. The structure and dimension of the
heat flow probes is shown in more detail in Fig. 10. They consisted
of two 50 cm long segments screwed together and equipped with
heaters and thermocouples as shown in the figure.

It is worthwhile to reconsider the procedure used by Langseth
et al. to evaluate both the thermal conductivity of the subsurface
layers and the undisturbed heat flux from the interior. Generally,
they followed a similar evaluation procedure to find the interior
heat flux as Bullard (1954) used for his seafloor measurements.
However, the situation is much more complicated in this case,
because of several facts:
�
 For determining the local heat conductivity of the surrounding
material active heaters close to the ends of the individual
segments were used. However, the shape of the heaters was
not that of a long thin needle but rather that of a short
cylindrical tube. Therefore, determination of thermal conduc-
tivity of the surrounding material in terms of the standard
theory (heated thin needle) is at least not straightforward.

�
 Although the overall geometry was still axisymmetric, there

exist non-negligible thermal resistances, that have to be taken
into account. One is the resistance between the inserted probe
and the borestem which acts as the casing for the former, and
the second resistance occurs between the outer wall of the
borestem and the regolith.

To take the additional thermal resistances into account, the
formulae for buried cables of finite diameter given by Jaeger
(1956) have to be extended in such a way that there is also a finite
thermal resistance between the outer concentric cylinder and the
surrounding soil. In this particular problem the inner cylinder is
the heat flow probe with contact conductance H1 to the borestem
and the outer concentric cylinder is the borestem with contact
conductance H2 to the surrounding undisturbed regolith. Assum-
ing that the temperature of the regolith is T1 and the temperature
of the borestem at the time of insertion into the borehole is T0

(usually T04T1 because borestem and probes were stored in a
box that was considerably warmer than the ground tempera-
ture)—the decay of the probe temperature (inner cylinder)
towards an equilibrium with the ground temperature can be
described by the following integral formula:

TðtÞ ¼ T1þðT0�T1Þ
4a
p2

Z 1
0

ð1�Ax2
Þexpð�tx2Þ dx

xf ðxÞ
ð41Þ
f ðxÞ ¼ ½xð1�Ax2
ÞJ0ðxÞþ½hx2

ð1�Ax2
Þ�að1�Bx2

Þ�J1ðuÞ�
2

þ½xð1�Ax2
ÞY0ðxÞþ½hx2

ð1�Ax2
Þ�að1�Bx2

Þ�Y1ðxÞ�
2 ð42Þ

To evaluate the integral, dimensionless auxiliary variables
analogous to relations (17)–(19) have to be calculated:

t¼ kt

b2
ð43Þ

a¼ 2pb2Rc

S1þS2
ð44Þ

h¼
l

bH2
ð45Þ

g¼ S1

2paH1
ð46Þ

A¼
gk
b2

S2

ðS1þS2Þ
ð47Þ

B¼
gk
b2

ð48Þ

The parameters needed to calculate the above expressions are
listed in Table 1. We note that in the Preliminary Science Report for
the Heat Flow Experiment on Apollo 15 Langseth et al. (1972a)
have already given a solution of this problem. However, it appears
that his formula is not completely correct and contains at least
printing errors, which might lead to wrong results when the
formula is applied to similar problems in the future. Therefore, we
have re-analyzed the problem from the beginning on the basis of
Carslaw and Jaeger’s theory and obtained as a result formulae (41)
and (42) as given above. The most important steps of this re-
calculation are documented in the Appendix.

This allows to calculate the decay of the probe temperature
towards an equilibrium temperature (that of the surrounding
material) with time. Extrapolation to the equilibrium case is a
pre-requisite for being able to determine the natural (undis-
turbed) temperature gradient, which is needed to calculate the
interior heat flux. Ideally, a situation close to equilibrium should
be reached before starting active heater experiments for thermal
conductivity determination. Due to the long time scales in the
poorly conducting regolith of the Moon, full adaption of the probe
temperature to that of the surrounding soil was not reached,
gentle cooling was observed even several weeks after the inser-
tion of the probes. This issue was also addressed by Grott et al.
(2010) in their recent re-analysis of the Apollo thermal measure-
ment results.

From Fig. 10 one can easily see that the geometry of the
heaters is far from that of a slender line heat source, which would
allow simple determination of the thermal conductivity of the
surrounding soil. How did the authors handle this problem? They
argued that it should be possible to use nevertheless a similar
relation for the temperature increase with time as it is known for
the line heat source, namely

DT ¼ C1lntþC2 ð49Þ

where the constants C1 and C2 depend in principle both on the
thermal parameters of the media (probe and surrounding mate-
rial) and on the contact properties (thermal conductance or
resistance, respectively) between soil and probe. In practice it
turned out that the rear parts of the measured temperature
profiles (the ones that would typically be used when applying
the standard line heat source method) indeed could be well fitted
by a function of the form (49) and could also be well reproduced
by a more complete finite difference model. Some measured
temperature profiles from the active thermal conductivity



Table 1
Input parameters for calculating the temperature equilibration of an initially warmer probe in an infinite medium—model for the Apollo heat flow probes.

Symbol Units Description

Parameters of the surrounding material
R kg m�3 Density of the surrounding material, can be estimated from supplementary measurements (returned samples)

CM J kg�1 K�1 Heat capacity (per unit mass) of the surrounding material from this CV ¼ RCM , can be calculated can be estimated from supplementary

measurements (returned samples)

l W m�1 K�1 Thermal conductivity of the surrounding material, unknown parameter to be determined from measurement

Parameters of the instrument (probe and borestem)
a m Radius of the inner cylinder (heat flow probe)

b m Radius of the outer cylinder (bore stem)

S1 J m�1 K�1 Heat capacity per unit length of the inner cylinder, can be determined by lab test in advance

S2 J m�1 K�1 Heat capacity per unit length of the outer cylinder, can be determined by lab test in advance

H1 W m�2 K�1 Thermal conductance between inner and outer cylinder, can be determined by lab test in vacuum conditions in advance

Parameters involving probe and target properties
H2 W m�2 K�1 Thermal conductance between outer cylinder and surrounding material, unknown parameter to be determined from measurement

Fig. 11. Evaluation procedure and results from the Apollo heat flux and thermal conductivity experiment (after Langseth et al., 1972b).
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measurement at the Apollo 15 site are shown in Fig. 11. A possible
explanation for this surprisingly good coincidence (also put
forward by the authors) is that—although the heaters themselves
are short—the high thermal resistance between borestem and
surroundings and the good thermal conductivity of the borestem
as compared to the surrounding regolith causes a close to
isothermal temperature distribution over a reasonably long part
of the borestem. This is almost equivalent to homogeneous
heating over a longer part of the borestem.

Since most of the parameters listed in Table 1 can be well
constrained, there remain two major unknowns: the thermal
conductivity of the surrounding material l and the contact
conductance between material and probe H2. l can be determined
independent of H2 by evaluating the constant inclination of the
rear part of the temperature curve, and H2 determines the
absolute temperature rise of the probe. It can also be found by
fitting the measured temperature profile obtained from an active
heater experiment using a finite difference model.

The thermal conductivity of the ‘‘gap’’ between borestem and
external medium is related to the thermal conductance H2 by the
relation (Langseth et al., 1972a)

lc ¼H2 bþ
Dr

2

� �
ln

bþDr

b

� �
ð50Þ

The actual thickness Dr of the gap was reported to be in the
millimeter size range and consisted of loose material with a
thermal conductivity about six times smaller than that deter-
mined for the undisturbed lunar regolith. Therefore, it indeed
acted as a thermal resistance for the flow of heat into the
undisturbed regolith.

In this context, one should note that Langseth et al. (1976)
later doubted the accuracy of the active thermal conductivity
measurements as outlined above and, instead, based their esti-
mates of lunar heat flow on a thermal conductivity value deduced
from the propagation of the solar heat wave through the regolith.

4.4. TECP thermal probe on the Phoenix mission

After the completion of the Apollo missions in the 1970s no
further in situ extraterrestrial measurements associated with heat
flux and thermal properties could be made for more than 30
years, due to a lack of appropriate lander missions. Only in 2008
the NASA Phoenix mission, which delivered a lander in the north
polar area of Mars offered the first opportunity to measure
thermal properties on another extraterrestrial body. The TECP
(thermal and electrical conductivity probe) was mounted on a
moveable robotic arm, which allowed the instrument to reach
several positions in the near vicinity of the lander (Zent et al.,
2009, 2010). Fig. 12 shows the appearance and the dimensions of
the instrument.

TECP is a remarkably multi-purpose device: It consists of four
only 15 mm long steel needles positioned in a line along the
downward pointing side of the electronics box with a mutual
distance of about 7 mm. The thickness of the needles at the upper
end is 3 mm. For a measurement, the needles are pushed into
the ground in order to have reasonably good contact with the
surrounding surface soil. Aside of thermal properties, the



Fig. 13. The ground reference model of the thermal properties probe MUPUS

(left). The original (flight model) is part of the payload of the Rosetta lander Philae,

which is presently on its way to comet Churyumov-Gerasimenko, where it is

expected to arrive in 2014. A schematics of the components as they are mounted

on the lander is shown on the right side (after Spohn et al., 2007).

Fig. 12. The Phoenix TECP instrument consisting of the four needles pushed into the

soil for a measurement and the adjacent electronics box (after Zent et al., 2009).
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instrument can also retrieve information on electrical conductiv-
ity, dielectric permittivity and humidity of the surrounding soil.

Inspecting Fig. 12 one can immediately see that the geometry
of the instrument differs strongly from a classical line heat source.
The needles are ‘‘short and thick’’ and rather of a conical than of a
cylindrical shape. For a thermal properties measurement one of
the outermost needles (1 in Fig. 12) is heated actively and the
temperature response both of the heated needle and two of the
adjacent needles (the immediate neighbor and the most distant
one) is recorded over a time period including the heating and the
cooling phase.

Due to the complicated geometry, evaluation of thermal
properties of the soil cannot be done in a straightforward way,
as it would be possible with a standard needle probe. Rather,
special calibration measurements are necessary, that relate the
true properties of the soil to the ones evaluated from measure-
ments by a model based on the ‘‘heated needle’’ theory. As
described in detail by Zent et al. (2009) and Cobos et al. (2006),
the relevant calibration coefficients can be obtained by measuring
the temperature variation of the needles as a function of time
both during the heating phase and during the subsequent cooling
phase (after turn-off of the heat source). Note that the tempera-
ture recorded by the most distant needle (opposite of the heated
one) is always taken as reference temperature. Using the expres-
sions from the basic line heat source theory one can calculate the
temperature increase DTðtÞ as

DTðtÞ ¼�
Q

4plEi
�r2CV

4lt

� �
ð51Þ

for the heating branch and

DTðtÞ ¼�
Q

4pl
�Ei

�r2CV

4lt

� �
þEi

�r2CV

4lðt�t1Þ

� �� �
ð52Þ

for the cooling branch.
There are two free parameters in these functions: thermal

conductivity l and volumetric heat capacity CV. These two
parameters must be varied systematically by an iterative proce-
dure to find the minimal deviation from the known values of the
calibration material. The advantage of this instrument is that one
can use both the temperature record from the heated needle and
that from the neighboring (not heated) needle. This increases the
confidence of the derived ‘‘best fit’’ values for l and CV. To obtain a
calibration curve over the whole range of l and CV range to be
expected one needs to select different well-known calibration
materials. In the case of TECP five different materials were used
for calibration, from a glass ceramic with l¼ 1:4 W m1 K�1 on the
high conductivity side to a highly insulating material with
l¼ 0:03 W m1 K�1 (expanded polystyrene) on the low conductiv-
ity side. At the end of the fitting procedure with the calibration
materials one obtains correlation formulae relating the true
values of l and CV with the values obtained from the fitting
procedure described above. As can be seen from the figures
presented in Zent et al. (2009), there is a remarkably good linear
fit between the known thermal parameters of the calibration
materials and the values derived from measurements with the
TECP instrument. This demonstrates the reliability of the applied
procedure and at least gives some confidence for the construction
of similar devices in the future.

4.5. MUPUS probe on the Rosetta/Philae mission

ESA’s cornerstone mission Rosetta, which carries the lander
Philae as a piggy-back payload, will hopefully be the next mission
from which we can expect new data on the thermal properties of
an extraterrestrial body. Rosetta was launched on March 02 2004
and is expected to arrive at its target comet P/Churyumov-
Gerasimenko in August 2014. It is planned to deliver the lander
Philae to the surface of the comet nucleus on November 20 2014
(Glassmeier et al., 2007). It carries a total of 10 instruments,
among them MUPUS (multi-purpose sensor for surface and subsur-

face science). Its main task is to characterize the thermo-physical
properties of the comet nucleus surface and possibly to detect
layers of different composition and cohesive strength (Spohn
et al., 2007). Note that comets are assumed to be porous mixtures
of ice and minerals with a probably very low thermal conductiv-
ity. Laboratory measurements with porous ice samples gave
values in the range l¼ 0:0120:1 W m�1 K�1 (Seiferlin et al.,
1996). Recent remote sensing measurements at comet P/Tempel
1 revealed an upper limit for the surface thermal inertia
(I¼

ffiffiffiffiffiffiffiffiffi
CVl

p
) of Io50 J m�2 K�1 s�1=2 (Groussin et al., 2007). This

value corresponds to lo0:005 W m�1 K�1.
The different components of the MUPUS instrument are

summarized in Fig. 13. The main part is a penetrator consisting
of a sharply tipped rod of about 32 cm length, which will be
deployed in the cometary soil in vertical direction by a recoilless
hammering device, after it has been positioned by a special
deployment mechanism to a place about 1 m sideways of the
lander (Grygorczuk et al., 2009a). In addition MUPUS includes an
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IR-sensor for measuring the surface temperature (mounted on the
main body of the lander) as well as an accelerometer and an
additional temperature sensor integrated into both of the two
anchors (Thiel et al., 1999).

The two main measurement objectives of the penetrator after
its deployment into the cometary soil are: (i) to measure the
temperature versus depth profile and (ii) to measure the vertical
thermal conductivity and diffusivity profile at the landing site,
both as a function of time and of heliocentric distance. A major
driver of the penetrator design was the minimization of the
thermal disturbance introduced into the medium by the pene-
trator itself, which acts as a thermal shortcut or heat pipe.
Therefore, the penetrator body is made of a hollow glass fiber
composite tube of low thermal conductivity, with an outer
diameter of 10 mm and a wall strength of 1 mm. It is equipped
with 16 individual sensor/heater elements. These are mounted to
the inner wall of the rod for protection of the sensors during the
insertion process. The cylindrically shaped sensor elements con-
sist of 0:5 mm thick titanium layers sputtered onto a 50 mm thick
Kapton foil. They work as resistance temperature detectors with a
nominal resistance of 100 Ohm at 0 3C and a temperature coeffi-
cient of resistance (TCR) of 0.002 K�1. They can be used simulta-
neously for temperature sensing and heating. The TCR of these
sensors is only about 1/2 compared to the tabulated value for bulk
titanium, because surface effects become important for the thin
layers used. The electrical connections of the sensors are realized
as thin copper tracks which are printed onto the same Kapton foil.
To minimize the total copper cross section, and thus the heat pipe
effect of the penetrator, the sensor resistances are read out in a
2-wire configuration with a common return track. For electrical
insulation the sensor foil is covered by additional Kapton on both
sides and fixed to the interior of the tube wall. The length of the
individual sensors is variable, from 10 mm close to the upper end
(comet nucleus surface) to about 40 mm near the tip. This
configuration has been chosen in order to achieve a better depth
resolution of the thermal profile near the surface, where the
temperature gradient is expected to be much steeper than at
greater depth.

According to the measurement objectives the instrument can
be operated in two modes: (i) a passive mode, where only the
‘‘natural’’ temperature variation in the vicinity of a particular
sensor is measured in much the same way as standard platinum
resistance thermometers are operated. In this way one obtains a
temperature profile as a function of depth and time and can
follow the natural temperature variations of the near surface
layer over time (e.g. diurnal or seasonal heat waves). (ii) To
perform ‘‘active’’ thermal conductivity measurements analogous
to those done with the needle probes described in the previous
sections.

Each of the sensors can also be supplied with a stronger power
over a defined time span, so that it acts as a source of heat in the
medium. The supplied power can be adjusted to the needs quasi-
continuously between 0 and 1.5 W and, furthermore, a freely
configurable number of sensors can be heated quasi-simulta-
neously. The idea behind such a configuration of heater and
sensing elements is that it should be possible to acquire informa-
tion on the vertical variation of thermal properties over a depth
range which corresponds to the overall length of the penetrator,
by heating individual sections sequentially.

There exist several factors affecting the achievable precision
and the interpretation of the measurements. Concerning the
temperature measurements, one important factor is the already
mentioned heat pipe effect of the penetrator. Due to its probably
larger thermal diffusivity compared to the medium the tempera-
ture gradients existing in the undisturbed medium are smoothed
out. This is a general problem for all accurate soil temperature
measurements, but especially important in this case because of
the expected low conductivity of comets and the possibly rather
poor thermal coupling to the surrounding granular material. A
correction method for this effect has been suggested by
Hagermann and Spohn (1999), who employed a solution of the
inverse heat conduction problem.

Another MUPUS-specific problem is that the penetrator’s front
end electronics (PEN-EL) controlling all measurements and
located on top of the golden cylindrical housing of the hammering
device (see Fig. 13) requires a minimum operating temperature of
�55 3C. This is considerably higher than the expected tempera-
ture of the cometary surface during nighttime. Although the heat
conduction between PEN-EL and the penetrator rod has been
reduced by the thermal design of the instrument, a certain non-
negligible amount of heat still enters the penetrator tube from the
top and influences the temperature readings of the upper sensors.
An accurate numerical model of the whole penetrator system is
needed to compensate for this error. Furthermore, the 2-wire
method of resistance measurement has the drawback that an
additional correction for the wire resistance is needed. Because
the resistance of the copper tracks is also temperature-dependent,
an iterative solution is required.

One difficulty of the MUPUS thermal properties measurements
is also that the individual heater elements are rather short hollow
cylinders than long and thin tubes embedded in the medium.
Therefore, one is again faced with the problem that the standard
hot needle theory cannot be applied in a straightforward way.
Here, the capability of MUPUS to heat several neighboring sensors
simultaneously with individually adjusted power settings enables
the application of a ‘‘guarded torus’’ method (Seiferlin, 2006)
where the outer ‘‘guard’’ heaters focus the flow of heat emanating
from the central heater into an approximately radial flow. In this
way the complexity of the problem is reduced locally to 1D and
either analytical formulae for infinitely long cylindrical heat
sources with finite diameter or simplified numerical models could
be used for the interpretation.

Furthermore, two other factors complicate the interpretation
of the penetrator measurements as the desired undisturbed
values of the comet’s thermal conductivity: (i) the penetration
process leads to displacement of material and subsequent com-
paction of the surroundings, (ii) the applied heating could lead to
sublimation of ice in the vicinity of the penetrator, especially if
highly volatile phases like CO2 or CO are also present in the ice/
dust mixture. To overcome these problems the heating times
should be maximized and the amount of heat introduced into the
medium should be reduced as much as possible. However, in
practice these approaches are limited on the one hand by the
available energy on the lander and on the other hand by the noise
of the temperature measurements (about 15 mK for MUPUS). The
calibration of the MUPUS PEN and the results from laboratory and
field tests of the instrument carried out in terrestrial snow and
soil are described in Marczewski et al. (2004). Some information
concerning this point can also be found in the overview paper by
Spohn et al. (2007).

During the measurement phase of the Philae lander on the
comet, not only the penetrator but also the anchors will be used
by MUPUS to determine the thermal properties of the cometary
material. When the anchor has come to rest at a certain depth, the
temperature of the anchor will equilibrate to the ambient tem-
perature. Recording the temperature decay by the Pt100 tem-
perature sensor mounted inside the anchor then provides a
means of determining the thermal diffusivity at the final anchor
depth (Paton et al., 2010). This measurement will probably
provide information on cometary thermal properties from a
greater depth than the penetrator. In case of low thermal
conductivity, the anticipated penetration depth of 1 m or more
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might even be larger than the skin depth of the orbital heat wave,
which implies that thermally unaltered pristine cometary mate-
rial could be sampled.

In addition to the MUPUS thermal probe a similar instrument
called EXTASE has been designed and built in the frame of a
separate project (Schröer, 2006). The EXTASE probes comprise the
same configuration of thermal sensors as the MUPUS experiment,
but do not include a hammering and deployment device, since
they were developed for terrestrial and laboratory applications.
Thus lab and field measurements with the EXTASE probes offer a
very useful opportunity to test the performance and evaluation of
thermal conductivity measurements with MUPUS type probes,
without having to deal with the full complexity of a space
application.

4.6. Thermal sensors on Lunar-A

In addition to the instruments described in the previous
sections, a few studies for devices designed to measure thermal
Fig. 14. Flat (disk-like) thermal conductivity sensors mounted on the Lunar-A penetrato

mission (top: after Hagermann et al., 2009; bottom: after Hagermann, 2005).
properties of planetary surface layers have been undertaken in
the recent past. One of these instruments was developed and
tested to a mature stage and was planned to be flown on the
Japanese Moon penetrator mission Lunar-A (Mizutani, 1995;
Mizutani et al., 1995), which was unfortunately canceled. How-
ever, an instrument based on the heritage of the Lunar-A devel-
opment might be flown in a similar configuration in the future.
The goal of the Lunar-A thermal experiment was a reliable
determination of the lunar heat flux by determining the subsur-
face temperature gradient and the thermal conductivity of the
regolith. However, being an unmanned robotic mission, the setup
is quite different from that of the Apollo heat flow experiment
(Tanaka et al., 1999). Temperature sensors and heaters are
mounted along the outer shell of a penetrator, which has been
designed to impact the lunar surface vertically at a velocity of
approximately 300 m s�1, thereby burying itself in the lunar
regolith to a depth of at least one meter. A sketch of the
penetrator indicating the positions of temperature and thermal
conductivity sensors is shown in the lower part of Fig. 14.
r developed by the Japanese space agency for the planned use on a lunar penetrator



Fig. 15. Left: Sketch of the deployed HP3 instrument showing the so-called tractor

Mole (gray), the Payload Compartment (green), the Instrumented Tether (red), the

Engineering Tether (brown), as well as the mechanical support structure. Right:

One Payload Compartment half shell and Payload Compartment electronics

boards. The Payload Compartment has a diameter of 26 mm and a length of

302 mm.
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The penetrator has an overall length of approximately 80 cm and
a circular cross section with a diameter of 14 cm.

The thermal property sensors mounted on the shell of the
penetrator (shown in Fig. 14, upper part) consist of a copper plate
embedded in a composite material of glass micro-balloons and
epoxy resin. The lower face of the copper plate is in contact with a
heater, and the entire sensor is glued to the penetrator body. The
outer surface of the copper plate would be in contact with the
regolith once the penetrator is successfully emplaced in the
lunar soil.

This system was designed to be mechanically robust (other-
wise it would not survive the impact), but again its geometry is
far from a line heat source or a slender hollow cylinder. To
evaluate thermal properties, in particular the thermal conductiv-
ity of the regolith, two types of studies have been undertaken,
which might be useful for future applications. First, Horai et al.
(1991) developed an analytical method for finding the thermal
inertia of the surrounding material, using the initial slope of the
temperature versus time curve. Their solution is based on for-
mulae given in Carslaw and Jaeger (1959) for a disk heater
clamped between two half spaces. Hagermann et al. (2009)
however pointed out that this method must be considered with
great care, because especially in the initial part of the heating
curve the temperature response is very sensitive to (unpredict-
able) inhomogeneities in the space surrounding the sensor.
Therefore, they developed and described an alternative, poten-
tially more robust procedure, which has some similarity with the
method used for the evaluation of the Phoenix TECP experiment.
For each measured temperature curve, the residual between
measured temperature in a particular time interval and the
temperature calculated by a numerical model (where the para-
meters l and CV are varied over the range of interest) is calculated
and plotted. Then one tries to minimize this function over the (l,
CV) parameter space, using the measured temperature values both
from the rising part (period where the sensor is actively heated)
and from the declining part (period where the sensor cools down
again). It turns out that this method is very sensitive with respect
to l, but has a low sensitivity w.r.t. CV. Therefore, l can be
determined quite well, even when CV is not accurately known.

Of course, to obtain quantitatively correct values, one has to
perform calibration measurements with well known materials,
spanning the range of interest for l. The calibration materials
used in this case were styrofoam (l¼ 0:036 W m�1 K�1), rubber
(l¼ 0:244 W m�1 K�1) and glass (l¼ 1:398 W m�1 K�1). The
advantage of the Lunar-A thermal sensors as compared to other
designs is that no mechanical action other than the penetrator
impact itself is necessary to obtain thermal and heat flux
measurements. As in the case of Bullard’s probe and the Apollo
heat flux measurements some heat will be generated by the
impact of the penetrator and one will have to extrapolate to the
undisturbed status when trying to derive the natural temperature
gradient. However, this temperature decay curve can be recorded
and fitted by the formulae for a cylindrical tube given earlier in
the paper. Thus, with a sufficiently accurate penetrator thermal
model, the cooling curve can be used to derive some sort of bulk
estimate for the regolith thermal properties.

4.7. Thermal sensors on HP3-Mole

Another instrument which is currently under development
(for use on Mars and/or the Moon) is the so-called heat flow and

physical properties package (HP3), which was originally proposed
as part of the payload for a Mercury lander to be flown with ESA’s
Mercury mission BepiColombo (Spohn et al., 2001). After the
lander segment was canceled, efforts to develop a similar instru-
ment for application on Moon and Mars have been continued and
HP3 became part of the Humboldt payload onboard ESA’s ExoMars

mission, until the entire geophysical package was descoped in
early 2009. In the course of the ExoMars development, HP3 has
successfully completed a phase B study and the current design
has reached a quite mature technological level.

The deployed instrument is sketched in the left panel of Fig. 15
and the instrument is foreseen to dig into the near surface layers
using an electro-mechanical Mole as a tractor. The principle of
locomotion relies on the hammering energy to overcome the
bearing capacity of the regolith at the mole-tip, while recoil forces
are taken up by internal springs and, ultimately, wall friction.
Therefore, locomotion does not directly depend on gravity and the
Mole can be designed to operate successfully also in low gravity
environments. Note, however, that the regolith’s bearing capacity
scales with lithostatic pressure and therefore penetration depth is
also a function of the local gravitational acceleration.

The Mole concept was adopted and flight-proved for the PLUTO
soil sampling device onboard ESA’s Beagle-2 lander (Richter et al.,
2002), and has been further developed to include a payload
compartment trailed behind the tractor mole. By interrupting
the hammering cycles at given intervals, the instrument will thus
be able to perform depth resolved measurements of the quantities
of interest. In the current design, the HP3 payload compartment
carries a permittivity probe to determine the electrical properties
of the regolith as well as heaters to measure the thermal
conductivity of the regolith. However, a densitometer or other
instrumentation could also be included. The instrument further
includes an instrumented tether, which is equipped with tempera-
ture sensors to measure the thermal gradient in the soil, an
engineering tether, which connects the instrument to the space-
craft, and the mechanical support structure providing secure
storage of mole, payload compartment and tether during flight.
Temperature sensors on the instrumented tether are designed to
have a large surface area in order to increase thermal coupling to
the surrounding regolith and two alternative designs have been
investigated. Due to their small thickness, foil sensors are mechani-
cally favorable, but these sensors are susceptible to bending stresses.
Wired and thin film sensors are intrinsically more stable, but their
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small size makes thermal coupling non-ideal. However, they can be
mounted on copper patches to increase thermal coupling and this is
the baseline design currently employed. Details of the payload
compartment are given in the right panel of Fig. 15, which shows
a payload compartment half shell including a heating foil glued to
its inside. Furthermore, electronics boards for the mole’s power
supply and command handling (middle) as well as the permittivity

probe electronics board (right) are shown.
Heating foils are glued inside the payload compartment and

consist of copper circuits sandwiched between two layers of
Kapton. The instrument will measure thermal conductivity using
the cylindrically shaped compartment as a modified line heat
source. As copper has a relatively large temperature coefficient
close to 0.004 K�1, heaters also serve as resistance temperature
detectors and are used to simultaneously measure the compart-
ment’s temperature while heating. To compensate for heat loss in
the axial direction, the temperature rise at the compartment is
only measured at the central section, while the compartment is
heated over its entire length.

Due to the deviation from the ideal line heat source geometry
and the complex interior structure of the payload compartment,
the standard evaluation method to determine thermal conductiv-
ity from the probe’s self-heating curve (as illustrated in Fig. 5)
cannot be directly applied. Rather, a physical model of the probe-
regolith system taking the relevant heat paths and heat capacities
into account must be used to invert the self-heating curves for the
regolith’s thermal conductivity (see e.g. Jones, 1988). An approach
similar to that followed by Langseth et al. (1972b) will be
adopted, who fitted the functional dependence of the self-heating
curve using a numerical model. This approach has been shown to
be robust with respect to the probe’s thermo-physical properties,
as well as the unknown contact resistance between the instru-
ment and the surrounding regolith (Grott et al., 2010).

While having a smaller depth resolution than the MUPUS
penetrator, HP3 is able to measure thermal conductivity over a
much larger distance to depths of up to 3–5 m. Together with a
measurement of the thermal gradient using temperature sensors
on the instrumented tether, HP3 will be able to determine the
surface heat flux of the Moon and Mars. Furthermore, since its
locomotion does not rely on gravity, it could as well be used on
minor bodies like asteroids and comets.

Another mole design with somewhat different features than
those of the HP3 mole has recently been developed and tested at
the Space Research Centre of the Polish Academy of Sciences,
Warsaw (Grygorczuk et al., 2009b).

4.8. Thermal sensors on Cassini/Huygens

The sensors outlined so far have been designed with measure-
ments of solid materials in mind. A sensor designed for a different
purpose was successfully flown during the Cassini/Huygens mis-
sion. The THP (thermal properties) experiment was part of the
Surface Science Package of the Huygens probe (Zarnecki et al.,
2005). Its sensors were designed to measure the thermal con-
ductivity of the tentative oceans on Titan’s surface as well as the
atmosphere. THP consisted of two pairs of 5 cm long platinum
wires which were enclosed in cylindrical cells to minimize the
effect of gas/liquid flow. The pairs were slightly different in
dimensions, one being designed for thermal measurements in
air, the other for measurements in a liquid. Thus, the wire and cell
radii were slightly different. The wire radius was 5 mm for the gas
cells and 12:5 mm for the liquid cells. The operating principle was
again the hot wire method (see e.g. Healy et al., 1976). This means
a wire was heated using a constant current and the wires’ change
in resistance was then measured as an indication of temperature
and thus thermal conductivity of the surrounding medium
(Hathi et al., 2007). The sensor worked nominally during the
descent of the Huygens probe towards Titan’s surface and made
measurements from approximately 30 km altitude downwards.
Thermal measurements pointed towards some liquid deposition
within the sensor capsules, which was attributed to either condensa-
tion or passing through layers of fog or clouds (Hathi et al., 2008).
5. Discussion and conclusions

In the preceding sections we have reviewed various designs for
thermal sensors, which have been constructed and used for
measuring either the thermal properties of materials and/or the
heat flux from the interior of planetary bodies, which is of
primary interest for understanding solar system evolution. While
the hot needle method is standard for determining the thermal
conductivity of homogeneous (porous or non-porous) materials in
a controlled laboratory environment and sometimes in the field, it
cannot be employed in an easy way on a planetary surface. Only a
few designs have been used on planetary missions up to now,
among them the Apollo heat flow and thermal conductivity experi-

ment HFE (on Apollo 15 and Apollo 17) and the recent Phoenix

physical properties probe TECP. While the former was inserted
into a pre-drilled borehole and used to determine both thermal
conductivity and lunar heat flux, the latter was able to measure
thermal conductivity and heat capacity of the Martian soil in the
uppermost 2–3 cm. The geometry of both designs was quite
different from that of a thin needle sensor, therefore an elabora-
tive evaluation procedure was necessary to derive the parameters
of interest. The third design that has been developed for space
applications is the so-called MUPUS penetrator mounted aboard
the lander Philae of ESA’s cornerstone mission Rosetta, which is
currently on the way to its target comet. Again, this is not a
standard hot needle sensor, but rather a sequence of short hollow
cylinders, that can be heated independently. This construction
will allow to obtain some information on the variation of thermal
properties with depth. But again, interpretation of the data will
not be easy and demands to apply detailed numerical modeling
rather than a standard evaluation procedure.

As we can conclude from the descriptions given above there exist
a couple of methods to determine the thermal properties (in
particular thermal conductivity) of materials as well as the heat flux
from a planetary interior by in situ methods. All of them are based on
accurate temperature measurements at well defined positions.

Concerning the evaluation of heat conductivity, the most
frequently used method is the so-called line heat source method,
where a long and thin needle is inserted into a homogeneous
medium and heated with a constant power. The advantage of this
method is the easy way to determine thermal conductivity from a
simple temperature measurement: on a semi-logarithmic plot
(needle temperature versus lnt), after an initial nonlinear part the
temperature increase should become linear and the inclination of
the curve is inversely proportional to the thermal conductivity of
the surrounding medium.

The formulae used for the thin needle method are derived
from a more general theory of heat conduction in axisymmetric
cylindrical systems, for which analytic solutions are known. These
are cylinders with a finite radius, which can be heated either
instantaneously by a heat source or by a constant power source
over a finite time.

Geophysical probes with the aim to measure the heat flux
from the Earth’s interior in situ have been constructed and used
first in the 1950s in the pioneering work of Bullard (1954). He
used a several meters long steel tube with a diameter of 27 mm,
which was equipped with two thermocouple junctions. This
heavy rod was rammed into the ground of the Atlantic Ocean
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and used to measure the vertical temperature gradient across the
uppermost meters below the sea floor with high accuracy. These
measurements allowed him to derive the intrinsic heat flux from
the Earth interior largely unaffected by diurnal and seasonal
variations.

While heat flux measurements from the Earth’s interior and
their variations are in the meantime well monitored, the situation
is very different for extraterrestrial planetary bodies. Here there
exist to date very limited data. Actually, in situ measurements of
the interior heat flux and the thermal conductivity of the near
surface layer have only been performed for the Moon in the frame
of two Apollo missions (Apollo 15 and Apollo 17) in the years 1971
and 1972. They carried a surface science package named ALSEP,
which included a thermal conductivity and heat flow probe
inserted into a pre-drilled borehole. Another data set was added
recently by the TECP-instrument of NASA’s successful Mars
mission Phoenix, which delivered a lander in the vicinity of the
north polar cap of Mars.

Instruments with the aim to measure the interior heat flux and
the thermal conductivity of planetary bodies have also been
designed and built for other space missions. These include designs
that deviate significantly from the heated needle method. The
experiment MUPUS is a sensor aboard the comet lander Philae,
which currently flies aboard ESA’s comet mission Rosetta. This
sensor will be hammered into the surface of the comet nucleus to
a depth of 32 cm. Over this depth it can measure the natural
temperature variations with a resolution of a few centimeters. As
the individual temperature sensors can also act as heaters in this
instrument, it may also be able to retrieve at least some crude
information on the thermal conductivity of individual near sur-
face layers (for example discern a dust mantle with very low
conductivity from a cohesive layer still containing sintered ice).
Other concepts of thermal sensors that have been developed for
future missions are heated disks with a flat geometry. Such a
system was developed and tested for the Japanese penetrator
Lunar-A. Although the Lunar-A mission could not be completed as
originally planned, these developments might be used for other
lunar or planetary missions.

In summary, one can say that there are two basically different
evaluation methods to derive thermal properties from measured
temperature profiles in heated probes: (i) Semi-analytic models
based on the properties of axisymmetric configurations and (ii)
fully numerical models using e.g. finite element or finite differ-
ence approximations of the heat conduction equations and
boundary conditions.

5.1. Cylinder-symmetric solutions

Since most of the ‘‘active’’ probes built for field measurements
and/or space applications have a cylinder-symmetric geometry,
the evaluation methods make use of the cylinder-symmetric
solutions of the heat conduction equation. The most popular
method for measuring and evaluating the thermal conductivity
of a material is the hot needle method, where thermal conductiv-
ity can be calculated by a simple algebraic formula from the
measured temperature rise of the sensor in response to a known
heat input. However, this formula can only be applied unambigu-
ously if:
�
 The material where the sensor is imbedded has a homoge-
neous structure over the length of the heated part and does
not undergo phase transitions (like melting, sublimation, etc.)
during the time of the measurement. In particular this means
that any layering would disturb the measurement.

�
 The natural temperature gradient in the material over the

length of the sensor is negligible.
�
 The length/diameter ratio of the sensor is reasonably high
(about 20:1 minimum), so that the sensor can be approxi-
mated as an infinitely long thin wire and axial losses are
negligible.

From the discussion in the previous sections it appears obvious
that it cannot be taken for granted that all these conditions are
safely fulfilled, especially when such measurements are per-
formed on the unknown surface of a planetary body or a comet
nucleus. While the assumption of a cylinder symmetric config-
uration is fulfilled in most of the sensors constructed for extra-
terrestrial applications, the geometry of the heaters used in the
Apollo thermal probes as well as the heater elements comprising
the Rosetta/Philae MUPUS probe is strongly deviating from a
slender needle geometry and therefore axial heat losses play a
much bigger role. This should be expected even to a much higher
extent, since the thermal conductivities derived for the lunar
regolith from the Apollo heat flow and thermal conductivity

experiment are extremely low, due to the high vacuum environ-
ment. Nevertheless, as noted by Langseth et al. (1972a,b), the
heating curves obtained from the Apollo thermal conductivity
measurements in the lunar regolith could be fitted quite well by
an algebraic relation very similar to the one used for the heated
needle probe, for heating times exceeding 20 hours. This lends
some credibility to the view that—with appropriate calibrations
and comparison measurements—the standard line heat source
theory can be applied to some extent also in the case of short
(cylindrically shaped) heaters, if reasonably long heating times
are applied. The same conclusion was found by Kömle et al.
(2010) based on laboratory measurements with a hollow cylind-
rical sensor. Nevertheless—when reviewing the existing literature
both of the ‘‘space community’’ and in other fields where thermal
conductivity measurements are important (e.g. soil and rock
physics, food production and storage, geo-engineering, etc.) the
influence of axial heat losses on the accuracy of thermal con-
ductivity measurements has to date received little attention. Both
in the papers associated with the Apollo measurements and in the
work done up to now for a proper interpretation of the MUPUS
measurements either the integral solutions given by Carslaw and
Jaeger (1959) or the standard line heat source formula have been
applied, ignoring largely the influence of axial losses. Interest-
ingly, from the classical papers of the 1950s only in the work by
Blackwell (1953, 1954) the problem of axial heat losses in a
thermal conductivity measurement is treated in some detail, but
for a different geometry (rectangular slab rather than axisymme-
try). However, as noted by the author himself, the problem of the

axial flow error, etc. was not completely solved. In a recent paper
Seiferlin (2006) has addressed this question again and proposed a
way to compensate for it by using the so-called guard heaters in
addition to the main heating element, from which the thermal
conductivity is derived.

5.2. Fully numerical models

With the rapid development of computer-aided computational
tools a vast field of new possibilities opened up for a more
detailed evaluation of thermal measurements. First, while it still
remains extremely useful to build new models based on the
classical axisymmetric formulae given in the papers by Jaeger and
the other pioneers, it is now much less time-consuming to
calculate solutions including the numerical evaluation of integrals
involving Bessel functions. While Bullard and others had to
evaluate these integrals in a cumbersome way and finally pro-
duced tables with a rather rough parameter resolution, with
today’s computing possibilities these tasks can be done much
faster and more efficient. Moreover, we are not necessarily
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restricted to axisymmetric configurations, but can produce
numerical solutions in a quite arbitrary geometry.

Finite element software packages like e.g. COMSOL or ANSYS4

are able to solve the heat conduction equation with the appro-
priate boundary conditions on a numerical grid of variable cell
size and also allow to study non-axisymmetric configurations.
Heat sources are not necessarily restricted to line or surface
sources, but can also be modeled as volume sources with a finite
extent. Nevertheless the semi-analytic solutions compiled in
Carslaw and Jaeger (1959) and the other reference articles cited
before remain important, because they describe benchmark cases
that can be compared with corresponding numerical solutions, in
order to judge the quality and accuracy of the numerics.
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Fig. 16. (a) Sensor cylinder with bore-stem mantle in an infinite exterior medium.

A finite cross-section containing the symmetry axis (dashed line) is exhibited,

with bold lines indicating the boundaries of surface conductance H1 and H2,

respectively. (b) Integration contour for inverse Laplace transform to obtain T and

T2. (c) Contour used for T1, compassing the singularity p¼�1=g.
Appendix A. Temperature decay of the Apollo heat flow
probes

We investigate the temperature evolution in a cylinder of infinite
length which is composed of an inner cylinder of radius a (sensor,
Region 1) and a cylindrical sheath (borestem, Region 2) of outer
radius b, placed in an infinite medium (Region 3). The configuration is
illustrated in Fig. 16a. Regions 1 and 2 are described by their specific
heat Sn per cylinder length. In order that this description is valid, it
has to be assumed that the cylinder is made of ideal conductors. More
precisely, the thermal conductivity of the materials in Regions 1 and
2 must be so high that the temperatures (T1 and T2, respectively) do
not vary spatially within these regions. The thermal property of the
boundary between the inner cylinder and its mantle is described by
the surface conductance H1 (heat transferred per area, time and
temperature jump at the boundary). Similarly, H2 denotes the surface
conductance of the boundary between the sheath and the surround-
ing medium. We further use the abbreviations (43), where the
conductivity l and the diffusivity k describe the external medium
in Region 3.

Our aim is to determine the temperatures T1(t), T2(t) and T(r,t)
in Regions 1–3, with their respective initial values T10, T20 and T1
at t¼0 being prescribed (the denotation T1 indicating that this is
the temperature approached everywhere as t-1). A closed form
solution of the governing equations in the three regions is
possible via Laplace transformation. For Region 3 the heat con-
duction equation and the boundary relation at r¼b are needed,
which read

@2 ~T

@r2
þ

1

r

@ ~T

@r
�

p

k
~T ¼�

T1
k ð53Þ

@ ~T

@r

					
b

¼
H2

l
ð ~T jb� ~T 2Þ ð54Þ

ð�Þjb denoting the value of ð�Þ at r¼b. Here and in the following the
tilde over a function signifies its Laplace transform with regard to
time, using p as the independent variable of the transform. Due to
the axial symmetry of the configuration, the temperature T(r,t)
and its Laplace transform

~T ðr,pÞ ¼

Z 1
0

Tðr,tÞe�pt dt ð55Þ
4 Websites: www.comsol.com and www.ansys.com.
depend only on the radial distance r from the cylinder axis (and
on t or p, respectively). The heat flow q1 ¼ 2paH1ðT2�T1Þ per
cylinder length through the cylindrical boundary at r¼a deter-
mines the temperature change @T1=@t¼ q1=S1 in Region 1. Simi-
larly, the flows through the boundaries at r¼a and r¼b are
responsible for the temperature change in Region 2. The Laplace
transforms of the corresponding relations are

S1ðp ~T 1�T10Þ ¼ 2paH1ð
~T 2�

~T 1Þ ð56Þ

S2ðp ~T 2�T20Þ ¼ 2paH1ð
~T 1�

~T 2Þþ2pbH2ð
~T jb� ~T 2Þ ð57Þ

where the Laplace transforms of the derivatives ~@Tn=@t ¼ p ~T n�Tn0

are used. From these two equations ~T 1 and ~T 2 can be determined
as functions of ~T jb. The so obtained

~T 2 ¼
ŷþ2pbH2ð1þgpÞ ~T jb

ẑ
ð58Þ

is substituted into (54), yielding

@ ~T

@r

					
b

ẑl
H2
� ~T jbx̂þ ŷ ¼ 0 ð59Þ

with x̂, ŷ, and ẑ being polynomials in the variable p,

x̂ ¼ ðS1þS2ÞpþS2gp2 ð60Þ

ŷ ¼ S1T10þS2T20þS2T20gp ð61Þ

ẑ ¼ 2pbH2þpðS1þS2þ2pbH2gÞþS2gp2 ¼ x̂þ2pbH2ð1þgpÞ ð62Þ

The solution of (53) is

~T ¼
T1
p
þgðpÞ K0ðqrÞ ð63Þ

www.comsol.com
www.comsol.com
www.comsol.com
www.comsol.com
www.ansys.com
www.ansys.com
www.ansys.com
www.ansys.com
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with q¼
ffiffiffiffiffiffiffiffiffi
p=k

p
and K0 being the modified Bessel function of second

kind and zeroth order. For simplicity we put T1 ¼ 0 in the derivation,
shifting all temperatures by T1 in the final result. This procedure is
valid since the governing equations (53)–(57) are conserved under a
shift of all temperatures appearing in them. T(r,t) is obtained by
applying the inverse Laplace transform to ~T ðr,pÞ:

T ¼
1

2pi

Z
C

gðpÞK0ðqrÞept dp ð64Þ

where the contour C is a straight line from x�i1 to xþ i1with x40.
Since the integrand is analytic with a branch cut along the negative
real axis, the contour can be modified to the path shown in Fig. 16b.
The path is divided into three parts, two straight lines parallel to the
negative real axis (Cþ above and C� below the axis), and a circle C3 of
radius e around the origin. In the limit e-0 the contribution of the
integral along the circle vanishes, because g(p) is finite at p¼0, as will
be shown in the following. Substituting (63) with T1 ¼ 0 into (59) we
find g(p) after reordering and taking K 00 ¼�K1 into account,

gðpÞ ¼
ŷ

x̂K0ðqbÞþ l
H2

ẑqK1ðqbÞ
ð65Þ

Let Tþ and T� denote the contributions to T in (64) which stem
from the contour parts Cþ and C�, respectively. Although p runs
through the same values on both paths, q¼

ffiffiffiffiffiffiffiffiffi
p=k

p
does not, as the

square root has to be defined in such a way that from any point of
C each other point on C must be reached by the same analytic
continuation. The canonical definition is to let q be positive
imaginary on Cþ and negative imaginary on C�. This suggests
the substitution p¼�kx2=b2, and q7 ¼7 ix=b with the upper/
lower sign being used for C7 . The integrals Tþ and T� hence read

T7 ¼ 7
1

2pi

Z 1
0

g7 ðpÞK0ðq7 rÞexpð�tx2Þ �
2k
b2

� �
x dx ð66Þ

where the subscript sign in g7 ðpÞ indicates whether qþ or q� is to be
substituted for q in (65). By means of the Bessel functions relations

qn7 Knðq7 bÞ ¼
xe7 ip=2

b

� �n

Knðxe7 ip=2Þ

¼�
x

b

� �n ip
2

eð71�1Þnip=2Hð2Þn ðxeð71�1Þip=2Þ

¼
x

b

� �n ip
2

eð71þ1Þnip=2Hð1Þn ðxeð71þ1Þip=2Þ ð67Þ

Hð1Þn ðzÞ ¼ JnðzÞþYnðzÞ and Hð2Þn ðzÞ ¼ JnðzÞ�YnðzÞ we find

½gþ ðpÞ K0ðqþ rÞ�g�ðpÞ K0ðq�rÞ� ¼

þ
ŷHð2Þ0 ðxr=bÞ

x̂Hð2Þ0 ðxÞþ ẑhxHð2Þ1 ðxÞ
�

ŷHð1Þ0 ðxr=bÞ

x̂Hð1Þ0 ðxÞþ ẑhxHð1Þ1 ðxÞ

¼�2iŷ
Y0ðxr=bÞ½x̂J0ðxÞþ ẑhxJ1ðxÞ��J0ðxr=bÞ½x̂Y0ðxÞþ ẑhxY1ðxÞ�

½x̂J0ðxÞþ ẑhxJ1ðxÞ�
2þ½x̂Y0ðxÞþ ẑhxY1ðxÞ�

2

ð68Þ

Expressing x̂, ŷ and ẑ in terms of the variable x and the
symbols defined in (43),

x̂ ¼�
k
b2
ðS1þS2Þx

2½1�Ax2
� ð69Þ

ŷ ¼ ðS1þS2Þ
S1T10þS2T20

S1þS2
�T20Ax2

� �
ð70Þ

ẑ ¼�
k

hb2
ðS1þS2Þ½�aþðhþaBÞx2�hAx4

� ð71Þ

we obtain an integral of a real function for the temperature
evolution T¼Tþ þ T� in the external medium:

T ¼�
2

p

Z 1
0

ŜðxÞ½ĴðxÞY0ðxr=bÞ�Ŷ ðxÞJ0ðxr=bÞ�

ĴðxÞ2þ Ŷ ðxÞ2
e�tx2

dx ð72Þ
with

ŜðxÞ ¼
S1T10þS2T20

S1þS2
�T20Ax2

ð73Þ

ĴðxÞ ¼ x½1�Ax2
�J0ðxÞþ½�aþðhþaBÞx2�hAx4

�J1ðxÞ ð74Þ

Ŷ ðxÞ ¼ x½1�Ax2
�Y0ðxÞþ½�aþðhþaBÞx2�hAx4

�Y1ðxÞ ð75Þ

Taking the relations J00ðxÞ ¼�J1ðxÞ, Y 00ðxÞ ¼ �Y1ðxÞ and
J1ðxÞY0ðxÞ�Y1ðxÞJ0ðxÞ ¼ 2=ðpxÞ into account, the temperature and
its gradient at the boundary r¼b approached from outside can be
written as

Tjb ¼�
4

p2

Z 1
0

ŜðxÞ½�aþðhþaBÞx2�hAx4
�

x½ĴðxÞ2þ Ŷ ðxÞ2�
e�tx2

dx ð76Þ
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¼�
4

p2b

Z 1
0

ŜðxÞx½1�Ax2
�

ĴðxÞ2þ Ŷ ðxÞ2
e�tx2

dx ð77Þ

Substitution of these boundary values in (54) yields the
temperature T2 in the cylindrical sheath (borestem),

T2 ¼
4a
p2

Z 1
0

ŜðxÞ½1�Bx2
�

x½ĴðxÞ2þ Ŷ ðxÞ2�
e�tx2

dx ð78Þ

By means of (54) and (56) we determine ~T 1 as

~T 1 ¼
~T 2þgT10

1þgp
¼

~T jb�
l

H2

@ ~T
@r

			
b
þgT10

1þgp
ð79Þ

Applying the inverse Laplace transformation and utilizing
K 00ðzÞ ¼ �K1ðzÞ leads to

T1 ¼
1

2pi

Z
C

gðpÞ K0ðqbÞþ
l

H2
qK1ðqbÞ

� �
1þgp

ept dpþT10e�t=g ð80Þ

where the last term is the inverse Laplace transform of
T10g=ð1þgpÞ. In the above integral the integration contour C

cannot be changed in the same way as in (64) due to the
singularity of the integrand at p¼�1=g. Instead, one has to use
the contour depicted in Fig. 16c, where additional semicircles C\
and C[ of radius e compass p¼�1=g above and below the real
axis, respectively. The integral over the other parts of the contour
can be treated in analogy to (64) as e-0, i.e. the substitutions
p¼�kx2=b2 and q7 ¼ 7 ix=b are applied to deal with the inte-
grals over the straight lines Cþ and C� parallel to the negative real
axis and the contribution of the circle C3 around the origin
vanishes. According to (79) this procedure results in the integral
(78) with its integrand divided by 1þgp¼ 1�Bx2. The integral
over C\ can be calculated on the basis of the substitution
p¼�1=gþeexpðifÞ with the angle f running from 0 to p. In the
limit e-0 we have x̂-�S1=g, ŷ-S1T10, ẑ-�S1=g, and
gðpÞ½K0ðqbÞþðl=H2ÞqK1ðqbÞ�-�gT10. Hence, the contribution of
the contour C\ to T1 converges to

1

2pi

Z p

0

�gT10

gexpðifÞ
e�t=gexpðifÞi df¼�

T10

2
e�t=g ð81Þ

A similar derivation shows that the integral over C[ has the
same limit. Hence, the contributions of C\, C[ and the term
T10e�t=g in (80) cancel each other, leaving only the integrals over
the straight lines parallel to the real axis. Thus, the final formula
for the temperature in the sensor-region 1 becomes

T1 ¼
4a
p2

Z 1
0

ŜðxÞ

x½ĴðxÞ2þ Ŷ ðxÞ2�
e�tx2

dx ð82Þ

In the special case where the sample and the borestem have the same
initial temperature, T10¼T20¼T0, one obtains ŜðxÞ ¼ T0ð1�Ax2

Þ, and
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the result (82) coincides with (41) and (42) if the initially mentioned
shift of temperatures by T1 is performed.
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