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Abstract. The Linked Open Data (LOD) cloud is expanding continu-
ously. Entities appear, change, and disappear over time. However, rela-
tively little is known about the dynamics of the entities, i. e., the charac-
teristics of their temporal evolution. In this paper, we employ clustering
techniques over the dynamics of entities to determine common temporal
patterns. We define an entity as RDF resource together with its attached
RDF types and properties. The quality of the clusterings is evaluated
using entity features such as the entities’ properties, RDF types, and
pay-level domain. In addition, we investigate to what extend entities
that share a feature value change together over time. As dataset, we use
weekly LOD snapshots over a period of more than three years provided
by the Dynamic Linked Data Observatory. Insights into the dynamics of
entities on the LOD cloud has strong practical implications to any appli-
cation requiring fresh caches of LOD. The range of applications is from
determining crawling strategies for LOD, caching SPARQL queries, to
programming against LOD, and recommending vocabularies for reusing
LOD vocabularies.

1 Introduction

The Linked Open Data (LOD) cloud is a global information space to structurally
represent and connect data. Since its advent in 2007, it has been continuously
evolving and is covering a wide range of domains [19], today. Understanding
the evolution of the LOD cloud is important for different applications such as
LOD caching [22], indexing of distributed data sources [12], and query optimiza-
tion [14]. For instance, Umbrich et al. [22] developed a query execution engine
taking into account an analysis whether a dataset is static or dynamic, in order
to automatically decide whether data should be retrieved from caches or from
the original LOD cloud. The authors have compared two snapshots of a LOD
dataset captured at two different points in time and analyzed which triples have
been preserved, deleted, and added. Käfer et al. [10] quantified changes with
respect to set of triples, set of links, and schema signature. Dividino et al. [5]
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measured changes with respect to the schema information of a dataset. While
the aforementioned works focused on evaluating changes between two different
points in time, Dividino et al. [4] also analyzed the temporal dynamics of a
dataset, i. e., the temporal evolution of the LOD cloud over the entire period.
They presented detailed analyses of LOD evolution for thirteen LOD sources
and represent the degree of evolution by a non-negative, single value. The result
of the analyses enables to crawl LOD documents more efficiently [3].

In the realm of web search, knowledge bases contain information about dif-
ferent real-world objects or concepts commonly referred to as entities. Since the
most popular type of queries contain entities [26], it is important to understand
temporal dynamics of entities, in order to keep information of entities up to date
and accurate. To best of our knowledge, few works have conducted an analysis of
temporal dynamics in the entity level such as the early work of Ding et al. [2]. In
terms of applications, triple stores are accessed by various web data applications
via SPARQL queries. Martin et al. [13] showed that SPARQL query caching im-
prove the performance of query engines. While they assumed that they could be
aware of all updates of data, in practice it is not easy. In addition, recent profiling
methods utilize entities from the LOD cloud. Schuhmacher et al. [20] proposed
a document profiling method using DBpedia. Their method annotates a given
document with DBpedia entities using a snapshot of DBpedia. It is important
to take into account the temporal dynamics of entities, because DBpedia has
been updated continuously and a part of information in a snapshot of DBpedia
can quickly get stale.

In this paper, we analyze temporal dynamics of entities on the LOD cloud. To
this end, we use snapshots of the LOD cloud over three years. We first introduce
how to define entities on the LOD cloud. Subsequently, we measure the degree of
changes of entities between two snapshots and represent the dynamics of entities
as time series. We use two different representations of entities and two different
distance measures to compute the degree of changes. In addition, we introduce
different triple weighting methods, where each triple in the entity has different
importance. We apply k-means++ clustering to find out temporal patterns of
entity dynamics. We discover dominant temporal patterns in the clusters by
using a periodicity detection algorithm by Elfeky et al. [6]. Subsequently, we
investigate which features of entities control patterns of entity dynamics.

In Section 2, we review related work. Subsequently, we introduce basic for-
malization in Section 3. We compute and determine temporal patterns of entity
dynamics and analyze the periodicities of them in Section 4. Section 5 describes
the data. We provide the observed temporal patterns of entity dynamics and an-
alyze the effects from entity features in Section 6, before concluding this work.

2 Related Work

In this section, we review works tackling with LOD dynamics. Before describing
the related work, we distinguish “change” and “dynamics” along with Dividino
et al. [4]. Changes of LOD sources are analyzed with regarding to their sets of
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triples, sets of entities, or schema signatures. For example, given two snapshots
of a dataset captured at two different points in time, the change analysis at the
triple level includes which triples from the previous snapshot have been preserved
in the later snapshot, which triples have been deleted, or which ones have been
added. On the other hand, the dynamics of a dataset involves a notion of how
“fluid” a dataset is, i .e., how it behaves and evolves over a certain period of time.
Thus, the dynamics involves the analysis of its development over more than two
points in time.

Käfer et al. [10] provided the comprehensive analysis of the dynamics of LOD
based on monitoring 86, 696 LOD documents for 29 weeks. They found out that
5.0% of documents had gone offline and 62.2% of documents had no change.
In addition, they conducted the analysis on triple level. The result indicated
that additions of triples are much more frequent than deletions. Furthermore,
they observed that while object literals are the most dynamic element of triples,
predicates (i .e., properties) and RDF types defined by the predicate rdf:type

are static. They looked into the most dynamic predicates and identified that they
were often about trivial time stamps. Dividino et al. [4] attempted to grasp the
temporal dynamics of LOD sources. Beyond recent researches which focused on
changes by comparing two snapshots of a source [10], Dividino et al. [4] analyzed
dynamics of LOD sources. They proposed a monotone and positive function to
represent the dynamics as a value. They conducted detailed analyses with respect
to thirteen LOD sources and provided the statistics. Furthermore, Dividino et
al. [3] evaluated strategies to keep LOD stored in a local repository up to date
efficiently with limited bandwidth. Strategies define when to fetch data of which
data source. The experiment revealed that strategies based on dynamics of data
sources [4] performed best, compared to strategies based on the data source’s
age, PageRank, or size.

Below we describe works that conducted the analysis of entity dynamics.
Umbrich et al. [23] formed a labeled directed graph based on LOD, where a node
is an entity and an entity is represented by a subject URI. They analyzed entity
dynamics using this graph. They applied k-means clustering to group entities
with similar dynamics. After manual inspection, they observed that entities from
same domains were often found in same clusters. However, they considered only
whether there was a change or not and did not take into account the amount of
changes of entities. Popitsch et al. [16] provided statistics about entity changes
between two DBpedia snapshots with respect to four OWL classes (i .e., person,
organization, place, work). In terms of OWL classes, entities belonging to the
class person were active, because a lot of entities were removed and created. The
number of entities belonging to the class location increased the most. The focus
of the work by Popitsch [16] was not to analyze temporal dynamics of entities
but to develop an effective entity change detection framework to avoid broken
links. Thus, they have not conducted a more fine-grained analysis. Holzmann et
al. [9] looked into entity evolution, but focused on changes of entity names in
Wikipedia.
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3 Basic Formalization

In this section, we briefly introduce definitions and notations. Table 1 summarizes
the symbol notations and Table 2 shows a small example of LOD snapshots.

Data fetched from the LOD cloud is represented in the form of N-Triples3.
A triple x of a dataset X is represented as x = (s, p, o) where s, p, and o
correspond to a subject, predicate, and object. Please note that we focus on
analyzing triples and do not consider the contexts of the triples in this work,
i. e., the sources where these triples where obtained. Furthermore, we define the
sets of all possible URIs U , blank nodes B, and literals L. In a triple x, the
subject s ∈ U ∪B is a URI or a blank node, the predicate p ∈ U a URI, and the
object o ∈ U ∪B ∪L a URI, a blank node or a literal. Functions sub, pred, and
obj return the subject, predicate, and object of a given triple x, respectively. We
assume that the data from the different LOD sources is captured at some point
in time t. We define Xt as the set of triples (i .e., snapshot) captured at the point
in time t and X = {Xt1 , Xt2 , . . . , Xtn} as the collection of the snapshots at the
different points in time. Using the example in Table 2, Xt1 contains three triples
and each of Xt2 and Xt3 has five triples.

In order to investigate the temporal dynamics of the entities in the LOD
cloud, we represent an entity as set of triples returned by a function ε which
takes an entity key e ∈ U ∪ B and a point in time t as arguments. Below, we
introduce the definitions of entities and the entity function. We distinguish two
different representations of entities: EO

e,t denotes entities that are characterized

by RDF types and outgoing properties and EIO
e,t additionally considers incoming

properties.

Definition 1. An entity EO
e,t (Out) with RDF types and outgoing properties:

For a given entity key e and a point in time t, EO
e,t = εO(e, t) = {x | x ∈

Xt ∧ sub(x) = e}, where triples containing e as subject are grouped together as
an entity.

Definition 2. An entity EIO
e,t (InOut) with RDF types, outgoing properties

and incoming properties: For a given entity key e and a point in time t, EIO
e,t =

εO(e, t) = EO
e,t ∪ {x | x ∈ Xt ∧ obj(x) = e}, where triples containing e as subject

or object are grouped together as an entity.

We derive entities Ee,t for all unique URI e ∈ U ∪B with respect to each snap-
shot Xt. We use z to describe the entity representation. In this work, z = O or
z = IO. In Table 2, there are three entities db:Anne Smith, db:John Brown, and
db:Green Village in Xt3 when z = O. On the other hand, there are four entities
db:Anne Smith, db:John Brown, db:Green Village, and db:Green University

in Xt3 when z = IO.

3 http://www.w3.org/TR/n-triples/, last access on 11/05/2015
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Table 1: Symbol Notation
t a point in time

Xt a set of triples captured at a point in time t

X the set of all Xt

x = (s, p, o) a triple

s, p, o a subject, a predicate, an object

sub, pred, obj functions that returns s, p, and o for a given triple x

e an entity key, where e ∈ U

Ee,t an entity for a given entity key e at point in time t

Table 2: An example of snapshots.
Xt1 : a snapshot at time t1

db:Anne Smith db:location db:Green Village
db:Anne Smith db:works db:Green University
db:Green Village db:population 224123

Xt2 : a snapshot at time t2
db:Anne Smith db:location db:Green Village
db:Anne Smith db:works db:Green University
db:John Brown db:location db:Green Village
db:John Brown db:works db:Green Institute
db:Green Village db:population 223768

Xt3 : a snapshot at time t3
db:Anne Smith db:location db:Green Village
db:Anne Smith db:works db:Green University
db:John Brown db:location db:Green Village
db:John Brown db:works db:Green University
db:Green Village db:population 223540

4 Computing Temporal Patterns of Entity Dynamics

In this section, we describe how we determined the temporal patterns of entity
dynamics. First, Section 4.1 describes how to weigh different triples in an entity.
In Section 4.2, we explain how to measure a degree of changes of an entity
between two successive snapshots and how to represent entity dynamics as time
series. Section 4.3 provides the employed clustering method and optimization
metric, in order to find out the most representative temporal patterns of entity
dynamics. Subsequently, we investigate periodicities of the observed temporal
patterns in Section 4.4.

4.1 Triple Weighting

We assume that triples of an entity have different importance [20]. For ex-
ample, a triple (Barack Obama, dbp:vicepresident, Joe Biden) is considered
more important than a triple (Barack Obama, rdf:type, foaf:Person) for an
entity Barack Obama. Because there are a lot of entities whose rdf:type is
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foaf:Person, but a few entities which have a property dbp:vicepresident.
Thus, we should give a larger weight on more important triples. For instance, it
is not helpful to update a data cache due to a change of a trivial triple. Because
in practical applications, only important facts of the entities encoded in a knowl-
edge graph will be shown. Therefore, trivial changes like updating time-stamps
have no effect on most applications. In fact, Käfer et al. [10] observed that most
changes were updates of time-stamps, which are modeled as literals of a triple.
Therefore, we give a weight w(x) to each triple and analyze the entity dynamics
considering these weights. Below, we introduce methods to weigh triples, starting
from the baseline.

1. Baseline. We give the same weight to all triples.

wbaseline (x) = 1 (1)

Schuhmacher et al. [20] developed several methods to weigh semantic rela-
tions (i .e., predicates) between entities for document modeling. Based on their
work, we introduce a method to weigh triples. At the core of the weighting
method lies the information-theoretic notion of information content (IC) [21].
Then, the IC of a specific variable v = pred(x) can be computed as shown in
Equation 2, where P (v) is the probability that the random variable V shows the
specific outcome v.

IC(v) = − log(P (v)) (2)

Based on IC, Combined Information Content (combIC) is proposed to weigh
triples. Although the authors also introduced another method, Joint Information
Content (jointIC), we only provide the results provided by combIC. The results
of jointIC were very similar to those of combIC. We choose combIC, because it
requires less computation and demonstrates better results [20].

2. Combined Information Content (combIC). Weights are computed as
the sum of IC of a predicate and a object.

wcombIC (x) = IC
(
pred(x)

)
+ IC

(
obj(x)

)
(3)

Please note that the information theoretic weights are computed with respect to
each snapshot, i .e., each point in time. Therefore, probabilities such as P (pred(x))
must not be 0 theoretically. Based on this, we can finally define an entity as a
vector where each element is a weight of a triple.

Definition 3. Weighted entity vector ~Ee,t

An entity for a given entity key e and a point in time t is represented as a vector
described in Equation 4.

~Ee,t =
(
1e(xt,1) · w (xt,1) ,1e(xt,2) · w (xt,2) , . . . ,1e(xt,1) · w

(
xt,|Xt|

))
, (4)

where xt,i denotes the i-th triple in all unique triples from Xt, and 1e(x) is an
indicator function which returns 1 if Ee,t contains a triple x and 0 if not.

Using the example shown in Table 2, ~Edb:Annee Smith,t1 = (1, 1, 0), when using
the baseline weighting method. Because Edb:Annee Smith,t1 contains the first and
second triple of Xt1 and the indicator function 1db:Annee Smith returns 1 for the
first and second triples and 0 for the last one.
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4.2 Measuring Entity Dynamics

We first measure a degree of changes for a given entity key e and an entity
representation z (i .e., Out or InOut shown in Section 3) between two successive
snapshots, using a function δ. We introduce two variations of δ using cosine
distance in Equation 5, and Euclidean distance in Equation 6.

δcosd(e, z, t1, t2) = 1−
~Ez
e,t1 · ~Ez

e,t2

|| ~Ez
e,t1 || · || ~E

z
e,t2 ||

(5)

δeuclidean(e, z, t1, t2) =

√ ∑
x∈Ez

e,t1
∪Ez

e,t2

(
w(xe,t1)− w(xe,t2)

)2
(6)

Equation 5 is based on cosine similarity that is widely used. We modify it to
compute distance, since we focus on how much an entity is changed. If a triple
is contained in Ez

e,t1 and not in Ez
e,t2 , the weight of that triple in Ez

e,t2 is 0 and
vice versa. In Equation 6, w(xe,t) denotes a weight of a triple x for an entity
key e at a point in time t. Like Equation 5, if a triple is only contained in Ez

e,t1 ,
the weight of that triple at the point in time t2 is 0 and vice versa. Finally, we
represent the temporal dynamics of an entity as a series of entity changes as
defined below.

Definition 4. Temporal dynamics of an entity ∆(e, z)
The temporal dynamics of an entity are represented as a time series, where each
element denotes the amount of changes between two successive snapshots.

∆(e, z) = (δ(e, z, t1, t2), δ(e, z, t2, t3), . . . , δ(e, z, tn−1, tn)) (7)

We construct such an entity dynamics vector for all entities e. In order to find
patterns of entity dynamics, we apply a clustering algorithm as described below.

4.3 Time-series Clustering

For clustering, we leave out entity dynamics vectors where all elements are equal
0 (i .e., time series with no changes over the entire observed period). As clustering
method, we employ k-means++ [1] and use Euclidean distance as a distance
measure, as our previous work [15]. Compared to the traditional k-means, k-
means++ introduces an improved initial seeding [1]. In terms of the distance
measure, an extensive evaluation conducted by Wang et al. [24] demonstrates
that Euclidean distance is the most efficient measure for time series with a
reasonably high accuracy.

We find the optimal number of clusters k between 2 and 10 using Average
Silhouette [18]. Due to the computation cost, we randomly pick 0.1% of elements
from each cluster and compute Average Silhouette over them. A higher value
indicates a better clustering. We consider centroids of generated clusters as
representative temporal patterns of entity dynamics.
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4.4 Periodicity Detection

As results of clustering described in Section 4.3, we obtain time series that show
representative temporal patterns of entity dynamics. We further analyze these
time series by periodicity detection. Periodicity detection is the task to discover
the pattern at which a time series is periodic. For instance, temporal sequences
(1, 3, 2, 1, 3, 2) and (1, 2, 1, 2, 1, 2) have the periodicity of 3 and 2, respectively.
Computing periodicity over the observed entity dynamics ensures generalizabil-
ity of the observed temporal patterns. We employ a convolution-based algorithm
proposed by Elfeky et al. [6]. The algorithm outputs periodicity candidates with
confidence scores.

5 Dataset

We use the Dynamic Linked Data Observatory (DyLDO) dataset4. The DyLDO
dataset has been created to monitor a fixed set of LOD documents on a weekly
basis. The dataset is composed of 165 weekly snapshots over a period of three
years from May 2012 to July 2015. The DyLDO dataset contains various well
known and large LOD sources (e. g., dbpedia.com, bbc.co.uk) as well as less
commonly known ones (e. g., pokemon.com). For more detailed information about
the dataset, we refer to [11].

The dataset contains 27, 788, 902 unique entities (z = Out) and 2, 909, 700
unique entities (z = InOut) over the 165 snapshots. Figure 1 shows the dis-
tributions of entity frequencies for Out and InOut, respectively. According to
Figure 1, almost 75% of the entities appear only in one snapshot in both entity
representations Out and InOut. To conduct the time series clustering properly,
we focus on 2, 521, 617 entities in Out and 2, 950, 533 entities in InOut that
appear at more than 70% of snapshots.

6 Results and Analyses

We first report the observed temporal patterns of entity dynamics. Subsequently,
we investigate entity features that define temporal patterns of entity dynamics.

6.1 Temporal Patterns of Entity Dynamics

Table 3 shows the resulting clusters for each condition. Since we use two different
entity representations, two different distance measures, and two different triple
weighting methods, we have in total eight conditions to compute time series
and clustering. In terms of the optimal number of clusters k, generally Average
Silhouette suggests that a lower value of k gives better clustering, as observed
by Yang et al. [25]. Since we first remove all static entities (i .e., entities with
no change) before clustering, the optimal number of clusters shown in Table 3 is

4 http://swse.deri.org/dyldo/, last access on 12/11/2015
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Fig. 1: Distribution of entity frequencies in the entity representation Out (left)
and in the entity representation InOut (right). In both, most entities appear at
only one snapshot.

one larger than the optimized k. We introduce a cluster cs to accommodate the
static entities. In each condition, most entities belong to one cluster and other
clusters have relatively small number of entities.

Figure 2 provides the representative temporal patterns of entities (i .e., cen-
troids of observed clusters) for each condition. We observe that the number
of clusters reduces significantly in conditions using information theoretic triple
weighting methods. Especially, when the number of clusters is two, one clus-
ter represents a large amount of changes consistently over time and the other
shows consistent small amount of changes. Therefore, information theoretic triple
weighting methods distinguish entities which have important changes from en-
tities whose changes are less important.

Table 4 shows periodicities of each temporal pattern shown in Figure 2. All
temporal patterns have a periodicity, thus the amount of entity change has some
regularity.

Table 3: Resulting clusters in each condition. The number of cluster is optimized
by Average Silhouette. cs denotes a cluster where entities have no change over
all snapshots.

Condition opt. # of
clusters

# of entities in each cluster
z Distance IC cs c1 c2 c3 c4

Out Cosine Baseline 5 1,272,764 1,205,664 9,707 26,918 6,564
Out Cosine combIC 5 1,349,929 1,249,998 300,043 10,637 19,157
Out Euclidean Baseline 11 59,700 924,104 249,598 42 214,215

(c5) 690,506 (c6) 174,672 (c7) 102,182 (c8) 27,684
(c9) 28,749 (c10) 50,165

Out Euclidean combIC 3 0 2,491,617 30,000
InOut Cosine Baseline 4 1,691,961 18,409 305,245 934,918
InOut Cosine combIC 4 1,349,929 1,260,276 19,911 320,417
InOut Euclidean Baseline 5 449,645 1,826,488 39,895 29,358 605,147
InOut Euclidean combIC 3 389,945 2,525,664 34,924
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(a) Out Cosine Baseline (b) Out Cosine combIC (c) Out Euclidean Baseline

(d) Out Euclidean combIC (e) InOut Cosine Baseline (f) InOut Cosine combIC

(g) InOut Eucl. Baseline (h) InOut Eucl. combIC

Fig. 2: Temporal patterns of entity dynamics in each condition. The x-axis de-
notes a point in time. The y-axis shows δ, the amount of entity changes, defined
in Equations 5 and 6.

6.2 Features for Entity Dynamics

After finding the temporal patterns of entity dynamics, we investigate which
features of entities more likely control the temporal patterns of entity dynamics.
Umbrich et al. [23] manually analyzed entities from same domains and found
out that they are more likely to have similar temporal dynamics. However, the
observation is based on manual investigation and other possible features have
not been empirically evaluated. In this work, we compare the following four
features. Formally, we denote f(E) → v as a feature function which returns a
feature value for a given entity. v ∈ Vf is a feature value, where Vf denotes a set
of all possible feature values received by f .
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Table 4: Periodicity of temporal patterns of entity dynamics.
Condition Periodicity of each cluster (week)

z Distance IC c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Out Cosine Baseline 55 16 81 29

Out Cosine combIC 81 16 66 49

Out Euclidean Baseline 43 77 9 69 31 31 71 25 79 18

Out Euclidean combIC 56 56

InOut Cosine Baseline 16 55 81

InOut Cosine combIC 81 16 66

InOut Euclidean Baseline 55 31 79 31

InOut Euclidean combIC 56 31

– Type (f1): Most entities have one or more types defined by the predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#type (e .g., foaf:Person).

– Property (f2): Predicates (e .g., dbpedia-owl:foundedBy) in triples de-
scribe properties of an entity.

– Extended Characteristic Set (ECS) (f3): The combination of types and
properties leads to the definition of Extended Characteristic Set (ECS) [14].
Thus, in f3, v ∈ P(Vf1 ∪ Vf2). This feature function is stricter than f1 and
f2, because while entities can have several values of f1 and f2, they have
only one ECS.

– Pay level domain (PLD)(f4): An entity has a pay level domain (PLD) in
its URI. For instance, if an entity is defined by a URI http://dbpedia.org/
resource/Facebook, the PLD of the entity is http://dbpedia.org. PLD
is extracted using Guava5.

Please note that feature functions f1 and f2 can return more than one feature
values, since entities may own several properties and types. In order to find out
the features that most control the temporal patterns, we compare the clusterings
generated in Section 4.3 with clusterings obtained by using the features. We
denote C as a resulted clustering from Section 4.3 and c ∈ C as a cluster.

We use Rand Index R [17] as an evaluation metric, which is defined as
R = TP+TN

TP+TN+FP+FN . It is usually used to evaluate the accuracy of clustering.
However, we use it to evaluate the degree of the agreement between clustering
and classifications made by one of the four features. TP indicates the number
of entity pairs that belong to the same cluster in C as well as that receive a
same feature value v by a feature function f . For example, if the entities e1 and
e2 belong to a same cluster and have a common feature f4 value dbpedia.org,
we count the entity pair as TP . TN is the number of entity pairs that belong
to different clusters in C and that receive different feature values by a feature
function f . The denominator denotes the number of entity pairs. Due to the
computation cost, we randomly pick 10, 000 entity pairs from C and compute
Rand Index.

5 https://github.com/google/guava/wiki/Release19, last access on 12/17/2015
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Table 5 shows the results of the analysis. In terms of f1, f2, and f3, feature
values of entities (i .e., properties and types) can change over time. Thus, Rand
Index may differ in different snapshots. For these features, we compute Rand
Index for each point in time and report mean average and standard deviation in
Table 5.

Table 5: Analysis of Entity Features. For f1, f2, and f3, we compute the average
Rand Index over 165 snapshots, since feature values may change over time.
We report standard deviation in parentheses. The largest Rand Index in each
condition is marked in bold.

Condition Rand Index

z Distance IC f1 f2 f3 f4

Out Cosine Baseline 0.4840 (0.0051) 0.5352 (0.0088) 0.5337 (0.0162) 0.5819

Out Cosine combIC 0.3994 (0.0045) 0.5814 (0.0118) 0.6136 (0.0180) 0.5855

Out Euclidean Baseline 0.2334 (0.0041) 0.6890 (0.0274) 0.7766 (0.0188) 0.8388

Out Euclidean combIC 0.9765 (0.0016) 0.2094 (0.0304) 0.0763 (0.0321) 0.1758

InOut Cosine Baseline 0.4397 (0.0048) 0.5585 (0.0167) 0.5914 (0.0227) 0.5552

InOut Cosine combIC 0.4042 (0.0053) 0.5974 (0.0163) 0.6241 (0.0216) 0.5891

InOut Euclidean Baseline 0.4485 (0.0052) 0.5673 (0.0198) 0.5646 (0.0265) 0.5871

InOut Euclidean combIC 0.7503 (0.0043) 0.3760 (0.0286) 0.2784 (0.0158) 0.3596

7 Discussion

Periodicity of temporal patterns. In Table 4, we see that a lot of temporal
patterns have periodicity of 55 and 56 weeks. It indicates that entities change
on a year cycle. Thus, the amount of entity changes at a certain point in
time can be predicted by looking the amount of entity changes at a year ago.

Difference between entity representations. We observe a small difference
between two entity representations. A possible reason is a small difference
between the numbers of triples analyzed at each entity representation. When
z = InOut, we analyzed 16.78% triples more compared to when z = Out.
Therefore, the effects from incoming properties is small over all.

Difference between triple weighting methods. When using Euclidean dis-
tance and combIC, we observe a large cluster where the amount of changes is
consistently small (see Table 3 and Figures 2(d)(h)). It indicates that most
entities are made small changes consistently. On the other hand, a small por-
tion of entities belong to clusters where the amount of changes is large during
the entire observed period. Therefore, the information-theoretic method dis-
tinguishes entities which have consistently important changes from entities
whose changes are always trivial. When using the cosine distance, the dif-
ference between triple weighting methods is small. A possible reason is the
normalization by the denominator in Equation 5.
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Difference between distance measures. We used the cosine distance and
Euclidean distance. While the cosine distance is a value between 0 and 1
(due to normalization by the denominator in Equation 5), Euclidean distance
takes into account the size of entities and the number of changed triples in
entities. Thus, Euclidean is a value≥ 0. This difference influences the number
of clusters. The number of clusters at conditions with Euclidean distance is
always larger than when using the cosine distance. For instance, in Figure
2(c), we see a cluster where the amount of changes is always over 10 (green
line). On the other hand, in the cosine distance, a value close to 1 indicates
that most triples in entities are changed regardless of the number of triples.

Features for entity dynamics. When the baseline is employed as triple weight-
ing method, the feature PLD (f4) is most likely to determine temporal pat-
terns of entity dynamics. This is in line with the observation by Umbrich
et al.[23]. When using the cosine distance and information-theoretic triple
weighting methods, the feature ECS (f3) performs best. Since the cosine dis-
tance is proportional to the percentage of changed triples in the entities, the
entity structure is important to determine temporal patterns. Thus, when
using the cosine distance, it is not trivial which specific properties and types
are appeared in the entities together. For instance, there is an entity with
a property whose object value changes always. For this entity, the cosine
distance would be small, if many of the other properties are static. In con-
trast, the cosine distance would be large, if the entity has only a few other
properties that are static.

Potential limitation of the analysis. The analysis shown in this paper can
be biased by setting the threshold to 70% appearance of entities in all of the
weekly snapshots. However, we believe this bias is little, since we analyzed
71.92% of all triples that appeared in each snapshot. We think that this
has grasped the most prominent and dominant temporal patterns of entity
dynamics. In addition, the analysis can be biased by the dataset we used.
But the dataset covers both most authoritative and randomly-selected LOD
documents [11].

Co-evolution of the amount of entity changes and feature values. Fea-
ture values of f1, f2, and f3 can change over time. Thus, Rand Index may
differ in different snapshots. Table 5 reports the mean average and standard
deviations for the index. As one can see, the standard deviations in Table 5
are overall very small. It indicates that feature values of entities are not
frequently changed, as observed by Käfer et al. [10] and Gottron et al. [8].
Furthermore, the standard deviations of the feature Type (f1) are smaller
than other features (f2 and f3). Therefore, the feature Type f1 is the most
static entity feature among them.

Applications of this analysis. The analysis provided by this paper is useful
e .g., to predict the temporal patterns and the amount of changes of newborn
entities. For instance, if we get new entities, we can predict the temporal
pattern of this entity dynamics by looking into feature values of entities. In
terms of the information-theoretic triple weighting method, we think that
they are useful to develop cache strategies for triple stores. According to [7],
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a predicate value is fixed in over 85% of SPARQL queries asking about
a certain entity. We assume that users issue queries with more important
predicates for searching entity information. However, this is subject to future
research.

8 Conclusion

In this paper, we analyze the temporal patterns of entity dynamics. This analysis
had not been done so far. As dataset, we use weekly LOD snapshots over a period
of almost three years provided by the Dynamic Linked Data Observatory. The
result demonstrates that entities that share a common PLD are more likely to
change together over time, when using the baseline as triple weighting method.
However, when using Euclidean distance and information-theoretic triple weight-
ing methods, entities that have a same type are more likely to change together.
Under this condition, clustering produces a large cluster where the amount of
changes is consistently small and a cluster where the amount of changes is overall
small. Therefore, the entity feature Type can distinguish entities that are given
important changes consistently from entities that have less important changes.
In terms of periodicity of observed temporal patterns of entity dynamics, most
entities change on a year-cycle with small amount of changes. The result of the
analysis shown in this paper can be applied to the wide range of the applications,
including determining crawling strategies for LOD, caching SPARQL queries, to
programming against LOD, and recommending vocabularies for reusing LOD
vocabularies.
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dynamics analysis of linked open data sources. In PROFILES, 2014.
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11. T. Käfer, J. Umbrich, A. Hogan, and A. Polleres. Towards a dynamic linked data
observatory. In LDOW. CEUR, 2012.

12. M. Konrath, T. Gottron, S. Staab, and A. Scherp. SchemEX-Efficient construction
of a data catalogue by stream-based indexing of linked data. Web Semantics,
16:52–58, 2012.

13. M. Martin, J. Unbehauen, and S. Auer. Improving the performance of semantic
web applications with SPARQL query caching. In ESWC. Springer, 2010.

14. T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins. In ICDE, pages 984–994. IEEE, 2011.

15. C. Nishioka and A. Scherp. Temporal patterns and periodicity of entity dynamics
in the Linked Open Data cloud. In K-CAP, page No. 22. ACM, 2015.

16. N. Popitsch and B. Haslhofer. DSNotify–a solution for event detection and link
maintenance in dynamic datasets. Web Semantics, 9(3):266–283, 2011.

17. W. M. Rand. Objective criteria for the evaluation of clustering methods. J. of the
American Statistical Association, 66(336):846850, 1971.

18. P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20, 1987.

19. M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the linked data best
practices in different topical domains. In ISWC, pages 245–260. Springer, 2014.

20. M. Schuhmacher and S. P. Ponzetto. Knowledge-based graph document modeling.
In WSDM, pages 543–552. ACM, 2014.

21. C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

22. J. Umbrich, M. Karnstedt, A. Hogan, and J. X. Parreira. Hybrid SPARQL queries:
fresh vs. fast results. In ISWC, pages 608–624. Springer, 2012.

23. J. Umbrich, M. Karnstedt, and S. Land. Towards understanding the changing web:
Mining the dynamics of linked-data sources and entities. In KDML, 2010.

24. X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh.
Experimental comparison of representation methods and distance measures for
time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.

25. J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM,
pages 177–186. ACM, 2011.

26. X. Yin and S. Shah. Building taxonomy of web search intents for name entity
queries. In WWW, pages 1001–1010. ACM, 2010.


