Accepted refereed manuscript of:

DOI: https://doi.org/10.1016/j.agee.2018.06.027

© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Fodder crop management benefits Northern Lapwing (*Vanellus vanellus*) outside agri-environment schemes

Running title: Conservation benefits of fodder crop management

Heather M McCallum\(^a\), Jeremy D Wilson\(^a,b\), Mark G O’Brien\(^b,2\), David Beaumont\(^b\), Robert Sheldon\(^b,3\), Kirsty J Park\(^a\)

\(^a\)Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK; \(^b\)RSPB Centre for Conservation Science, RSPB Scotland, 2 Lochside View, Edinburgh Park, Edinburgh, EH12 9DH, UK.

heather.mccallum@rspb.org.uk, jeremy.wilson@rspb.org.uk, mark.obrien@birdlife.org, dave.beaumont@rspb.org.uk, vanellus1970@yahoo.co.uk, k.j.park@stir.ac.uk

Corresponding author: Heather McCallum, RSPB Centre for Conservation Science, RSPB Scotland, 2 Lochside View, Edinburgh Park, Edinburgh, EH12 9DH, UK. Tel: +44 131 317 4131 heather.mccallum@rspb.org.uk

Key words: conservation; earthworm; grassland; shorebird; wader; soil pH

\(^1\)RSPB Centre for Conservation Science, RSPB Scotland, 2 Lochside View, Edinburgh Park, Edinburgh, EH12 9DH, UK;

\(^2\)BirdLife International Pacific Programme, GPO Box 1 8332, Suva, Fiji; \(^3\)RDS Conservation, c/o 78 Riverdene Road, Ilford, IG1 2EA, UK.
Abstract

To date, agri-environment schemes (AES) have had limited success in reversing biodiversity loss over greater spatial extents than fields and farms, and vary widely in their cost-effectiveness. Here, over nine years, we make use of the management initiative of a farmer in an upland livestock farming landscape in Scotland, undertaken wholly outside AES, to examine its effect on breeding densities of Northern Lapwing *Vanellus vanellus*. Management designed by the farmer involved planting a *Brassica* fodder crop for two consecutive years followed by reseeding with grass, with eight out of 17 fields at the farm undergoing this management since 1997. After controlling for other habitat parameters of importance, the density of breeding Lapwings was 52% higher in fields that had undergone fodder crop management than those that had not. Densities were highest in the first year after the fodder crop was planted, prior to reseeding with grass, but remained above levels in control fields for approximately seven years after the fodder crop was last planted. Very high Lapwing densities (modelled density = 1 pair ha\(^{-1}\)) in the year after the fodder crop was planted likely result from the heterogeneous ground surface created by grazing of the crop providing an “attractive” nesting habitat. Continued high densities following reseeding with grass may partly be accounted for by philopatry, but the fact that they are field-specific also suggests that these fields continue to offer enhanced foraging conditions for several years. Fodder crop management was implemented at the study
site to fatten lambs over winter and ultimately improve grass condition for grazing. This system is therefore based on active farming and benefits both the farmer and breeding Lapwings. As such, it may be possible to implement it more widely without the need for high agri-environment payments. More generally, it is an example of the land owner being actively involved in developing conservation solutions in partnership with environmental research, rather than being seen as a passive recipient of knowledge as has typically been the case with the design of AES. Such approaches need to be adopted more consistently in designing interventions for environmental outcomes on farmland, but may be of particular importance in the UK if the certainties of European Union AES are to come to an end.
1. Introduction

Agriculture is the principal land use across Europe and accounts for over 40% of the European Union (EU) land area (European Commission, 2017). The EU’s Common Agricultural Policy (CAP) has been instrumental in directing public subsidy to production and thus driving agricultural intensification, with attendant widespread wildlife losses that have been particularly well documented for birds (Donald et al., 2006). Recognising the negative impacts of agricultural intensification on biodiversity, ‘greening’ of the CAP since the early 1990s has included agri-environment scheme (AES) funding designed to encourage the adoption of environmentally friendly management practices by compensating for lost income. To date, the success of AES in halting biodiversity loss has been mixed and more associated with the scale of implementation (farms) than the scale of policy ambition (national biodiversity loss) (Kleijn et al., 2011; Whittingham, 2011). Problems include implementation at too small a spatial scale (O’Brien and Wilson, 2011; Broyer et al., 2014), lack of appropriate measures for certain species, taxa or farming systems (Redpath et al., 2010; Fuentes-Montemayor et al., 2011) or conversely a large range of prescriptions that vary in their effectiveness or fail to deliver all a species’ requirements (Smart et al., 2013). However, when schemes are targeted effectively, are adaptable, and farmers are given site specific advice, they can provide the desired conservation benefits, at least locally or for species whose populations have been reduced
to very small size and geographical range (Wilson et al., 2010; Schmidt et al., 2017).

Farmland breeding shorebirds (waders) have suffered large population declines as a result of agricultural change (Wilson et al., 2009) and are a good example of the problems in ensuring AES success described above. In the Netherlands and the UK, two of the most important countries in Europe for this bird assemblage (Birdlife International, 2004), there is good evidence of localised demographic or population benefit but little translation of these local successes to reversal of national population declines (Kleijn and Zuijlen, 2004; Verhulst et al., 2007; O’Brien and Wilson, 2011; Smart et al., 2014).

The need to deliver cost-effective conservation benefits for shorebirds on farmland is now urgent, and alternatives to AES which provide both conservation and economic benefits and could be promoted without the need for compensatory payments should be explored (e.g. Osgathorpe et al., 2011), especially given the planned exit of the UK from the EU and potential accompanying loss of CAP payments for agri-environment measures. Here, we evaluate an unusual and innovative fodder crop management system implemented on an upland grassland farm in Scotland that is associated with nationally exceptional breeding densities of waders, particularly Northern Lapwing *Vanellus vanellus* (McCallum, 2012), but which is implemented primarily for
husbandry and commercial reasons, and not for conservation purposes. The management system involves planting the forage brassica ‘tyfon’ (*Brassica campestris* x *B.rapa*) for two consecutive years in a field that was previously pasture, prior to reseeding the field with grass (see Table 1 for timeline). This process improves grass productivity after reseeding (EBLEX, 2008), as well as providing fodder (stubble turnips) for fattening of lambs over the winter (Koch et al., 1987). The ground is limed during fodder crop management in order that the optimum soil pH for fodder crops and grass growth is obtained prior to reseeding.

In this study we examine the utility of this management in supporting high densities of breeding Lapwings. Specifically, we test i) whether fields with a prior history of fodder crop management have higher Lapwing densities and ii) whether the density of breeding Lapwings is related to the number of years since fodder crop management. We also test whether vegetation height or percentage bare ground varies between grass fields that had previously undergone fodder crop management and those that had not.

2. Methods

2.1 Study Site and fodder crop management

The study took place in 2003 and from 2006 to 2011 on 315 ha of commercially farmed grassland (56° 4'40.06"N 4° 0'45.00"W) in Scotland, at 140 – 320 m altitude. The farmland supports
approximately 1200 black-faced sheep and 50 limousin cross cattle and comprises 120 ha of “in-by” land (140 – 270 m altitude) and 195 ha of “out-by” (175 – 320 m altitude). “In-by” is the local term for agriculturally improved, enclosed fields below the moorland wall, and “out-by” is the land beyond the moorland wall where vegetation is semi-natural in character (Gray, 2000) grading from acid grassland to moorland dominated by ling heather *Calluna vulgaris*.

Unusually for Scottish farmland, fodder crop management has been used in the study area to keep sheep on in-by fields over winter. This management has been in place since 1997, and by 2011 eight fields had been placed in this management regime (Figure 1), whereas the remaining nine had been subject to no cultivation or reseeding. Data collected on these 17 fields, making up the 120 ha of in-by land, support the analyses presented here. Fodder crop management involves planting of tyfon in late June or early July for two consecutive years, after which the field is reseeded with grass (perennial rye-grass *Lolium perenne* and white clover *Trifolium repens* seed mix) in June or July of the third year (Table 1). All fields that have undergone tyfon cultivation have then remained as grass since reseeding.

Prior to sowing tyfon, soil pH was tested by the farmer. Lime (5 tonnes ha$^{-1}$ annum$^{-1}$) was applied for up to three consecutive years with the first application at the time that tyfon was first planted with
the objective of raising soil pH to 5.8 to coincide with grass reseeding. The range of soil pH in the in-by fields that had not undergone fodder crop management was between 4.7 and 5.5 and it is likely that pH prior to fodder crop management fell within this range across all in-by fields. Fertiliser (NPK, 2:1:1, 250 kg ha\(^{-1}\)) was applied at the same time as tyfon or grass was planted. Fields that had not been subject to tyfon cultivation received this fertiliser less frequently, and were limed no more frequently than once every five years.

Lapwings arrive to nest from the beginning of March and leave at the end of June or early July. Planting of tyfon or reseeding with grass thus occurs at the end of the breeding season so that Lapwing use is only potentially affected in the year after management has occurred (Table 1).

2.2 Lapwing and habitat surveys

To test whether field use of breeding Lapwings was related to fodder crop management, the number of breeding Lapwing pairs in each in-by field was counted in 2003 and from 2006 to 2011. In each year either one (2003 and 2006-2007) or two (2008-2011) survey visits were made. Where only one survey visit was made, this was between 1\(^{st}\) and 21\(^{st}\) May. When an additional visit was made, this was between 18\(^{th}\) and 30\(^{th}\) April with at least 18 days between surveys. Surveys were carried out on foot, walking to within 100 m of all points of each field and scanning ahead (up to [Type text])
400 m) with binoculars from appropriate vantage points to record all Lapwings (O’Brien and Smith, 1992). Annual totals of Lapwing pairs were calculated for each field by halving the number of individuals recorded (Barrett and Barrett, 1984). Flocks of birds not exhibiting signs of breeding behaviour were excluded. Lapwings were counted on at least 12 in-bye fields in all years of the study, with all 17 fields counted in four years. Table 2 shows the number of fields in each treatment where Lapwings were counted in different years.

Data on field characteristics likely to influence the suitability of a field for breeding Lapwings were measured using ArcGIS 9.2 (ESRI, 2006), or in the field. The length of streams and ditches and field boundaries were obtained from the OS Mastermap Topography Layer (EDINA Digimap Ordnance Survey Service). These data were used to calculate the density of streams and ditches per hectare by dividing the total length of these within each field by field area. This provides a measure of field wetness, as breeding Lapwings are reliant on wet habitats (Rhymer et al., 2010; Schmidt et al., 2017). Both field slope and enclosed boundaries affect field suitability for Lapwings which require an open view to allow early detection of predators (Elliot, 1985; Milsom et al., 2000). Field slope (degrees) was extracted from the OS digital terrain map (EDINA Digimap Ordnance Survey Service), using the Spatial Analyst toolbox to first convert the data to raster and then using zonal statistics to extract slope for each
field. The proportion of the field perimeter with enclosed boundaries (either trees or buildings) was calculated by measuring the length of perimeter made up of trees or buildings and dividing this by total field perimeter. The remaining field boundaries were either stone walls (farm boundary or boundary between in-bye and out-bye fields) or rylock fences (boundaries between in-bye fields).

Vegetation height and percentage bare ground were measured in one field that had been planted with fodder crop in the previous year and had not yet been reseeded with grass (in March and June 2009), grass fields with a prior history of fodder crop management (n = 5 in March 2009 and 4 in June 2009) and grass fields with no prior history of fodder crop management (n = 4 in March 2009 and 6 in June 2009). Bare ground was estimated by eye within a 1 m² quadrat at 9 or 10 random locations within each field. Vegetation height was measured with a ruler at 5 locations within the quadrat (one central location and at the four corners).

2.3 Data analysis

Two generalised linear mixed effects models (GLMMs) were implemented to test the relationship between Lapwing field use and field management history. The first tested whether fields which had undergone fodder crop management had higher densities of Lapwings than those that had not, whilst controlling for the characteristics of a field likely to influence its suitability for use by breeding Lapwings. Once a field had been planted with tyfon,
it was included in the “fodder crop” treatment group for all Lapwing
surveys after the date this occurred. Lapwing count per field
within a single year was the response variable and field identity
was specified as a random (grouping) factor. The key explanatory
variable was whether or not a field had undergone fodder crop
management prior to the Lapwing survey (fixed factor, yes or no),
with length of streams and ditches (divided by field area), slope
and the proportion of the field boundary that was enclosed
included as covariates. Non-significant habitat covariates (p >
0.05) were sequentially removed from the model in a step-wise
fashion. The model was fitted using log link and Poisson error and
log_e (field area) as an offset. Only the count from the survey visit
made between 1st – 21st May was used, as this survey visit was
available for all fields in all years. An additional model using all
available survey data gave comparable results.

The second model focused only on treated fields and tested
whether Lapwing density was related to the length of time (years)
since a field had last undergone fodder crop management. Any
field sown with tyfon in the summer before Lapwing counts was
assigned a value of ‘year =1’ (whether in the first or second year
of the two-year tyfon regime). In the year following reseeding, this
value was incremented to ‘2’, and was incremented by one,
anually thereafter, up to a maximum of 13 years since a field had
last been planted with fodder crop. The model was implemented
as the first model (including the same habitat covariates within the
starting model), but whether or not a field had undergone fodder crop management was replaced, as the response variable, with the number of years since tyfon was last planted.

Two further GLMMs were used to test whether the percentage of bare ground or vegetation height varied between grass fields with or without a history of fodder crop management. In the first model, percentage bare ground was the response variable, and whether or not the field had previously been planted with tyfon the key explanatory variable; the model was fitted with logit link using binomial errors. Visit (March or June) was included as an additional fixed factor with sample location nested within field included as a random factor. In the second model vegetation height was the response variable and was modelled using Gaussian error structure; sample location nested within field, and field, were fitted as random factors.

GLMMs were implemented using the MASS package (Venables and Ripley, 2002) in R version 3.4.0 (R Development Core Team, 2017). The effect size of categorical variables was calculated using the lsmeans package (Lenth, 2016). Models were checked for overdispersion by comparing the residual deviance with the residual degrees of freedom. Pseudo r^2 (from now on referred to as r^2) was calculated by correlating the predicted values with the observed data and squaring this (Zuur et al., 2009).
3. Results

3.1 Lapwing density and fodder crop management

In total, 250 territorial Lapwing pairs were recorded over 17 in-bye fields and seven years using data from the survey visit carried out between 1st and 21st May, giving a mean annual density over the whole study area of 0.34 (95% confidence interval: 0.22 – 0.46) pairs ha\(^{-1}\). The highest count was obtained in 2006, when 54 pairs were recorded on 12 fields, equating to a site density of 0.58 pairs ha\(^{-1}\). The modelled, field-by-field density of breeding Lapwings on fields with a prior history of fodder crop management was 52% higher than fields without a prior history of fodder crop management; 0.32 (95% confidence interval: 0.23 – 0.45) pairs ha\(^{-1}\) vs. 0.21 (95% confidence interval: 0.16 – 0.28) pairs ha\(^{-1}\), having controlled for an inverse association between Lapwing density and field enclosure (Table 3). The density of wet features was only significant at the 10% level (p = 0.09) and was therefore removed from the model. The \(r^2\) for this model was 0.30.

In fields which were planted with tyfon (n = 8), we recorded 129 pairs of Lapwings over the seven years of the study. The density of Lapwing pairs was highest the year after the fodder crop was last planted with modelled density = 1 pair ha\(^{-1}\) and declined at a rate of 16.5% per annum thereafter (i.e. once the field had been returned to grass, Table 4, Figure 2). Densities fell to approximately the same as control fields around seven years after the fodder crop was last planted. As with the previous model,
there was an additive effect of field enclosure with lower Lapwing densities in more enclosed fields. The density of wet features was not a significant predictor of Lapwing density. This model explained 38% of variation in the Lapwing counts.

3.2 Vegetation structure and fodder crop management

The percentage of bare ground was highest in the field that had been planted with the fodder crop in the previous year and had not yet been reseeded with grass, however due to the lack of replication these data were not analysed further (Figure A.1, Appendix A). However, there was no difference in the percentage of bare ground ($t_{9,93} = -1.2, p = 0.26$) or vegetation height ($t_{9,102} = 1.3, p = 0.23$) in grass fields with a prior history of fodder crop management and those without.

4. Discussion

Mean Lapwing density across the seven years of our study was double the density that O’Brien and Bainbridge (2002) identified as constituting a key site for breeding Lapwing on Scottish farmland (16.8 pairs km$^{-2}$). In-byre fields that had previously been planted with the fodder crop supported 52% more breeding Lapwing pairs than control fields, whilst controlling for other habitat parameters that influence field suitability for breeding Lapwings. Lapwing densities were highest the first year after the fodder crop was last planted, once the crop had been grazed but prior to the field being returned to grass. A possible mechanism
for the positive effect of fodder crop establishment and

subsequent grazing by sheep on breeding Lapwing is its creation

of a highly heterogeneous ground surface, with a high percentage

of bare ground (Figure A.2, Appendix; McCallum 2012), which

disguises eggs, and provides clearer views to adults of

approaching predators than more heavily vegetated substrate

(Klomp, 1954; Berg et al., 2002). Fodder crop management

provides an alternative mechanism to spring tillage for creating the

mosaic of grassland and bare ground that is favoured by breeding

Lapwings because it provides good chick rearing habitat

(grassland) and good nesting habitat (bare or sparsely vegetated

ground) close to each other (Shrubb, 2007). Mixed farming

systems have largely been replaced in marginal farmland areas

such as our study area by livestock farms (Wilson et al., 2009).

Indeed, our study overlapped in timing with a substantial decline in

breeding Lapwing pairs close to our study site (approximately 20

km away), where the loss of spring cropping contributed to a very

high (88%) decline in breeding Lapwing pairs in 25 years (Bell and

Calladine, 2017).

The density of breeding pairs of Lapwing at the study site declined

steeply once the fodder crop field was reseeded with grass, but for

at least five years it remained higher than fields with no prior

history of fodder crop management, despite similar vegetation

structure between treated and un-treated fields. Lapwings exhibit

high site fidelity (Thompson et al., 1994). Consequently, the
declining density of breeding Lapwings with increasing time since a field was last planted with tyfon could result from initial attraction of birds into the field when the nesting structure is good (i.e. when the fodder crop has been grazed over winter), followed by high local recruitment of philopatric birds. Whilst this study cannot exclude this possibility, it is notable that the fodder crop management system in place on this study farm generated big differences in Lapwing density between individual fields on the same farm, which suggests that field-specific management is also a cause. The likely mechanism is that liming, an integral component of fodder crop management, has a prolonged benefit for breeding Lapwings because it increases soil pH relative to non-limed fields for several years, thus increasing suitability of these fields for earthworms and thus for foraging Lapwings (McCallum et al., 2016).

At first sight our results contrast with previous research which suggested that declines in breeding Lapwing density on in-byre pasture resulted from agricultural improvements such as reseeding and use of inorganic fertiliser (Baines, 1988; Taylor and Grant, 2004), both of which are part of fodder crop management in the current study. In northern England, densities of breeding Lapwing were considerably lower on improved in-byre pasture in comparison to unimproved in-byre pasture (0.14 vs 0.54 pairs ha\(^{-1}\); Baines, 1988); our study found Lapwing density over seven times higher than that found by Baines (1988) on improved grassland in
the first year after reseeding. The likely explanation for this apparent anomaly lies in the multivariate nature of agricultural intensification. For example, reducing soil acidity may be beneficial to soil invertebrates and predators such as Lapwings. However, if this is associated with other aspects of agricultural intensification such as drainage and high livestock densities then the costs to these species may exceed the benefits (Beintema and Muskens, 1987; Wilson et al., 2009; Sabatier et al., 2015).

As well as Lapwings, Common Redshank (Tringa totanus), Eurasian Curlew (Numenius arquata) and Snipe (Gallinago gallinago) all bred in our study area and whilst the seven-year mean density on the in-bye for these species did not reach the minimum densities required for key sites in Scottish farmland based on a 1992 survey (O’Brien and Bainbridge, 2002), densities were higher than 98%, 84% and 77% respectively, of a resurvey of a subsample (89) of these sites conducted in mainland Scotland in 2005 (O’Brien and Wilson, 2011). These densities suggest that wider implementation of fodder crop management may not only benefit breeding Lapwing but a wider assemblage of farmland-breeding shorebirds.

In addition to the relationship with fodder crop management, Lapwing density was higher in fields with less enclosed field boundaries and this is consistent with previous research (Milsom et al., 2000). We found only a marginally significant effect of the
density of wet features on Lapwing distribution across all in-bye fields and it is possible that field scale variability in wetness was at too small a spatial scale to detect a strong relationship between Lapwing distribution and field wetness, as Lapwings would have had access to wet areas in adjacent fields. Farm scale analysis shows that site wetness is one of the main determinants of Lapwing distribution (McCallum et al. 2015) and it is therefore important that, any management strategy attempting to increase numbers of breeding Lapwings, is targeted at fields and farms that are otherwise suitable for this species.

Greenhouse gas emissions resulting from quarrying and transport of lime, coupled with carbon dioxide release from soil following lime application (Biasi et al., 2008), could mean that liming as a conservation measure is viewed as controversial. This coupled with potential changes in sward composition due to liming and negative impacts of ploughing on botanically rich swards (Jefferson 2005), mean that fodder crop management should only be implemented as a conservation measure on species-poor, sown grassland fields which have already undergone agricultural improvement and that lime should only be used in response to soil pH below that recommended for agricultural grass production (McCallum et al., 2016).

4.1 Conclusions

[Type text]
This study made use of a long-term natural experiment at an upland farm in Scotland and found that high densities of breeding Lapwings are associated with a fodder crop management system operating outside agri-environment support. Fodder crop management provides an alternative mechanism to create the habitat mosaic of mixed farming favoured by Lapwings that has largely been lost from UK farmland, and may be particularly beneficial in high-rainfall upland areas, especially over acidic bedrock where leaching tends to reduce soil pH over time (White 2006). Here, its effects in raising soil pH to levels at which densities of earthworms, a key prey resource for grassland-breeding shorebirds, are higher, could have particular benefits for breeding shorebirds, as suggested by an association between Lapwing distribution in Scotland and higher altitude areas with relatively high soil pH (McCallum et al., 2015). Improvements in soil conditions for earthworms brought about by liming persist for several years after the field has been returned to grass and therefore have lasting benefits in terms of grass growth for the farmer and for species dependent on earthworms as a prey resource (McCallum et al., 2016).

Fodder crop management was implemented at our study site without the use of agri-environment payments, as a means for the farmer to fatten lambs over the winter and ultimately to improve productivity of the grassland; benefits for breeding Lapwings were a bi-product of this. However, when Lapwings began breeding in
fields undergoing fodder crop management, the farmer delayed
planting from May to July to avoid destroying Lapwing nests, but
in doing so risked lower fodder crop yield (John Vipond, SAC pers
comm). Wider implementation of fodder crop management at
sites which are otherwise suitable for breeding Lapwing could
improve breeding habitat for a species which has undergone
substantial declines, without the need for substantial agri-
environment funding. However, further research is required to
establish the extent of any loss of income incurred by delaying
planting to assess whether some compensatory payment would
be needed to allow farmers to implement this management in a
way that brings benefits for Lapwings or other grassland-nesting
shorebirds.

Crucially, fodder crop management differs from most agri-
environment options in that it involves actively farming, rather than
receiving a payment to limit farming levels, for example by
excluding livestock from key fields during the breeding season.
This is likely to be more appealing to farmers (Alistair Robb,
Townhead Farm pers comm.). Of more general interest and
importance, it is also a simple example of the land manager being
actively involved in developing conservation solutions in
partnership with environmental research (Keeler et al., 2017)
rather than being seen as a passive recipient of knowledge as has
typically been the case with the design of AES. Such approaches
need to be adopted more consistently in designing interventions
for environmental outcomes on farmland, but may be of particular importance in the UK if the old certainties of EU AES are to come to an end.

Acknowledgements

This study was funded by the University of Stirling and RSPB. We would like to thank Alistair Robb of Townhead Farm for allowing this study to take place on his farm and for providing information on farm management. Thanks to Laura Black, Dan Brown, Adam Fraser and Sarah Davis who contributed to Lapwing survey data collected for this project. Thanks to John Vipond of SAC for advice on the economics of fodder crop management. We thank two anonymous reviewers for valuable comments on the manuscript.

References

Keeler, B.L., Chaplin-Kramer, R., Guerry, A.D., Addison, P.F.E., Bettigole, C., Burke, I.C., Gentry, B., Chambliss, L., Young, C., [Type text]

vanellus distribution models and suggest soil amendment as a conservation measure on upland farmland. Ibis 157, 677-687.

>Type text

[Type text]
abundance of breeding lapwing Vanellus vanellus in relation to
land-use change on upland farmland in southern Scotland. Bird
Study 51, 133-142.

Age at first breeding, philopatry and breeding site-fidelity in the
Lapwing Vanellus vanellus. Ibis 136, 474-484.

Verhulst, J., Kleijn, D., Berendse, F., 2007. Direct and indirect
effects of the most widely implemented Dutch agri-environment

as a Natural Resource, fourth ed. Blackwell Publishing, Oxford,
UK.

Whittingham M.J., 2011. The future of agri-environment schemes:
48, 509-513.

Wilson, J., Evans, A.D., Grice, P.V., 2010. Bird conservation and

Models and Extensions in Ecology with R. Springer Science+
Business Media, New York.
Figure Captions

Figure 1. Fields at Townhead Farm with dates that tyfon was planted marked for fields that have a history of fodder crop management (grey fields). In-bye fields with no history of fodder crop management are white and out-bye fields are black. Backward diagonal lines show a small area of woodland on the farm which was not surveyed and the forward diagonal lines show the farm buildings and yard.

Figure 2. Predicted change in Lapwing density with increasing number of years since the fodder crop was last planted (solid line) for a field with mean enclosed boundaries within the data set (0.14), showing ± 95% confidence interval. The grey shaded area indicates that the field was in grass at this stage (i.e. fields were reseeded with grass after the end of the breeding season in the year after the fodder crop was last planted, meaning that the first breeding season a field was grass was two years after the fodder crop was last planted). The dotted line represents the predicted Lapwing density from fields with no prior history of fodder crop management, generated from the previous model. Raw data for fields with a prior history of fodder crop management are shown by the open circles.
Table 1. Timings of fodder crop management process in comparison to Lapwing use at the study site.

<table>
<thead>
<tr>
<th>Year</th>
<th>Farm management</th>
<th>Late June / July</th>
<th>Autumn / winter</th>
<th>March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Tyfon planted</td>
<td>Tyfon grazed</td>
<td>Most of crop has been grazed</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Tyfon planted</td>
<td>Tyfon grazed</td>
<td>Most of crop has been grazed</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>Grass planted</td>
<td>Grazing excluded for grass growth</td>
<td>Grass grazed</td>
<td></td>
</tr>
<tr>
<td>Lapwing activity</td>
<td>Leave for wintering</td>
<td>Absent</td>
<td></td>
<td>Arrival for breeding</td>
</tr>
</tbody>
</table>
Table 2. Number of fields within each treatment type that were surveyed for breeding Lapwings in each year of the study.

<table>
<thead>
<tr>
<th></th>
<th>Fodder crop at some point prior to Lapwing survey</th>
<th>No fodder crop prior to survey</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2006</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>2007</td>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>2008</td>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>2011</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
</tbody>
</table>
Table 3. Statistical summary for final GLMM assessing the relationship between Lapwing density (log$_e$-transformed) and field management history (i.e. whether or not a field had undergone fodder crop management).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>estimate ± SE</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fodder crop prior to survey</td>
<td>87</td>
<td>0.44 ± 0.17</td>
<td>2.49</td>
<td>0.0145</td>
</tr>
<tr>
<td>(yes compared to no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion field enclosed</td>
<td>15</td>
<td>-5.28 ± 1.22</td>
<td>-4.34</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

[Type text]
Table 4. Statistical summary for GLMM assessing the relationship between Lapwing density and number of years since a field was last planted with fodder crop. Lapwing density was also associated with field enclosure, but not with the density of wet features or field slope.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>estimate ± SE</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. years since fodder crop last planted</td>
<td>31</td>
<td>-0.18 ± 0.05</td>
<td>-3.7</td>
<td>0.0008</td>
</tr>
<tr>
<td>Proportion perimeter enclosed</td>
<td>31</td>
<td>-4.97 ± 1.45</td>
<td>-3.4</td>
<td>0.014</td>
</tr>
</tbody>
</table>
Fig 2

Years since fodder crop last planted

Lapwing pairs (ha⁻¹)

- Raw Data
- Model Prediction
- Model Prediction +/- 95% CI
- Model Prediction: No Fodder Crop