
Relating Training Instances to Automatic Design of Algorithms
for Bin Packing via Features

Alexander E.I. Brownlee
University of Stirling

Stirling, UK
alexander.brownlee@stir.ac.uk

John R. Woodward
�een Mary University of London

London, UK
j.woodward@qmul.ac.uk

Nadarajen Veerapen
University of Stirling

Stirling, UK
nadarajen.veerapen@cs.stir.ac.uk

ABSTRACT
Automatic Design of Algorithms (ADA) treats algorithm choice and
design as a machine learning problem, with problem instances as
training data. However, this paper reveals that, as with classi�cation
and regression, for ADA not all training sets are equally valuable.

We apply genetic programming ADA for bin packing to sev-
eral new and existing benchmark sets. Using sets with narrowly-
distributed features for training results in highly specialised al-
gorithms, whereas those with well-spread features result in very
general algorithms. Variance in certain features has a strong corre-
lation with the generality of the trained policies.

KEYWORDS
Automatic design of algorithms; features; bin packing

1 INTRODUCTION
�e Automatic Design of Algorithms (ADA) [2] seeks to build al-
gorithms, which perform be�er than human designed algorithms.
�e algorithms are trained/designed using set of problem instances,
then applied to a set of unseen problem instances. Recent research
has shown how features of the problem instances can assist the
process of automatically con�guring existing algorithms [1], select
heuristics [6] or predict runtime [5].

In practice, ADA is a machine learning procedure, and needs rep-
resentative data to generalise well. We investigate the relationship
between training data and ADA, in terms of features of the training
instances, for the well known combinatorial optimisation problem
of bin-packing. We use a typical genetic programming approach to
generate packing policies for several benchmark sets: these policies
are applied to all the benchmark sets. �e contributions are:

(1) an analysis of a large number of benchmark instances for
bin packing, used as training data for ADA;

(2) the insight that training sets with more variation lead to
be�er trained packing policies;

(3) showing that variance in features 3, 4, 5, 6 aids ��ing to
training data; and in 2, 11–21 to more general policies;

(4) two new sets of benchmark bin packing instances.
Further detail and analysis of our experiments can be found in

our technical report [3].

2 METHODOLOGY
We adopt a simple framework using genetic programming (GP)
to evolve a packing policy: a function that gives a score s to each
bin (including a to-be-used empty bin), given an item to be placed.
�e item is placed in the highest-scored bin score with enough
remaining capacity. For equally scored bins, the �rst is chosen.

We also studied best-�t, which chooses the bin with the least
spare capacity a�er adding the item; worst-�t, which chooses the
bin with the most capacity; and scaled-�t, a generalisation of best-�t
where the target remaining capacity is a �xed fraction τ of bin size.

2.1 GP applied to bin packing
Our approach used typical GP operators, with terminals: remaining
bin capacity a�er item; bin capacity; random constant. �e �tness
to be minimised targeted policies that �nd the minimal number of
bins with a correction to also reduce bloat.

Our experiments were in two stages. (1) For each training set, the
GP was repeated 30 times, generating 30 packing policies tailored
to that training set. Evolution was performed using EpochX with
population size 1000, 100 generations, and other parameters the
EpochX defaults. (2) Evolved policies from (1) were each applied to
all 3581 instances from all benchmark sets in the study. �e number
of bins required by each policy on each instance was recorded.
Unlike stage (1), application of the packing policies to instances is
deterministic, so stage (2) did not require multiple repeats.

2.2 Benchmark Instances
Benchmark instances selected from the literature as training and
test data were: 2cbp, Augmented irup & non-irup, Random, bw-
2bp, falkenauer-t, falkenauer-u, hard28, mv-2bp, orlib, scholl 1/2/3,
schwerin 1/2 and waescher (as per [3]). We also devised two new
sets: “Stirling instances” [3], intended to provide varying levels
of di�culty by allowing items to take sizes in bands de�ned as a
fraction of the bin capacity. Each instance is parametrised by a bin
capacity c , number of items n, and lower/upper bounds on the item
sizes l and u. Item sizes are sampled uniformly at random in this
range. We used two bin capacities: 100 and 150.

2.3 Instance Features
�e considered features are static features 1-10: item sizes are inte-
gers (T/F); Number of items; Mean item size divided by bin capacity;
Std dev in the item sizes divided by bin capacity; Information en-
tropy in the item sizes, divided by bin capacity; max, min, median
item size divided by bin capacity; max item size divided by min
item size; compression ratio for the list of item sizes. Performance
features 11-21: the number of bins needed when applying scaled-�t
policies with τ values from 0 to 1 inclusive, in 0.1 increments.

�ese features can be used to visualise the sets of instances,
following the well-known work of Smith-Miles et al [7]. Our anal-
ysis focuses on statistical analysis of the results, but these illus-
trations help indicate the distribution of the instances in terms
of their features. �e full set of illustrations are available at h�p:
//hdl.handle.net/11667/108, and a subset in [3].

Published in Proceedings of the Genetic and Evolutionary Computation Conference Companion by ACM. The original publication is available at: 
https://doi.org/10.1145/3205651.3205748

http://hdl.handle.net/11667/108
http://hdl.handle.net/11667/108
https://doi.org/10.1145/3205651.3205748


3 RESULTS AND DISCUSSION
For each training set, GP was repeated 30 times, generating 30 pack-
ing policies. �ese policies were each applied to all 3581 instances.

Footprints. �e footprint (instances on which the policy per-
forms well) [4] for each policy was determined. We de�ne the
footprint as the set of instances for which a policy found a solution
using the minimal known number of bins.

As our GP approach is relatively simplistic, it (unsurprisingly)
struggles to beat best-�t on many instances. �ese are hard in-
stances needing a more sophisticated approach, and easy instances
where both approaches work well. �e 1243 instances where GP
outperformed best-�t fall between the extremes. We focus our anal-
ysis on these, and on the impact that their spread of features have
on generating policies via GP.

3.1 Footprint Metrics
We now analyse the footprints of the policies generated by GP
using each set of training instances.

Evolved policies. In each training set, although the speci�c
policies from each GP run were di�erent, they were qualitatively
similar. Some sets had policies all consisting of a �xed constant
(equivalent to �rst-�t) or just the remaining capacity (best-�t); for
most others GP found complex trees with 20-30 nodes.

Generality. Most policies generalise well: most footprints are
made up of unseen instances rather than the training set. Exceptions
are 2cbp and orlib, for which large parts of the footprint comprises
training instances.

Success on training set. �ere is considerable variation in the
success of policies on the instances used to train them. In some cases
it was rare for any training instances to appear in the footprint, yet,
by chance, these policies were still able to �nd the optimal solutions
for other, unseen, instances.

3.2 Variation in features
How do the features for the instances related to the success of
trained policies? We computed the standard deviation for each
feature within the set’s instances [3].

To compare the variation in features for each instance set, and
the footprint of the policies trained on that set, we computed the
statistical correlations between the metrics for the footprints, with
the standard deviation in the features across the instances of the
corresponding training set. �e variation in Features 2 (number of
items to pack) and 11-21 (performance features) is strongly corre-
lated with footprint size. If all the instances in a set have the same
number of items, the policies generated for them will be much
less likely to perform well in general; and the amount of variation
in the performance features is also a strong indicator of general
performance for the resulting ADA-generated policies.

Features 3, 4, 5, and 6 (related to the distribution of item sizes
within each instance) are strongly correlated with how well the
policies were ��ed to the training instances. If the item size distri-
bution changes greatly between instances, it is (perhaps counter-
intuitively) easier to �nd a policy which will perform well on them.
We hypothesise that this is because there is enough variation be-
tween the instances to force the generated policy to be more general,

so still performing well on all training instances rather than a small
subset of them. Testing this will be considered in future work.

4 CONCLUSION
It is well known that, in machine learning, not all data sets are
equal, and this carries over to automatically designing optimization
algorithms for bin packing.

�ese results indicate that instance sets that are tightly packed in
feature space lead to evolved policies that do not generalise; indeed,
GP fails to �nd policies that even perform well on training data.
�e conclusion that algorithms trained on narrow training data do
not generalise is unsurprising, but at least con�rms intuition.

Our experiments also revealed which particular features for
bin packing should be widely varied to achieve good performance
for ADA. High variation in Features 3, 4, 5, 6 (all connected with
variation in item sizes) is a strong indicator for good ��ing to
the training instances. Variation in Feature 2 (number of items)
and features 11-21 (performance features) are strong indicators for
instance sets that will lead to generally performing policies.

5 ACKNOWLEDGEMENTS
Work funded by UK EPSRC [grants EP/N002849/1, EP/J017515/1],
experiments run on EPSRC funded ARCHIE-WeSt HPC [EP/K000586/1].

6 DATA ACCESS STATEMENT
�e data sets, including all computed features, the evolved policies,
and their performances, and the visualisations for all feature sets,
are available from h�p://hdl.handle.net/11667/108.

REFERENCES
[1] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer. Feature based algorithm

con�guration: A case study with di�erential evolution. In PPSN XIV, pages
156–166. Springer, 2016.

[2] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang. Automated design of produc-
tion scheduling heuristics: A review. IEEE Transactions on Evolutionary Computa-
tion, 20(1):110–124, 2016.

[3] A. E. I. Brownlee, J. R. Woodward, and N. Veerapen. Relating training instances to
automatic design of algorithms for bin packing via features (detailed experiments
and results). Technical report, University of Stirling, 2018. h�p://hdl.handle.net/
1893/26957.

[4] D. Corne and A. Reynolds. Optimisation and generalisation: Footprints in instance
space, volume 6238 of LNCS, pages 22–31. Part 1 edition, 2010.

[5] F. Hu�er, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Arti�cial Intelligence, 206:79–111, jan 2014.

[6] E. Nudelman, A. Devkar, Y. Shoham, and K. Leyton-Brown. Understanding
Random SAT: Beyond the Clauses-to-Variables Ratio. In Pr. CP-04, pages 438–452.

[7] K. Smith-Miles, B. Wreford, L. Lopes, and N. Insani. Predicting metaheuristic per-
formance on graph coloring problems using data mining. In Hybrid Metaheuristics,
pages 417–432. Springer, 2013.

2

http://hdl.handle.net/11667/108
http://hdl.handle.net/1893/26957
http://hdl.handle.net/1893/26957

	Abstract
	1 Introduction
	2 Methodology
	2.1 GP applied to bin packing
	2.2 Benchmark Instances
	2.3 Instance Features

	3 Results and Discussion
	3.1 Footprint Metrics
	3.2 Variation in features

	4 Conclusion
	5 Acknowledgements
	6 Data Access Statement
	References

