Detection of the florfenicol resistance gene floR in Chryseobacterium isolates from rainbow trout. Exception to the general rule?

1Cefas Weymouth laboratory, The Nothe, Barrack Road, Weymouth, DT4 8UB, UK
2Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
3Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
4APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
5USDA/ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Rd., Kearneysville, WV 25430, USA
6Institute of Integrative Biology, University of Liverpool, Merseyside, L69 3BX, UK
7Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ

*Corresponding author: david.vider-jeffreys@cefas.co.uk
Abstract
Bacteria from the genus Flavobacteriaceae often show low susceptibility to antibiotics. With the exception of two Chryseobacterium spp. isolates that were positive for the florfenicol resistance gene floR, no clinical resistance genes were identified by microarray in 36 Flavobacteriaceae isolates from salmonid fish that could grow in ≥ 4 mg/L florfenicol. Whole genome sequence analysis of the floR positive isolates revealed the presence of a region that contained the antimicrobial resistance (AMR) genes floR, a tet(X) tetracycline resistance gene, a streptothricin resistance gene and a chloramphenicol acetyltransferase gene. In silico analysis of 377 published genomes for Flavobacteriaceae isolates from a range of sources, confirmed that well-characterized resistance gene cassettes were not widely distributed in bacteria from this group. Efflux pump-mediated decreased susceptibility to a range of antimicrobials was confirmed in both floR positive isolates using an efflux pump inhibitor (phenylalanine-arginine β-naphthylamide) assay. The floR isolates possessed putative virulence factors, including production of siderophores and, haemolysins, and were mildly pathogenic in rainbow trout. Results support the suggestion that, despite the detection of floR, susceptibility to antimicrobials in Flavobacteriaceae is mostly mediated via intrinsic mechanisms rather than the horizontally acquired resistance genes more normally associated with Gram-negative bacterial pathogens such as Enterobacteriaceae.

Keywords: Flavobacteriaceae; Chryseobacterium; fish pathogen; antimicrobial resistance; virulence; horizontal gene transfer;

Introduction
Bacteria from the family Flavobacteriaceae are important components of freshwater aquatic ecosystems (Bernardet et al. 1996). They include a number of recognised fish pathogens, in particular Flavobacterium psychrophilum (Madsen, Møller, and Dalsgaard, 2005) and Flavobacterium columnare (Starliper and Schill 2011). The group also includes human pathogens, particularly Elizabethkingia meningoseptica and Chryseobacterium indologenes (Woodford et al. 2000; González and Vila 2012).
As well as recognised pathogens, there are a number of other organisms that share phenotypic and genotypic characteristics of the main *Flavobacterium* spp., and these are regularly isolated from freshwater fish species (Michel et al. 2005). Some of these organisms may cause disease in fish. Antibiotics are routinely applied to control disease in fish suspected of being infected with bacterial diseases, including Flavobacteriaceae. However there is only limited knowledge of the relative virulence, their antibiotic susceptibility and their resistance mechanisms of some of these organisms. It has previously been shown that Flavobacteriaceae from fish can grow in high concentrations of a range of antimicrobials (Chang et al. 1997; Rangdale, Richards and Alderman 1997; Bruun et al. 2000; Michel et al. 2005; Clark et al. 2009; Hesami et al. 2010; Henríquez-Núñez et al. 2012). Studies have shown that clinical strains of *E. meningoseptica* and *C. indologenes* can express extended-spectrum beta-lactamases (ESBLs) (Bellais et al., 2000, 2002a, 2002b; González and Vila, 2012; Matsumoto et al., 2012; Woodford et al., 2000). Other studies have demonstrated the presence of multidrug efflux pumps in this group (Michel et al. 2005; Clark et al. 2009) and there is evidence that quinolone resistance can be mediated via changes in DNA gyrase and topoisomerase genes (Shah et al. 2012). However, the presence of other well-characterized clinically important resistance genes, particularly those commonly transferred between species of Gram-negative bacteria via mobile elements, such as transposons and plasmids, has not typically been observed in this major group of bacteria, although exceptions include the recording of *dfra1*, *sul1* and *sul2* genes in a collection of clinical *E. meningoseptica* isolates from China (Jiang et al. 2012). Multidrug resistant isolates of the duck pathogen *Riemerella anatipestifer* carrying a range of clinical resistance genes have also been identified (Chen et al. 2012; Sun et al. 2012).

Previous work has shown that a range of clinical resistance genes have been identified in other Gram negative pathogens and commensals of fish (McIntosh et al. 2008; Verner-jeffreys et al. 2009; Welch et al. 2009). However only limited work has been done to date to identify such genes in Flavobacteriaceae from fish.
In this study, a collection of 86 Flavobacteriaceae spp. isolates from fish was analysed for in vitro susceptibility to antibiotics using a combination of phenotypic and molecular methods. We also undertook a wider survey of published Flavobacteriaceae genomes from a variety of sources to determine whether the types of antimicrobial resistance mechanisms more commonly associated with Gram-negative clinical and animal pathogens are widely distributed in this important group of bacteria.

Materials and Methods

Bacterial isolates
A total of 86 Flavobacterium spp. isolates were used in this study (Supplementary Table S1). Isolates were recovered from diseased rainbow trout (*Oncorhynchus mykiss*, Walbaum), ayu (*Plecoglossus altivelis*, Temminck and Schlegel) and Atlantic salmon (*Salmo salar*, Linnaeus) from different origins over a 20-year period (Supplementary Table S1). The isolates were stored at 4°C on tryptic yeast extract salts agar (Holt, Hovec and Fryer 1993) and were then grown at 15°C in Anacker and Ordal broth (Anacker and Ordal 1959). The isolates were all characterized as members of the Flavobacteriaceae, based on morphological and biochemical criteria. Isolates were also tested by a 16S rRNA nested PCR method (Wiklund *et al.* 2000) to determine whether they were *Flavobacterium psychrophilum* or other species of Flavobacteriaceae. A subset of these other Flavobacteriaceae were further identified on the basis of partial 16S rRNA gene sequencing and analysis using the online tool RDP SEQMATCH (Cole *et al.* 2005).

Antimicrobial susceptibility testing
Susceptibility to 19 antimicrobial agents commonly used in veterinary medicine was assessed by broth microdilution for all isolates using Trek Sensititre Avian susceptibility plates for veterinary use (Trek Diagnostic Systems, Cleveland, Ohio). The antibiotics tested (and ranges) were: enrofloxacin (0.12-2 μg/ml), gentamicin (0.5-8 μg/ml), ceftiofur (0.25-4 μg/ml), neomycin (2-32 μg/ml), erythromycin (0.12-4 μg/ml), oxytetracycline (0.25-8 μg/ml), tetracycline (0.25-8 μg/ml), amoxicillin (0.25-16 μg/ml), spectinomycin (8-64 μg/ml), sulfadimethoxine (32-256 μg/ml), trimethoprim (0.5-2...
μg/ml) - sulfamethoxazole (9.5-38 μg/ml), florfenicol (1-8 μg/ml), sulphathiazole (32-256 μg/ml), penicillin (0.06-8 μg/ml), streptomycin (8-1024 μg/ml), novobiocin (0.5-4 μg/ml), tylosin tartrate (2.5-20 μg/ml) and clindamycin (0.5-4 μg/ml).

Minimum inhibitory concentration (MIC) testing followed guidelines from the Clinical and Laboratory Standards Institute (CLSI 2004), with the minor modifications recommended for testing *F. psychrophilum* applied for all the isolates (Hesami et al. 2010). Two control strains, *Escherichia coli* ATCC 25922 and *Aeromonas salmonicida* subsp. *salmonicida* NCMB 1102 were also included in parallel in all testing.

Resistance to florfenicol is a particular concern as it is the main antimicrobial used to treat bacterial disease caused by *Flavobacterium* spp. in the UK (Verner-Jeffreys and Taylor 2015). Isolates that grew in at least 4 mg/L florfenicol were also tested using Trek Sensititre custom-made florfenicol plates to determine MIC with concentrations from 0.12 mg/L to 128 mg/L. These florfenicol isolates with low susceptibility to florfenicol were also tested for susceptibility to a further 22 antimicrobials typically used to treat clinical Gram-negative infections using Trek Sensititre GN2F plates (Supplementary Table S3).

ESBL production in two *Chryseobacterium* spp. isolates (MOF25P and BGARF1; see below) able to grow in high concentrations of florfenicol was tested via a disc diffusion assay (Carter et al. 2000). Four different antibiotic discs (Abtek Biologicals, UK) containing cefotaxime (30 μg), cefotaxime + clavulanate (30 μg/10 μg), cefpodoxime (10 μg) and cefpodoxime + clavulanate (10μg/1 μg) were used to assess clavulanate synergy. The inhibition zone sizes were recorded after 24 and 48 h for *Klebsiella pneumoniae* (positive control) and the two *Chryseobacterium* spp. isolates respectively.

Susceptibility of *Chryseobacterium* spp. isolates MOF25P and BGARF1 to 16 antimicrobials in the presence of the drug efflux inhibitor phenylalanine-arginine β-naphthylamide (PAβN) was tested via a disc diffusion assay as previously described (Michel et al. 2005) using *Pseudomonas aeruginosa*
(NCTCC 12903) as a positive control. The plates were incubated at 22°C or 30°C for *Chryseobacterium* spp. and *P. aeruginosa* respectively. The inhibition zone sizes were recorded after 24 and 48 hours for *P. aeruginosa* and *Chryseobacterium* spp. respectively (Michel et al. 2005).

For reporting of antimicrobial susceptibility, as neither clinical breakpoints nor, indeed, robust ecological cutoffs have been established for the diversity of *Flavobacteriaceae* species tested in this study, MIC$_{50}$, MIC$_{50}$ and MIC$_{90}$ values were instead calculated for each antibiotic tested, as recommended by (Schwarz et al. 2010).

DNA microarray testing

Isolates were screened for the presence of 75 antimicrobial resistance (AMR) genes using a previously described DNA microarray (Card et al. 2013). Approximately 1 μg of genomic DNA was linearly amplified using antisense primers and simultaneously labelled with biotin. The single-stranded labelled amplified products were hybridized to the microarray using the HybPlus Kit (Alere Technologies, Jena, Germany), as described previously (Card et al. 2015). Microarray signals were detected with the ArrayMate device (Alere Technologies) using IconoClust software (Standard version; Alere Technologies). Mean signal intensities of two replicate spots per probe were used for analysis and values ≥ 0.5 were considered positive, a signal intensity < 0.5 as negative. Positive results for the florfenicol resistance gene *floR* were confirmed by PCR (Welch et al. 2007).

Whole genome sequencing of *Chryseobacterium* isolates MOF25P and BGARF1.

Two of the isolates, MOF25P and BGARF1, that had low susceptibility to florfenicol and were positive for the resistance gene *floR* by microarray and PCR (see Results) were whole genome sequenced and examined for the presence of antibiotic resistance genes. For whole genome sequencing, isolates were sequenced using 150 bp paired end reads on an Illumina MiSeq platform.

Twenty bases at the 5’ end of each read, which had low quality scores FastQC (Andrews 2010), were removed using the FASTX Toolkit (Gordon and Hannon 2010). Paired reads were assembled using Velvet (Zerbino and Birney 2008). A kmer value of 89 was used for assembly, together with a
minimum contig length of 200 bp and an expected insert length of 200 bp. Automatic annotation was carried out using RAST (Aziz et al. 2008) and Prokka (Seemann 2014). Manual confirmation of a group of ORFs identified as putative virulence and antimicrobial resistance genes (Supplementary Table S4) was undertaken using individual BLAST searches (Altschul et al. 1997). After assembling isolate MOF25P and BGARF1 using Velvet, contig sequences were compared against the floR gene. Any contig with a region strongly matching the floR gene was read into Artemis (Rutherford et al. 2000) and the GC content around the floR gene was examined. Contigs were also searched for putative AMR genes using the online Comprehensive Antibiotic Resistance Database (CARD) maintained by McMaster University (McArthur et al. 2013). The two draft genome sequences have been submitted to Genbank, with BioSample Accessions SAMN03764887 and SAMN03764910, corresponding to isolates MOF25P and BGARF1, respectively.

Analysis of publically available Flavobacteriaceae genomes for AMR genes

A list of draft and complete genomes from the Flavobacteriaceae family was retrieved from the NCIMB taxonomic database (accessed 27 Nov 2015), through the Entrez API (Entrez Programming Utilities Help, 2010), (Supplementary Datasheet 1). Assembly and nucleotide datasets were downloaded from NCBI. All of the genomes were converted into Fasta files, with the DNA sequence of any contiguous sequence, or contig, assembled from the genome. All of the genomes were then added into a single blast database. The nucleotide sequences from the ARG-Annot database (Gupta et al. 2014) were aligned to the blast database using the Nucleotide Blast algorithm (Camacho et al. 2009). Potential AMR genes were excluded if the alignment length was less than 90% of the query sequence length, and the aligned sequences shared less than 90% sequence identity. Genomes were re-annotated with Prokka (Seemann 2014), using default settings. Annotated AMR genes were examined for proximity to Mobile Genetic Elements (MGEs), using custom Python scripts, and the Artemis genome viewer (Rutherford et al. 2000). In addition, genomes were analysed for the presence of genomic islands using the online tool IslandViewer 3 (Dhillon et al. 2015) and for plasmid sequences using PlasmidFinder (Carattoli et al. 2014) and custom Python scripts.
Virulence factor identification

Haemolysin production

Isolates were streaked onto sheep blood agar and rainbow trout blood agar. Plates were incubated at 22˚C for 7 days and observed daily for growth and zones of clearing. This experiment was carried out at 10, 15, 22, 30 and 37˚C for isolates MOF25P and BGARF1.

A microplate hemolysis assay was carried out as described previously (Hogfors-Ronnholm and Wiklund 2010) with sheep blood in Alsever’s solution (Oxoid), instead of rainbow trout blood. Isolates were classed as hemolytic if they caused 20% or more hemolysis using the following formula:

$$\frac{\text{Experimental value} - \text{negative control}}{\text{Positive control} - \text{negative control}} \times 100.$$

Iron acquisition and growth in iron deprived media

Growth of *Chryseobacterium* spp. isolates MOF25P and BGARF1 in iron deprived (100 µM 2,2’-bipyridyl amended) tryptone soy broth was tested as previously described (Hirst, Hastings and Ellis 1991). *A. salmonicida* isolate 96001 from the Cefas culture collection was included as a positive control. Siderophore indicator chrome azurol S (CAS) agar (Schwyn and Neilands 1987) was inoculated with MOF25P or BGARF1 and monitored for growth and agar colouration for 10 days. *A. salmonicida* isolates Cefas 96001 and Cefas 01190 were used as positive and negative controls respectively (Holzberg and Artis 1983; Schwyn and Neilands 1987).

Challenge experiments

Experiments were undertaken to assess the potential virulence of MOF25P and BGARF1 when injected intramuscularly into rainbow trout. For challenge experiments, cultures of MOF25P and BGARF1 were grown in MVA broth at 15 °C for 72 h, washed twice in sterile phosphate buffered saline (PBS) and re-suspended in sterile PBS. For the first experiment, three groups of six rainbow trout (approx. 3 g) were injected with of MOF25P at 5 x 10^4, 5 x 10^3 and 5 x 10^2 cfu/fish. For the second experiment two groups of sixteen (approx. 4g) fish were each injected with either MOF25P or BGARF1 at 1.5 x 10^3 cfu/fish. Fish were maintained at 10-12°C in 10L flow-through tanks for up to
11 days. Moribund fish were removed from the tank and killed by terminal anaesthesia and destruction of the brain. Spleen and head kidney swabs were taken from moribund fish, mortalities and fish killed at the end of the study. In addition, samples of gill, kidney, spleen, intestine and liver were fixed in neutral buffered formalin, processed to paraffin blocks, sectioned and stained with haematoxylin and eosin for assessment of pathological changes. Specific mortalities were confirmed from the growth of swabs inoculated onto MVA. Inoculated plates were monitored daily for growth. All experiments involving fish were performed at the University of Stirling under the authority of the relevant UK Home Office Animals (Scientific Procedures) Act 1986 Project Licenses and approved by the University of Stirling Animal Welfare Ethical Review Body. All regulated procedures were undertaken by staff holding A(SP)A Personal Licenses for the particular techniques.

Results

Antimicrobial susceptibility
Isolates tested covered a range of Flavobacteriaceae species (Supplementary Table S1). In general, it can be stated that many of the isolates had low susceptibility to the antimicrobials tested (Figure 1 and Supplementary Figure S1). There were also no obvious temporal or geographic variations in observed patterns of susceptibility observed. Many isolates were able to grow in the presence of relatively high concentrations of the main antimicrobials that are used to control bacterial diseases in farmed fish in the UK and elsewhere in the world. For example, the MIC50 value for amoxicillin was ≥16 mg/L. MIC50 values for both oxytetracycline and florfenicol were 2mg and their MIC10 values were ≥8 and 32 mg/L respectively. Although most isolates were highly susceptible to sulfamethoxazole/trimethoprim (MIC50 <0.5/9.5 mg/L), the MIC10 value was ≥2/3 mg/L.

We also tested susceptibility to a range of other antimicrobials commonly used to treat bacterial diseases in humans and other animals (Figure 1, Supplementary Figure S1 and Supplementary Tables S2-3). Many of the isolates could grow in high concentrations of 3rd generation cephalosporins (e.g. the MIC50 for ceftiofur was ≥4mg/L) and aminoglycosides (the MIC50 for streptomycin was ≥32 mg/L). Most isolates were inhibited by low concentrations of the fluoroquinolone enrofloxacin,
although the (MIC₁₀ was still 1 mg/L). A total of 56 % of isolates were able to grow in high concentrations of four or more representatives of different structural classes of antimicrobials (Figure 2), suggesting intrinsic resistance or acquired reduction in susceptibility to multiple antibiotics.

Out of the 86 isolates, 36 isolates that grew in the highest florfenicol test concentration (4 mg/L) in the Trek Sensititre Avian susceptibility plates were chosen for further analysis (Supplementary Tables S2-3). As shown in Supplementary Table S2, susceptibility to florfenicol in these 36 isolates varied from 2 to 128 mg/L when re-tested using the custom florfenicol testing panels. Susceptibility to a range of antimicrobials used to treat Gram-negative clinical infections was also assessed (Supplementary Table S3). Many of the isolates able to grow in ≥4 mg/L florfenicol also displayed low susceptibility to 1st, 2nd and 3rd generation cephalosporins, and other classes of antimicrobials (Supplementary Table S3). Many grew in the highest concentrations of antimicrobials tested in the panels used. For instance 32/36 isolates grew in ≥32 mg/L ceftriaxone (a 3rd generation cephalosporin), 28/36 in ≥ 32 mg/L cefepime (a 4th generation cephalosporin) and 27/36 in ≥64 mg/L nitrofurantoin ; Supplementary Table S3). Isolates showed most sensitivity to the two carbapenems tested, imipenem and meropenem, although even here, 12 and 4 out of the 36 tested isolates were able to grow in >4 mg/L of meropenem and imipenem respectively.
Resistance gene arrays

The 36 isolates that could grow in ≥4 mg/L florfenicol were examined by microarray for the presence of clinically important resistance genes. No clinical resistance genes were identified by microarray in any of the isolates, with exception of two of the isolates, MOF25P and BGARF1. Both these isolates could grow in high concentrations of florfenicol in vitro (MIC of 128 and 64 mg/L respectively). These were strongly positive for the resistance gene floR by microarray (values of 0.84 and 0.89 respectively). The positive results by microarray were confirmed as floR positive by PCR and whole genome sequencing (see below).

Draft whole genome sequencing of Chryseobacterium isolates MOF25P and BGARF1

The total length of draft genomes of MOF25P and BGARF1 were estimated at 4,661,207 bp and 4,675,015 bp respectively. A total of 310 contigs were obtained from strain MOF25P and 260 contigs from BGARF1, with N50 values of 44,054 for MOF25P and 71,571 bp for BGARF1. Minimum coverage was estimated at more than 30 fold for both isolates. Using the RAST annotation pipeline, a total of 4336 coding regions were found in the genome of BGARF1, of which 1275 (29%) could be annotated functionally. The functional comparison of genome sequences available on the RAST server revealed the closest neighbours of both MOF25P and BGARF1 to be Chryseobacterium gleum ATCC 35910 (score of 546). Similarity to a sequenced strain of F. psychrophilum JIP 02/86 (Taxonomy ID: 402612) was 188. Comparison of the (identical) near full length 16S rRNA genes recovered from both BGARF1 and MOF25P with sequences derived from other Chryseobacterium spp. showed the closest neighbours to be Chryseobacterium piscium and Chryseobacterium bastulinum, but distinct from both (Figure 3).

Analysis of the assembled contigs for genes that likely code for AMR genes demonstrated the presence, in single contigs from both isolates, of a region that contained the florfenicol resistance gene floR, a tet(X) tetracycline resistance gene, a streptothricin resistance gene and a chloramphenicol resistance gene of the chloramphenicol acetyltransferase (cat) family (Figure 4). In this structure, there is a putative relaxase/mobilisation protein upstream of the floR and cat genes.
and a putative transposase downstream of both genes (Figure 4). In addition, an approximately 3kb region containing the floR element and the putative transposase in both strains had a markedly higher GC content (58%) compared to the rest of the genomes (34%). When analysed by BLASTn, the high GC content region closely aligned (a single mismatch and no gaps or insertions over the same 3395 compared bases in each case) to parts of sequences derived from different Gram negative bacteria and their associated plasmids (e.g. Accession numbers CP014775, KU302354 and KF250428).

The area was identified as part of a possibly horizontally acquired genomic region in both isolates by two different genomic island prediction methods (SIGI-HMM (Waack et al. 2006) and IslandPath-DIMOB (Langille, Hsiao and Brinkman 2008)) when the draft genomes were analysed using IslandViewer3. Although IslandViewer3 identified seven other regions that may have been acquired by HGT, this was the only region identified by both prediction methods (Supplementary Figure 2). Furthermore, it was the only region with a markedly different (higher) GC content to the rest of the genome (Supplementary Figure 2). In terms of other potential mobile elements, no sequences of putative plasmid origin were identified in silico in either draft genome. Putative AMR genes were also identified in other regions of the two genomes by both CARD (McArthur et al. 2013) and RAST (Aziz et al. 2008) (Supplementary Table S4). Beta-lactamase genes and, in particular one ORF, were present in both isolates (AB670_04238 in MOF-25P and AB671_02057 in BGARF1; Supplementary Table S4) coded for a protein containing 292 amino acids with greater than 70% identity to previously characterized Ambler Class A VEB-like ESBL recovered from other Flavobacteriaceae (Bellais, Naas and Nordmann 2002a). The presence of a number of ORFs with high identity to genes encoding multidrug efflux pumps was also noted (Supplementary Table S3). Confirming the results of the microarray analysis, with the exception of floR, no clinically important resistance gene sequences, which would hybridise with the probes represented on the array, were detected in the draft genome sequences of either isolate. It is likely that the region containing floR and catB in the two isolates was chromosomally located as no DNA sequences with known plasmid-related functions
were detected on the two large contigs (70.5 and 144kb respectively) that the region was present on. Furthermore, examination of all the contigs containing putative AMR genes, did not reveal any with much greater than average read depth, which would have been indicative of location on a multi copy plasmid.

PAβN and ESBL assays

For isolates MOF25P and BGARF1, moxalactam, ciprofloxacin, enrofloxacin, ofloxacin, oxolinic acid, florfenicol, chloramphenicol, erythromycin and cephalothin all gave increased inhibition zones in the presence of the efflux pump inhibitor PAβN (Figure 5). No change in inhibition zone size was seen for ampicillin, amoxicillin or oxytetracycline and a decreased inhibition zone size was seen for gentamicin and streptomycin (Figure 5). Isolate BGARF1 produced the same results, except for flumequine which had a decreased inhibition zone size. The average inhibition zone differences ranged from 4 to 17.5 mm and from 2 to 9.7 mm for isolates BGARF1 and MOF25P respectively. For the positive control, *P. aeruginosa*, there was no inhibition zone difference for ampicillin or amoxicillin, but there was an increase for all other antimicrobial compounds tested (Figure 5). The difference in inhibition zone sizes in the presence and absence of the inhibitor ranged from 0 to 32.5 mm. The mean average inhibition zone difference was 15.2 mm.

The presence of the ESBL inhibitor clavulanate caused an inhibition zone increase for both sequenced *Chryseobacterium spp.* isolates when using cefpodoxime and cefotaxime. The average inhibition zone increase (across three experiments) for cefpodoxime was 3.5 and 4.7 mm for isolates MOF25P and BGARF1, respectively. The average increase for cefotaxime was 10.1 and 12.4 mm for MOF25P and BGARF1, respectively.

In silico analysis of published Flavobacteriaceae genomes for AMR genes and mobile elements

To further test the hypothesis that AMR genes and mobile elements more commonly associated with Gram-negative bacteria (particularly Proteobacteria) are not typically found within Flavobacteriaceae, available genomes from this family of bacteria were examined *in silico*. A total of
377 genomes were accessed from publicly available databases and examined for the presence of both AMR genes and mobile elements. The sequenced genomes represented examples of a range of genera and species from clinical and environmental sources (Supplementary Datasheet 1). A total of 81/377 isolates had one or more matches to resistance genes in the ARG-Annot database. The most common resistance determinants identified (Supplementary Datasheets 2-3) were genes coding for putative resistance to beta-lactams (65/377, tetracyclines (16/377). Genes coding for putative resistance to macrolide/lincosamide/streptomycin G group antibiotics (4/377) and phenicols (3/377) were also identified. The beta lactamase genes identified (Supplementary Data Sheet 3) were typically those known as naturally occurring in Chryseobacteria and other Flavobacteriaceae that code for Amber Class B and other enzymes, such as \textit{bla} \textit{B}, \textit{bla} \textit{MUS}, \textit{bla} \textit{TUS}, \textit{bla} \textit{IND}, \textit{bla} \textit{CFX}, \textit{bla} \textit{JOHN} and \textit{bla} \textit{GOB} (Bellais 	extit{et al.} 2000; Woodford 	extit{et al.} 2000; Bellais, Naas and Nordmann 2002a, 2002c; Mammeri, Bellais and Nordmann 2002; Naas, Bellais and Nordmann 2003; Gonzalez and Vila 2012; González and Vila 2012).

In terms of well characterized AMR genes typically associated with Gram-negative clinical and veterinary pathogens, only floR and \textit{catB} were identified. These were associated with plasmid elements found in isolates of the duck pathogen \textit{Riemerella anatipestifer} (Chen 	extit{et al.} 2012). The two tetracycline resistance genes identified, \textit{tet}(X) and \textit{tet}(Q), are primarily associated with Bacteroidetes group organisms (Shoemaker 	extit{et al.} 2001; Yang 	extit{et al.} 2004).

Search of the integral database (Moura 	extit{et al.} 2009) also recovered a limited number of matches to Flavobacteriaceae. For example, searches using the terms ‘Flavobacterium’ and ‘Elizabethkingia’ returned no matches while ‘Chryseobacterium’ returned three accession numbers with sequences containing putative class 1 integrons (Accession numbers: KM278188, KJ561906, KM278184). All three deposited sequences were reportedly recovered from \textit{Chryseobacterium} spp. isolated from Chinese river water samples. The sequences all contained well-characterized resistance gene cassettes (including dihydrofolate reductase (\textit{drfA12}), aminoglycoside adenylyltransferase (\textit{aadA2},
aacA4) and rifampin ADP-ribosylating transferase (arr-3) genes. *R. anatipestifer* was different with a number of matches in the integral database to well-characterized resistance gene cassettes and class 1 integrons. No matches to plasmid sequences on PlasmidFinder database were found.

Additional phenotypic characterization of Chryseobacterium spp. isolates

Identification of other virulence factors

Both isolates were able to grow in iron restricted conditions. They also produced siderophores when grown on CAS agar. The isolates also produced haemolsins when grown on both sheep and rainbow trout blood agar and in a micro plate assay with sheep erythrocytes. Genome analysis identified a putative haemolysin-encoding gene in both isolates (Locus Tags AB670_00278 and AB671_02880, Supplementary Table S4) and a putative aerobactin-like siderophore (Locus Tags AB670_03217 and AB671_00904, Supplementary Table S4) in isolates MOF25P and BGARF1.

Challenge experiments

Injection of groups of six 4g rainbow trout with doses of 5 x 10^5 cfu/fish of both MOF25P and BGARF1 resulted in high mortalities in both groups by day 11 post-infection (5/6 and 4/6 respectively), when the experiment was terminated for welfare reasons (Figure 6). There were no mortalities in the groups of 3 g rainbow trout injected with doses of MOF25P or BGARF1 at 5 x 10^4, 5 x 10^3 or 5 x 10^2 cfu/fish. No consistent pathology was seen, although renal haematopoietic tissue necrosis was present in one and two fish infected with MOF25P or BGARF1 respectively. Bacteria were not recovered by culture from affected tissues.

Discussion

This study confirms the results of earlier reports that many of the Flavobacteriaceae isolated from fish, the environment and clinical samples, have low susceptibility to a range of antimicrobials (Kirby *et al.* 2004; Michel *et al.* 2005). Despite high MICs to a wide range of antimicrobials of different structural classes, analysis of 36 isolates using a microarray revealed that carriage of clinically relevant AMR genes commonly found in other Gram-negative bacteria was rare. Indeed, only two isolates were microarray positive for a single AMR gene, in both cases the florfenicol resistance gene
Additional *in silico* analysis of 377 publically available genomes further demonstrated that such clinical resistance genes were not widely distributed in this family. Michel et al. (Michel et al. 2005) analyzed multidrug resistant *Chryseobacterium* isolates recovered from fish species and did not detect any clinically relevant AMR genes, including *floR*. This is in contrast to previous studies other Gram negative bacterial pathogens of fish (McIntosh et al. 2008; Verner-jeffreys et al. 2009; Welch et al. 2009).

The results from the efflux pump inhibitor assays showed that susceptibility to a range of antibiotics (including moxalactam, flumequine, ciprofloxacin, chloramphenicol, florfenicol, erythromycin, furazolidone, enrofloxacin, oflaxin and oxolinic acid) increased in the presence of the inhibitor PAβN for both MOF25P and BGARF1 (Figure 5). Genome analysis identified a number of putative multidrug efflux pumps in the *Chryseobacterium* spp. genomes (Supplementary Table S4). Results in general therefore agree with (Michel et al. 2005) who concluded that low susceptibility to antimicrobials in these organisms is largely intrinsic, particularly through expression of multidrug efflux pumps. Other studies have also identified that multidrug efflux pumps are widely distributed in this as in other groups of bacteria, suggesting they have an ecological role related to survival in the aquatic environment (Piddock 2006a; Martinez et al. 2009), as well as potentially conferring resistance to antimicrobials in clinical and aquaculture settings (Van Bambeke, Balzi and Tulkens 2000; Piddock 2006b; Poole 2007; Nikaido and Pagès 2012). As well as efflux mechanisms, it is possible that other mechanisms may also be important, including decreased permeability via porins (Pages, James and Winterhalter 2008).

Conversely, oxytetracycline, amoxicillin and ampicillin susceptibility was unaffected by PAβN, which suggests the presence of different mechanisms are responsible for susceptibility to these antimicrobials in the *Chryseobacterium* spp. isolates MOF25P and BGARF1. It is possible that point mutations to chromosomal genes may have a role in lowered susceptibility, as has been demonstrated for other Gram negative bacteria to a number of antibiotics. These include...
Beta-lactamase genes were detected in the organisms. The isolates also appeared to demonstrate a degree of clavulanate synergy for the two cephalosporins tested, as inferred via double disc diffusion testing with ESBL inhibitors. Beta-lactamases, including ESBLs, have been detected in a range of other Flavobacteriaceae, including *Chryseobacterium* spp. (Bellais et al. 2000; Bellais, Naas and Nordmann 2002b, 2002c; Yum et al. 2010). Further work is needed to validate that the observed clavulanate synergy observed was related to production of ESBLs by the two organisms. In this regard, the potential role of a putative VEB-like ESBL (Locus tag AB670_04238; Supplementary Table S4) also needs to be determined. Genes encoding tetracycline inactivating enzymes (tet(X)) were also found, likely explaining the observed resistance to oxytetracycline, even in the presence of the efflux pump inhibitor. It was noteworthy that susceptibility to florfenicol *in vitro* was reduced in both isolates in the presence of the efflux pump inhibitor, suggesting that the high MICs may result from a combination of the effects of floR gene expression and efflux pumps.

An identical genomic region containing four AMR genes, including floR, was found in the genomes of both *Chryseobacterium* spp. isolates we sequenced: MOF25P and BGARF1 (Figure 4). There is evidence that a small part of this region, around 3kb in size, was introduced through horizontal transfer, given the close match against plasmids (e.g. accession number KF787110.1) in other bacterial species, such as *Proteus mirabilis*, *Klebsiella pneumoniae* and *Vibrio cholerae*, with very few mismatches, or indels in the alignment and the higher GC percentage across the same region. The remaining genes coding for antibiotic resistance, and gene transfer, which fall outside of this 3kb region, aligned less well against published sequences, and had a lower GC percentage more typical for the genome as a whole. However, the extent to which the genes in this area are actively expressed and functional in these organisms at high level is uncertain. Further functional-genetic work will be necessary to determine if these genes contribute to the antimicrobial susceptibility
phenotypes observed in these strains. Further work is also required to more accurately assign isolates MOF25P and BGARF1 phylogenetically. They may represent examples of a new Chryseobacterium species (Figure 3).

Additional in silico analysis of published Flavobacteriaceae genomes was undertaken, to determine whether such elements are commonly associated with this group. Results suggest they are indeed relatively rare. The majority of the AMR genes identified coded for beta-lactamase and tetracycline resistance genes, known to be constitutively expressed in this group of bacteria. There were also only limited records in the integral database of integrase class 1 genes and resistance gene cassettes. An apparent exception to this general trend appears to be the duck pathogen R. anatipestifer, particularly isolates that are circulating in farmed ducks in China (Chen et al. 2012; Sun et al. 2012). As well as a range of important clinical resistance gene cassettes, floR, has also been isolated from this pathogen. It is noteworthy that floR has only been identified to date in Flavobacteriaceae from fish and livestock farming environments, where it is likely that florfenicol and other veterinary antibiotics are widely applied.

It is possible that transfer of clinically relevant resistance genes between the Proteobacteria spp. that typically host such elements and Flavobactericeae, and their subsequent active expression and maintenance, may be restricted due to genetic incompatibility between these evolutionary distant groups of bacteria. It has long been known that genetic manipulation of bacteria of the phylum Bacteriodetes is problematical as the selectable markers, cloning vectors, transposons, and convenient methods of gene transfer used for manipulation of Proteobacteria and other organisms do not tend to function in this group (McBride and Baker 1996; Staroscik et al. 2008).

The two Chryseobacterium spp. isolates MOF25P and BGARF1 produced positive results in the CAS agar assay for production of siderophores and all three hemolysis assays. This complements the genome analysis, which identified a putative haemolysin and an aerobactin-like siderophore encoding genes in each genome (Supplementary Table S4). Siderophore production has also been
detected in *F. psychrophilum* isolates (Møller et al. 2005). It is possible that the haemolysins
produced by the *Chryseobacterium* spp. isolates are involved in disease progression, as they are
likely to be in *F. psychrophilum* (Secades, Alvarez and Guijarro 2003; Pérez-Pascual et al. 2011).

MOF2SP and BGARF1 were recovered from rainbow trout with disease symptoms. However the
challenge results were equivocal, with high mortalities observed in groups of rainbow trout injected
with high doses of the two bacteria, but not in a group of rainbow trout injected with lower doses of
the organism, or in groups of Atlantic salmon challenged separately at Cefas Weymouth Laboratory
(unpublished data). *Chryseobacterium* species, including *C. piscium*, that isolates MOF2SP and
BGARF1 share a degree of genetic identity with, have been strongly associated with disease in
Atlantic salmon and rainbow trout (Ilardi et al. 2010; Zamora et al. 2012). However, as with this
study, other workers report that reliable induction of disease symptoms following direct exposure to
these organisms is difficult to achieve (Ilardi et al. 2010). This suggests that these organisms may
have a role in disease only under certain circumstances (e.g. when animals are stressed or otherwise
compromised). Further work is required to determine, at a mechanistic level, potential barriers to
gene transfer and functional expression of antibiotic resistance genes, such as *floR*, typically
associated with other groups of bacteria, e.g. Proteobacteria (Guglielmini et al. 2011) into
Flavobacteriaceae.

There is considerable interest in the role that aquatic and other environmental organisms may have
in the development, acquisition, maintenance and spread of AMR (Taylor, Verner-Jeffreys and Baker-
Austin 2011). Particularly how this may relate to development of drug resistant infections in humans
and animals, including fish. Thus a deeper understanding of the mechanisms that may restrict, as
well as promote, the acquisition and spread of AMR genes between environmental, clinical and
veterinary pathogens is required to inform robust risk assessments in this highly important area.

In summary, low susceptibility to antibiotics is common in Flavobacteriaceae but this appears to be
largely intrinsic and conferred by genes/mechanisms different to those present in many clinically
relevant Gram-negative bacteria (e.g. Enterobacteriaceae). It is some respects it is reassuring that these bacteria do not appear to be significant reservoirs of many of the AMR genes that are causing problems in humans and terrestrial animals. However the demonstration that floR and tet(X) were likely acquired in bacteria from this group via a horizontal transfer event from an unrelated organism may represent a new risk for the dissemination of resistance into the aquatic environment.
Acknowledgements
This work was funded by the UK’s Department for Environment, Food and Rural Affairs. Project FB002

References

Carter MW, Oakton KJ, Warner M et al. Detection of extended-spectrum beta-lactamases in...

Holzberg M, Artis WM. Hydromosphate siderophore production by opportunistic and systemic fungal...

Figures

Figure 3 Phylogenetic relationships of partial 16S rRNA gene sequences derived from *Chryseobacterium* isolates to isolates BGARF1 and MOF25P. The evolutionary distances were computed using the Maximum Composite Likelihood method (Tamura et al., 2011). Evolutionary analyses were conducted in MEGA5

Figure 4. Schematic illustrating a region of the genome from strain MOF25P containing multiple AMR genes. The region bounded by broken red lines shows the high GC content region containing the resistance genes *floR* and a putative transposase. Adjacent to both sides of this region are other putative resistance genes encoding for resistance to chloramphenicol, tetracycline and streptomycin. Other genes potentially associated with mobilisation and recombination are also adjacent to this region (a putative DNA invertase of possible prophage origin and a
relaxase/mobilisation nuclease domain protein). Green = Possible insertion elements. Dark Red = antibiotic resistance, Black = other, Orange = Unknown.

Figure 5 Average difference in inhibition zone size (across 3 experiments) for isolates MOF25P, BGARF and the control strain (*P. aeruginosa* NCTCC No 12903) in the presence and absence of the efflux pump inhibitor PAβN, when using the disc diffusion method to assess antimicrobial susceptibility (error bars given are ± the standard error). AMP=ampicillin, AMX=amoxicillin, MOX=moxolactam, FLQ=flumequine, CPR=ciprofloxacin, ENO=enrofloxacin, OFL=ofloxacin, OXA=oxolinic acid, FFL=florfenicol, CHL=chloramphenicol, OTC=oxytetracycline, GEN=gentomycin, STR=streptomycin, ERY=erythromycin, FUR=furazole, COT=cotrimoxazole.
Figure 1 Histogram distributions of Minimum Inhibitory Concentrations for 86 Flavobacteriaceae isolates against 8 antimicrobials. MIC$_{10}$, MIC$_{50}$ and MIC$_{100}$ values are indicated.
Figure 2 Proportions (%) of isolates showing low susceptibility to numbers of different structural classes of antimicrobial. Isolates were defined as of low susceptibility if they could grow in high concentrations of a representative aminoglycoside (≥ 64 mg/L streptomycin), fluoroquinolone (≥ 4 mg/L enrofloxacin), macrolide (≥ 20 mg/L tylosin tartrate), penicillin (≥ 4 mg/L amoxicillin), sulphonamide (≥ 152 mg/L sulphadiazine), tetracycline (≥ 8 mg/L oxytetracyclin), phenicol (≥ 8 mg/L florfenicol) and third generation cephalosporin (≥ 4 mg/L ceftiofur).
Figure 3 Phylogenetic relationships of partial 16S rRNA gene sequences derived from Chryseobacteria isolates to isolates BGARF1 and MOF2SP. The evolutionary distances were computed using the Maximum Composite Likelihood method (Tamura et al., 2011). Evolutionary analyses were conducted in MEGA5.
Figure 4. Schematic illustrating a region of the genome from strain MOF25P containing multiple AMR genes. The region bounded by broken red lines shows the high GC content region containing the resistance genes floR and a putative transposase. Adjacent to both sides of this region are other putative resistance genes encoding for resistance to chloramphenicol, tetracycline and streptomycin. Other genes potentially associated with mobilisation and recombination are also adjacent to this region (a putative DNA invertase of possible prophage origin and a
Figure 5 Average difference in inhibition zone size (across 3 experiments) for isolates MOF25P, BGARF and the control strain (P. aeruginosa NCTCC No 12903) in the presence and absence of the efflux pump inhibitor PAβN, when using the disc diffusion method to assess antimicrobial susceptibility (error bars given are ± the standard error). AMP=ampicillin, AMX=amoxicillin, MOX=moxolactam, FLQ=flumequine, CPR=ciprofloxacin, ENO=enrofloxacin, OFL=ofloxacin, OXA=oxolinic acid, FFL=florfenicol, CHL=chloramphenicol, OTC=oxytetracycline, GEN=gentamicin, STR=streptomycin, ERY=erythromycin, FUR=furazole, COT=cotrimoxazole.
Figure 6 Cumulative % mortality in two groups of ten 4 g rainbow trout injected intramuscularly with isolates MOF25P & BGARF1 (5 x 10^5 cfu/fish).