
DOI: [10.1016/j.aquabot.2016.04.004](https://doi.org/10.1016/j.aquabot.2016.04.004)

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Title: Submerged macrophyte decline in shallow lakes; what have we learnt in the last forty years?

Article Type: SI: 40 years Aquatic Botany

Keywords: shallow lakes; nutrients; alternative states; change; acrophyte ecology

Corresponding Author: Prof. Geoff Phillips,

Corresponding Author's Institution: University of Stirling

First Author: Geoff Phillips

Order of Authors: Geoff Phillips; Nigel Willby; Brian Moss
Submerged macrophyte decline in shallow lakes; what have we learnt in the last forty years?

*Geoff Phillips ¹, Nigel Willby ¹, and Brian Moss ²

1 School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK

2 School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GS, UK

*Corresponding author (Geoff.phillips@stir.ac.uk)

1. Abstract

Over the last 40 years there has been substantial evidence that high biomasses of submerged aquatic plants and phytoplankton rarely occur together in shallow lakes, but it is clear that when present, plants have a competitive advantage over algae.

Aquatic plants provide habitat structure, which influences the fish community such that zooplankton and other macroinvertebrates maintain a top-down control on algal growth, and this control is largely independent of the nutrient supply to the lake. Nonetheless it is clear that many, but not all, lakes lose their vegetation as nutrient loading increases. However, in eutrophic lakes, the subsequent dominance by phytoplankton is more likely to be a result of the loss of vegetation rather than the cause.

At higher nutrient levels, grazing or mechanical damage can reduce plant cover allowing rapid development of algae. Changes to fish community structure or the influence of toxic chemicals can reduce invertebrate algal grazers, overcoming the positive feedback loops that stabilise the plant dominance.

The longer-term stability of macrophyte dominance is also reduced if there are few surviving plant species. Such loss of species richness is associated with increased nitrogen loading. Submerged plants also depend on a spring clear-water phase to become established, and local weather conditions during
winter and spring may determine the relative success of phytoplankton and plant growth, leading to a progressively longer period of algal dominance and fewer surviving plant species.

The loss of submerged vegetation from lakes, although often perceived as a rapid change, is more likely to be the final conclusion of a process in which the competitive advantage of a diverse plant community is eroded by many pressures that are collectively interpreted as eutrophication.

In attempts to manage our environment we hope to find simple, closed stable systems that will respond to measures designed to meet our perceptions of improved ecological quality. What we increasingly find are more complex open systems, which do not necessarily respond as expected. We look for simple and widely applicable explanations where none are likely to exist.

Key words: shallow lakes, nutrients, alternative states, change, macrophyte ecology

2. Introduction

Forty years ago, ecological studies of shallow lakes intensified in response to the growing problems arising from eutrophication. A particular concern at that time, at least in the UK, was the obvious loss of submerged aquatic vegetation, its replacement by phytoplankton and the resulting loss of invertebrate diversity (Morgan, 1970; Mason and Bryant, 1975; Phillips et al., 1978). Macrophyte loss is now clearly recognised as being intimately linked with eutrophication, particularly in shallow lakes where the photic zone extends over the majority of the bed, (Hargeby et al., 1994; Blindow et al., 2006) and many attempts have been made to reverse this process (Moss, 1983; Moss et al., 1996a; Hilt et al., 2006; Søndergaard et al., 2007). The success of lake restoration is often judged by how rapidly macrophytes return, yet we still struggle to elucidate the ecological mechanisms for either the initial decline of macrophytes or their frequently slow response to nutrient reduction (Lauridsen et al., 2003; Søndergaard et al., 2007; Bakker et al., 2012).
It was early recognised that in very shallow lakes it might not be easy to account for macrophyte loss simply through increased competition for light as a result of phytoplankton growth, and a model was therefore proposed where increased periphyton growth initially suppressed plant growth, with phytoplankton subsequently becoming dominant (Phillips et al., 1978). This hypothesis pre-dated the idea of alternative equilibria that has become so important in understanding shallow lake systems (Uhlmann, 1980; Irvine et al., 1989; Scheffer et al., 1993), but it was a perhaps an augury of the concept, as it assigned macrophytes to a central stabilising role in the functioning of shallow lakes. What has emerged over the last forty years is a clearer understanding of how macrophytes influence the ecology of shallow lakes, in particular the positive feedback systems that maintain what are now widely recognised as the alternative stable states of macrophyte-dominated clear water and plankton-dominated turbid water (Jeppesen et al., 1998b; Burks et al., 2006).

When present, extensive macrophyte beds sequester nutrients (Blindow, 1992b; Ozimek et al., 1993; Van-Donk et al., 1993; Kufel and Kufel, 2002), provide refuges from visual predators on grazing zooplankton (Timms and Moss, 1984; Schriver et al., 1995), and may produce allelopathic exudates (Van Donk and Van de Bund, 2002; Gross et al., 2007), all of which mitigate against phytoplankton growth and thus maintain clear water conditions (Figure 1). Conversely, when macrophytes are absent, small planktivorous fish reduce zooplankton grazing, and, free of the influence of visual predators in the increasingly turbid water, can reach high densities thus promoting phytoplankton dominance (Jeppesen et al., 1997). Numerous studies have demonstrated that these alternative states can exist over a relatively wide range of nutrient conditions (Leah et al., 1980; Balls et al., 1989; Irvine et al., 1989; Jeppesen et al., 2000; Jeppesen et al., 2003). Clear water and macrophyte-dominance conventionally define the initial state of unimpacted shallow lakes, though whether this is truly a ‘reference’ state, or merely one that reflects the shifting baseline effect of drift in perception, is a moot point. There are indications that prior to expansion of human populations and depletion of large, nutrient-redistributing
grazing herds, some shallow lakes may naturally have been rich in nutrients and have had characteristics that we would now see as detrimental (Moss, 2015). It is clear, nonetheless, that most become plankton dominated under the pressure of nutrient addition, whether natural or artificial, while current aims of conservation philosophy, which are perhaps more focused on issues of biodiversity than ecological processes, are to maintain clear water with low-moderate nutrient concentrations in which a high diversity and cover of macrophytes can thrive. In this review, we summarise what we have learnt over the last 40 years about the mechanisms that overcome the apparent stability of this system to allow phytoplankton to become dominant, and how this should influence our approach to restoration.

3. **Light availability and competition with algae**

While at a very broad geographic scale, the proportion of lakes dominated by submerged macrophytes clearly decreases with increases in total phosphorus (TP) and total nitrogen (TN), logistic models quantifying this relationship show wide variation, which can be linked, through climatic differences, to the relative production of algal biomass and water depth, suggesting that light may still be a key issue (Kosten et al., 2009). Early reports of macrophyte loss following eutrophication assumed this was a consequence of reduced light availability caused by phytoplankton development (Mason and Bryant, 1975), as it had already been established by correlation that in deep lakes light was a key factor influencing the depth distribution of macrophytes (Spence and Chrystal, 1970). This nutrient-chlorophyll-light relationship remains true (Chambers and Kalff, 1985; Sand-Jensen and Madsen, 1991; Middelboe and Markager, 1997), although the relationship between the maximum colonised depth of macrophytes and nutrient concentrations is weak, not least because of the influence of coloured dissolved organic substances and suspended inorganic matter, whose concentrations are largely independent of nutrients. This suggests a more complex relationship linking nutrients to the distribution and development of macrophytes (Søndergaard et al., 2013) and one which does not necessarily assume that the loss of macrophytes is consequential on nutrient increase and phytoplankton development.
In 1978, Phillips et al. pointed out that in very shallow lakes, phytoplankton growth may not reduce light sufficiently to prevent the growth of submerged macrophytes and suggested that shading by epiphytic algae was the primary factor causing macrophyte decline. Since then, the capacity for epiphytic algal growth to reduce light availability has been confirmed (Sand-Jensen and Borum, 1991) and thus to reduce macrophyte growth (Sand-Jensen and Søndergaard, 1981; Daldorph and Thomas, 1995; Jones et al., 1999; Roberts et al., 2003). The impact of epiphytes (or periphyton, as a common term for all attached living and dead material), is particularly important in shallow water, where the relative effect of light attenuation by phytoplankton is lower. For example, the epiphyte community that developed on *Lobelia dortmanna* attenuated the incident light in spring by between 67 and 82%, substantially reducing growth and maximum depth of colonisation from 3.5 to 1.0 m (Sand-Jensen and Borum, 1984).

The relationship between nutrients and periphyton in lakes is, however, variable. Some studies demonstrate an increase of periphyton with nutrients (Moss, 1976; Eminson and Phillips, 1978; Cattaneo and Kalff, 1980; Eminson and Moss, 1980; Jones et al., 1999; Jones et al., 2000; Bécares et al., 2007; Beresford and Jones, 2010) and a greater response than phytoplankton (Sand-Jensen and Søndergaard, 1981). However, others only found an impact of nutrients when fish were present (Mazumder et al., 1989) or no relationship (Lalonde and Downing, 1991; Lambert et al., 2008). Using experimental ponds, Jones et al. (2002) found that periphyton abundance on the surface of plants was controlled by the density of grazing invertebrates rather than nutrient load, confirming previous experimental studies which have demonstrated the beneficial impact of snails on submerged macrophyte growth via the removal of epiphytes (Brönmark, 1985; Underwood, 1991; Underwood et al., 1992).

Predatory fish influence densities of benthic invertebrates in lakes (Brönmark et al., 1992; Diehl and Kornijow, 1998), though probably not to the same extent that they influence populations of zooplankters in the much less structured open water environment (e.g. compare Moss et al. (1998) and...
Kornijów et al. (2016). Experimental manipulation of fish has demonstrated that in enclosures devoid of molluscivorous (e.g. *Lepomis microlophus*) or benthivorous (e.g. *Tinca tinca*) fish, invertebrate grazers increased, reducing periphyton and increasing macrophyte biomass (Martin et al., 1992; Brönmark, 1994). Direct manipulation of invertebrate (snail) densities produces similar results (Underwood, 1991; Underwood et al., 1992). Elger et al. (2009) also demonstrated that selective predation of seedling macrophytes by snails could alter the final community developing from the propagule bank, thus highlighting a mechanism by which grazers could influence not just the abundance of plants but also their composition. Thus there is clear evidence that a top-down effect of fish on macrophyte growth can occur via a fish-macroinvertebrate-periphyton-macrophyte pathway, as first proposed by Brönmark and Weisner (1992). This mechanism complements the well-established planktonic trophic cascade via the fish-zooplankton-plankton-macrophyte pathway (Jeppesen et al., 1997). Thus we now know that both periphyton and phytoplankton provide a mechanism limiting light for macrophytes and that both can be influenced by top-down controls in addition to nutrients (Figure 1).

4. Relevance to alternative states hypothesis

Light availability is clearly also important for periphytic algal growth, and as a result the relationship between nutrients and periphyton can be complicated by the shading influence of phytoplankton (Hansson, 1988; Bécares et al., 2007). In a survey of 13 Danish lakes, Liboriussen and Jeppesen (2006) found that periphyton biomass on artificial substrata was unimodally related to TP, with a peak biomass at intermediate concentrations (60 – 200 µg TP l⁻¹), being progressively nutrient limited at lower and light limited at higher concentrations. These values are within the range of nutrients often associated with a transition between alternative stable states in shallow lakes and suggests that high epiphytic algal growth is most probable at intermediate nutrient concentrations unless controlled by grazers, particularly snails, which are more efficient than other invertebrate grazers (Underwood et al., 1992). Liboriussen et al. (2005), using mesocosms in clear and turbid water lakes, showed that both fish and
light availability affected the biomass of periphyton, with the strongest top-down control in clear water lakes. Thus the stabilising influence of invertebrate grazing on macrophytes, via a benthic feedback loop, may be potentially more important during eutrophication than during nutrient reduction. In addition, density of plant-associated invertebrates is inevitably lower in lakes where macrophytes have been absent for several years (Hargeby et al., 1994) and thus it may take some time for recolonisation of appropriate invertebrate grazers to re-establish this mechanism, adding to the potential for instability in lakes subject to nutrient reduction. Prolific growth of benthic algae has been observed in clear water lakes following biomanipulation of the fish community (Stansfield et al., 1999); this might be due to the absence of the normal invertebrate grazing control but a rapid population increase of invertebrate grazers unchecked by fish predation could also produce a similar outcome owing to selective grazing on young regenerating plants (Elger et al., 2009). In a survey of 17 plant-dominated shallow lakes in UK, Jones and Sayer (2003) found supporting evidence for the importance of this mechanism, as submerged plant biomass was shown to be unrelated to nutrient concentration or water transparency, but was significantly related to periphyton biomass, which in turn was significantly related to number of grazing invertebrates and fish density. Thus we now have experimental and survey evidence for a more complex model of eutrophication in shallow lakes, whereby increasing nutrient levels increase the potential for both epiphytic and planktonic algal growth, but the expression of this is controlled by invertebrate grazers, which in turn are influenced by fish predation (Figure 1).

Quasi-stable states are maintained by a variety of buffer mechanisms (Moss et al., 1996a) and the interaction of fish, grazing invertebrates and properties of the plants themselves reflect these. There is still controversy as to whether nutrients alone can drive a switch from macrophytes to algal dominance. This is usually assumed and a body of hysteresis theory has been built around this assumption, but there is no definitive evidence for it. Where plants have declined at high nutrient levels, there have always been confounding variables, such as ingress of trace organic substances from sewage effluents that
might have toxic effects on grazing invertebrates, particularly *Daphnia*. Where, in experimental systems, such possibilities have been removed, addition of large amounts of nutrients has been associated with increased plant growth, albeit sometimes with a redistribution of biomass from submerged to floating species (McKee et al., 2002; Feuchtmayr et al., 2009). The hypothesis of alternative states originally rested (Irvine et al., 1989) on the states being alternatives over broadly the same environmental conditions, including nutrient status. There has been some drift in meaning of the term as research in this area has become popular and this complicates the interpretations different investigators have placed on their results. However, the concept of buffer mechanisms needing to be overcome by a switch mechanism (Moss et al., 1996b) for states to change is still extant (Moss, 2007).

5. The switch mechanisms

Given that alternative clear and turbid states are possible, it seems probable that some external pressure must occur to cause a switch between the two equilibria (Bender et al., 1984). In many cases, the loss of plants is reported as a rapid change (Moss, 1983; Bales et al., 1993; Hargeby et al., 2007; Tátrai et al., 2008; Randsalu-Wendrup et al., 2014) and to explain this we seek major events. There are plenty of direct and indirect mechanisms that destroy plants at a local scale through mechanical, chemical and grazing damage (Moss et al., 1996a), thus destroying directly the stabilising aquatic plant community. However, others interfere with the stabilising feedback mechanisms, such as catastrophic changes to fish populations. This could be a fish kill caused either by winter ice cover, where for example the loss of piscivores results in an increase of planktivorous fish (Hall and Ehlinger, 1989; Isermann et al., 2004), or summer depletion of oxygen removing planktivorous and benthivorous fish (Carvalho, 1994; Jeppesen et al., 1998a). Such events do occur and undoubtedly can influence the survival of macrophytes, but it is unlikely that they are sufficiently common to single-handedly account for the widespread reported loss of macrophytes.
A more insidious and potentially general mechanism than fish kills would be the effect of pollutants other than nutrients acting directly on the grazers. Examples have been suggested to explain the loss of plants from the shallow lakes that constitute the Broads, a system of medieval man-made lakes and wetlands in eastern England. Here palaeolimnological studies have demonstrated an association between macrophyte loss and elevated levels of tributyltin (TBT), an organotin compound used since the 1960s as a biocide in antifouling paints which were widely applied to boats in these inland waters (Sayer et al., 2006), and the pesticides DDT and dieldrin (Stansfield et al., 1989). These authors suggest that in an environment of increased nutrient loading, which existed at the time, macrophyte decline may have been precipitated by the loss of grazing invertebrates, both molluscs and zooplankton, caused by these chemicals. Waste water treatment effluent is often the source of nutrients whose increase may heighten the risk of a switch from plants to algae occurring, but it is rarely acknowledged that effluents are much more complex chemically than simple nutrient solutions. They contain a very large range of heavy metals, trace organics, and salts, including endocrine disruptors, other pharmaceuticals and vanity products (Mills and Chichester, 2005) most of which have not been tested in circumstances where they may cause subtle effects on growth of zooplankton and other invertebrates. This is a largely unexplored area that merits further attention.

There is also a strong relationship between wildfowl biomass and macrophyte abundance (Wood et al., 2012), with herbivorous wildfowl showing a positive relation to periods of clear water and high macrophyte density (Hansson et al., 2010). Bird grazing has been reported to remove significant proportions of annual macrophyte production (Mitchell, 1989; Lodge, 1991; Woollhead, 1994) and bird grazing could be another destabilising influence on macrophyte dominance, having the added impact of releasing nutrients into the water column. On the assumption that plant palatability and nutritional quality will increase with productivity as plants invest proportionally more in growth than defence, and tissue nutrient contents increase, per capita consumption by herbivores ought to increase with
productivity. Whether this translates to increased impacts of herbivores at higher productivity remains
unclear, although there is evidence to support this (Gayet et al., 2011; Bakker and Nolet, 2014).
However, the impact of birds has only been clearly shown using small exclosures in lakes where
macrophytes are recolonizing, or in experimental ponds (Lauridsen et al., 1993; Søndergaard et al.,
1996; Hilt, 2006). Coot (Fulica atra) and mute swan (Cygnus olor) are prolific macrophyte grazers but
using estimates of grazing rates, and abundance of macrophyte beds in Lake Krankesjön, Sweden
Hansson et al., (2010) showed that only 2.6% of macrophyte biomass was removed and similar
conclusions were reached for Botshol, a small shallow lake in Netherlands dominated by charophytes
(Rip et al., 2006). Moreover, grazing is likely to be most intense in the autumn when bird numbers reach
peaks but macrophytes are already senescing, though whether this opens up the possibility of impacts in
subsequent years is unclear. However, in urban lakes and bird reserves, where wildfowl densities may
be artificially high owing to supplementary feeding, there are usually no macrophytes and dense algal
growths or muddy water (B Moss personal observations). As with fish populations, effects of birds are
therefore likely to be density-dependent. The possibility that there are other higher trophic level
interactions with macrophytes mediated by diving duck such as tufted duck (Aythya fuligula), pochard
(Aythya ferina) or omnivorous species such as coot, has rarely been considered, although there is some
evidence that these species increase in numbers following fish removal and vegetation recovery and,
presumably, an increase in invertebrate prey density.

In some cases, grazing by semi-aquatic rodents, such as coypu (Myocaster coypus) or muskrat (Ondatra
zibethicus), may also be important. In the Broads, coypu escaped from fur farms and became endemic
from the 1950s until they were eradicated in the late 1980s. It had been assumed that their diet was
largely marginal emergent vegetation and they were therefore likely to have been primarily responsible
for loss of marginal reed swamp (Boorman & Fuller 1981), but there is significant evidence from the
southern US and Italy where coypu are also invasive that their diet can be dominated by submerged
vegetation (Wilsey et al., 1991; Prigioni et al., 2005) and studies of a captive coyru population at Calthorpe Broad confirm the level of reliance on aquatic vegetation of invasive coyru in the UK (Gosling, 1974). Even low densities of a native aquatic rodent, the beaver, have been found to exert a significant impact on deeper water swamp species such as Schoenoplectus lacustris in Scotland (Willby et al., 2014). Such species are key architects of littoral zone complexity and their loss from the Broads, regardless of cause, is likely to have precipitated the decline of a diverse aquatic flora of sheltered margins (Madgwick et al., 2011). Given that the carrying capacity of beavers in Norfolk has been estimated at 18-40 territories (<200 animals) (South et al., 2001), while numbers of coyru in Norfolk may have been as high as 20,000 in the mid 1970s (Gosling, 1974) it seems highly likely that coyru exerted an unsustainable level of grazing pressure on littoral marginal vegetation and associated macrophytes. At their natural carrying-capacity the effects of beavers on aquatic vegetation are likely to be sustainable, since animals abandon territories after 5 years or so, moving to other sites, during which vegetation recovery in former territories is likely. Elsewhere, large populations of grazing mammals and their predators also co-exist with rich and abundant macrophyte populations, for example the capybara, jacaré and jaguar in the Pantanal. There are dangers in attributing fundamental importance to the behaviour of introduced species like coyru, without their predators, in situations that are far from natural, though with changing climate and ongoing invasions such situations may increasingly become the norm.

Benthivorous fish can also influence macrophyte survival, through physical uprooting (Zambrano and Hinojosa, 1999) and disturbance of sediment (Ibelings et al., 2007). In a survey of 28 lakes, Zambrano et al. (2006) found that lakes with high benthivorous fish biomass were characterized by few macrophyte species and it is the introduction of such fish that may precipitate macrophyte loss (Zambrano et al., 2001). Plants were apparently lost as a result of fish stocking from a lake at Llandrindod Wells in mid-Wales, which received extremely low-nutrient inflows. Common carp (Cyprinus carpio) were shown to mobilize nutrients from the sediments in summer and large algal crops ensued (Moss et al., 2002).
Similarly, vigorous mechanical clearance (Balls et al, 1989) or excessive motorboat activity (Willby & Eaton, 1996) and even the damage wrought by extreme storms, may act as switch mechanisms, although the evidence tends to be anecdotal.

All of the above factors are possible mechanisms which could act as destabilizing influences. While they are most often considered in isolation, the likely norm is that they operate in combinations that differ between lakes, and will vary individually in their severity in response to climatic factors. Some are likely to increase in importance with nutrient concentrations whilst others could potentially affect any lake, though their impacts may be greater at higher nutrient concentrations.

6. Rapid switches or gradual transitions?

While the switch from clear to turbid water sometimes occurs relatively suddenly, historical records and palaeolimnology on a decadal – centennial timescale show that there is often a more gradual shift, with reducing macrophyte abundance and diversity rather than sudden loss (Sand-Jensen et al., 2000; Davidson et al., 2005; Sayer et al., 2010a). Initially, there is a decline in small, slow-growing, rosette-leaved species and charophytes (Blindow, 1992a; Sand-Jensen et al., 2000), and their replacement by a more prolific growth of taller canopy-forming plants, such as Ceratophyllum and Potamogeton species, in response to reduced light availability (Blindow, 1992a; Brodersen et al., 2001). This was demonstrated experimentally in ponds in the USA (Moss, 1976) where charophytes predominated at low and medium nutrient concentrations and Elodea at high concentrations but with reduced total biomass, attributed to phytoplankton shading. In sheltered environments, the increase in water-column nutrients may also see an increase in cover of free-floating macrophytes. So, while remaining macrophyte-dominated, water clarity may reduce and with it the number or density of macrophyte species. For example, Sayer et al. (2010a) demonstrated a reduction over time from 10 or more taxa to 4 in a small shallow alkaline lake, resulting in a less structurally complex system. Analyses of large scale spatial (Willby et al., 2012) or long
term (Phillips et al., 2015) datasets reveal a similar pattern of change with plant richness declining following a peak at low to moderate chlorophyll, TP or nitrate (James et al., 2005) concentrations. In larger or slightly deeper lakes, macrophytes become restricted to shallower areas with less of the lake containing significant macrophyte beds.

An additional development has been to discriminate between effects of nitrogen and phosphorus. Meta-analyses of nutrient enrichment experiments by Elser et al. (2007) have shown that, for algal growth at least, there are about as many instances of nitrogen limitation as of phosphorus limitation and considerably more of co-limitation by both nitrogen and phosphorus. Species richness of submerged macrophyte communities decreases with increasing winter nitrate concentrations (James et al., 2005) and in mesocosm experiments with moderate phosphorus concentrations, growth and diversity of submerged macrophyte communities declined with increasing nitrate loading (Barker et al., 2008). The physiological basis for such effects is poorly understood, although Boedeltje et al., (2005), who, experimentally, observed significantly reduced growth of Potamogeton alpinus at high nitrate concentrations, speculate that nitrate-dominated N assimilation acts as a carbon and energy drain on plants adapted to ammonia uptake. Macrophyte growth tends to be less strongly related to phosphorus than that of phytoplankton (Lyche-Solheim et al., 2013), because macrophytes have access to phosphorus sources in sediments that elude phytoplankton, which puts greater emphasis on nitrogen supply for macrophytes than for planktonic algae. It is increasingly clear that the hegemony exercised by phosphorus in thinking in this area is misplaced.

There have been different estimates of the proportions of lake area that are required to stabilise the plant-dominated system; it could be as low as 10% (Søndergaard et al., 2010) or as high as 60% (Blindow et al., 2002), perhaps depending on whether the main stabilising mechanism is via sheltering of invertebrates (whether plant-associated or planktonic) or nutrient sequestration, but the end result of reduced plant cover and diversity is a potentially less stable system. There is equal uncertainty about
timing of macrophyte growth. Few studies have investigated in detail the seasonal dynamics of macrophyte growth, however, Sayer et al. (2010b) in a study of 39 shallow lakes in the UK and Denmark were able to split lakes into three characteristic groups based on the seasonal abundance of plants in June and August. “Turbid” lakes with few macrophytes, “stable” lakes where plants and clear water were found in both seasons and “crashing” lakes where macrophytes were present in June but not in August when their water became turbid. The “crashing” lakes with a short duration of macrophyte cover were typically dominated by one or more of Potamogeton pectinatus, Potamogeton pusillus and Zanichellia palustris, while those with a long duration of cover had a more diverse macrophyte community. Sayer et al. (2010b) concede that from their study, it is impossible to separate cause from effect. Is the short macrophyte growth-season a response to shading caused by phytoplankton or possibly epiphyte development, or is it the plankton that take advantage of the temporary absence of macrophytes? However, the species involved in the “crashing” lakes are typically associated with higher nutrient concentrations (Kolada et al., 2014); they also die back in winter and may be adapted to a short growing season. This contrasts with the long growth-period and frequent overwintering of charophytes. A very similar set of changes was reported for Lake Müggelsee, in Germany, with the replacement of a diverse charophyte-dominated flora by P. pectinatus and Z. palustris and high water transparency in spring, but declining in mid-late summer (Hilt et al., 2013). Thus, as eutrophication progresses, it is possible that the growing season of macrophytes becomes progressively shortened through increases in summer phytoplankton. The boom-bust population dynamics of widespread invasive species, such as Elodea, that tend to dominate in already species-poor eutrophic lakes in Europe may further promote overall instability in plant cover and offer a window for phytoplankton establishment, though whether invasion status affects switching behavior in lakes is presently unknown. Where winter ice cover is frequent, as on the Boreal Plain of western Canada, macrophyte-dominated systems are commonplace, and many lakes are fish-free (Bayley and Prather, 2003). However, using a
A combination of remote sensing and ground survey covering a 20-year period, Bayley et al. (2007) demonstrated that the majority of these lakes show relatively frequent changes between macrophyte and plankton-dominated states. Most of the lakes in the region had concentrations of TP from 25–100 µg l⁻¹, similar to the range of concentrations over which alternative states are likely to exist (Scheffer and Jeppesen, 1998) and thus, being in a relatively pristine landscape, these lakes may illustrate the mechanisms influencing the successful establishment of macrophytes (Bayley et al., 2007). Owing to the severe winter, these lakes are “reset” each year, with both zooplankton and macrophytes having to re-establish from eggs and propagules during the spring. Although the majority (70%) of the lakes in any one year were clear, only 20% remained clear for the whole 20-year survey period; furthermore, of the unstable lakes, on average 25% switched in synchrony. All of the lakes were very shallow and should support substantial cover of submerged macrophytes; the fact that in some years they did not, suggests that success of macrophytes was linked to conditions in the spring which could be influenced by local weather, especially rainfall, and possibly the brownness of the water in this peaty landscape. Like the crashing European lakes (Sayer et al., 2010b), these Canadian lakes are species poor (albeit in this case naturally so), increasing the likelihood that adverse weather could have detrimental impacts. Thus, with moderate nutrient levels, the establishment of one or two important species of macrophytes in competition with phytoplankton can be envisaged as a lottery that is loaded according to the availability of plant propagules, eggs of invertebrate grazers, timing of algal growth and local weather conditions. Similar factors are commonly invoked to explain the failure of macrophytes to respond rapidly to improved conditions in restored lakes. There is also evidence of more frequent changes of state in European lakes. Lake Tåkern and Lake Krankesjön in southern Sweden have switched four and three times respectively over the last five decades (Hargeby et al., 2007). Both lakes have spent longer periods dominated by macrophytes than by plankton, with turbid periods persisting on average for only five years, suggesting that the stabilising
forces in favour of macrophytes were relatively strong. In both cases the transition from turbid to clear state was started by the establishment of the fast-growing canopy-forming macrophytes, *P. pectinatus* or *Myriophyllum spicatum*, which were later replaced by charophytes, a reverse of the sequence of change from clear to turbid where charophytes were replaced by angiosperms (Blindow, 1992b). There is no clear explanation for these changes, but weather conditions were likely to have been involved. For example, just prior to the most recent shift to turbid conditions in Lake Tåkern an unusually high spring phytoplankton biomass occurred, potentially linked to high rainfall and greater input of nutrients (Hargeby et al., 2007). High water levels in spring in the mid-1970s were also highlighted as a potential explanation for a switch to turbid water (Blindow, 1992b) and low water to a switch back to macrophytes (Blindow et al., 1993). In these lakes, changes in fish populations also took place, as a result of winter fish kills and these are also likely to have influenced conditions. However, the transition to a species-poor, canopy-forming plant assemblage, immediately before and after the switch in states, and the possible influence of weather conditions influencing the light climate via water level changes and plankton growth during the spring, give a very similar picture to that provided by Sayer et al., (2010a) of a species-poor macrophyte community being squeezed between spring and late summer plankton blooms.

The spring clear water phase that occurs in eutrophic lakes (Lampert et al., 1986) is probably a key window for submerged macrophyte establishment. Its existence results from grazing zooplankton and its length and timing can be dependent on weather conditions during the winter and spring, which influence both grazing zooplankton numbers (de Senerpont Domis et al., 2007) and the migratory movement of planktivorous fish as they seek to minimise their own risk of predation by moving out of lakes to tributary streams during winter (Brönmark et al., 2010). The timing and proportion of fish migrating varies between years and can be linked to fish condition, food availability and potentially local climate. Brönmark et al. (2010) offer a speculative model which links clear-water, macrophyte-
dominated systems to better fish condition, higher winter migration, greater zooplankton survival and a re-enforcement of the spring clear water period, with the opposite true for turbid states. Given the potential for weather to influence these seasonal events and the reliance of canopy-forming macrophyte taxa on regrowth from overwintering propagules (Van den Berg et al., 1999), there is clear potential for a loss of synchrony, potentially driving an already macrophyte-species poor and therefore unstable lake to phytoplankton-dominance. Availability of light for macrophytes is also influenced by water level and several studies have reported stronger growth of macrophytes when water levels were low (Beklioğlu et al., 2006; Bucak et al., 2012; Ejankowski and Solis, 2015). Water level changes, themselves potentially linked to rainfall, or lake management, are thus an additional factor that could control macrophyte development during the spring.

There are also indications of regular cyclical growth of macrophytes with a periodicity of 5-7 years (Moss et al., 1990; Blindow et al., 1993; Perrow et al., 1994; Rip et al., 2005). It has been suggested that these changes are linked to the storage and subsequent release of phosphorus due to buildup of organic matter in the sediment which subsequently influences the summer release of phosphorus (Genkai-Kato and Carpenter, 2005; Van Nes et al., 2007) and hence the development of phytoplankton. However, it has been shown that the TP cycle found in Botshol (Rip et al., 2005) can also be accounted for by rainfall patterns (Rip et al., 2007). Hargeby et al., (2006) also noted that the total organic nitrogen concentration in Lake Tåkern oscillated with a periodicity of 8 years during the clear water, macrophyte-dominated period and that this could be cross-correlated to the North Atlantic oscillation (NAO) which might therefore be linked to macrophyte production, although no causative mechanism was identified. In a review of long-term data on macrophyte abundance in several shallow lakes in the Norfolk Broadland, Phillips et al. (2015) noted that lakes more isolated from the rivers, with recovering, (at least temporarily), but species-poor macrophyte communities showed long-term synchronous cycles suggestive of weather-related influences, with peak abundance occurring in warm sunny years. Thus
there is growing evidence that local weather events can influence the development of macrophytes and the outcome of their competition with algae for light. While this is undoubtedly not a new phenomenon, climate change and increased inter-annual variability in weather conditions are likely to raise its importance.

7. Conclusions

Over the last 40 years it has become clear that, when present, macrophytes have a competitive advantage over algae. To that extent the original graphical conceptual model of Phillips et al., (1978) remains valid. What it did not include were the feedback mechanisms of the grazers and the potential instability that this creates (Figure 1). Provided the macrophyte associated invertebrate grazing fauna, both planktonic and benthic, are intact, this advantage is largely independent of nutrient load. In shallower lakes, macrophytes can occupy a large proportion of the lake basin and, if evergreen taxa such as charophytes dominate, can lock up, at least temporarily, substantial proportions of a lake’s phosphorus. However, with increasing nutrient loads the integrity of this system is sensitive to a wide range of stochastic events, many perhaps driven by local weather conditions, which create a window of opportunity for algal growth. The resultant increase in shading filters the macrophyte species pool until only fast-growing canopy-forming or free-floating species persist (Kolada et al., 2014). These remaining macrophytes also become compressed within a seasonally defined “sandwich” (Sayer et al., 2010a) and are ultimately replaced by plankton. The loss of macrophytes from lakes might be better perceived as the gradual erosion of a competitive advantage rather than a sudden switch in state, but with increased nutrient loading it seems inevitable that events will sooner or later conspire to accelerate this loss. Recovery of macrophytes may subsequently be engineered but all the evidence suggests that sustained recovery requires significant reduction in nutrient concentrations (Jeppesen et al., 2012).
Lakes have traditionally been managed as discrete entities with only intellectual cognizance given to the reality that the unit of management is the catchment. This approach has a long tradition in European conservation and still determines attitudes to terrestrial conservation. It has meant however, that lakes have been seen in isolation, as closed systems and with equilibrium communities that can be managed by suitable manipulation. Such quasi-equilibria may last for some time, perhaps as long as a couple of scientist-career spans, but our increasing understanding is that lakes are very open systems that have always been continually changing in response to natural climatic fluctuations and geological events.

Phases of apparent stability in dynamic systems will always prove beguiling and may attract a value if attributes such as aesthetics, rarity or diversity appeal in the context of that period of history. But this value is notional and has little relevance to the long-term march of natural processes. Phillips et al. (1978) began a process of understanding the mechanisms that influence lake state that morphed into a general consideration of particular states and how they were maintained. There are some examples that might fit their original hypothesis and they are of great intellectual interest. But they may cloud a greater picture of change that can be slow or rapid, extensive or subtle and in which simple patterns and hypotheses do not apply. The intense influence of ourselves has made it very difficult to interpret change because changes come in many forms and are sometimes not easily recognized, especially at first, against a background of short-term natural variation, and their causes even less readily diagnosed. Monitoring change where there are no unchanging controls, if any control at all, will always struggle to reveal mechanisms objectively. Experiments can reveal mechanisms but the specific experimental circumstances may capture merely a snapshot of a lake’s history. Nonetheless a degree of understanding has been revealed using replicated experimental mesocosms that allow hypothesis-testing, alongside analysis of sediment cores to determine change in a range of chemicals and sub-fossils over centuries, and potentially millennia, though such perspectives have only recently begun to figure in lake management (Sayer et al., 2012). We have used large scale surveys which depend on space-for-
time substitution and finally a small number of long-term monitoring programmes. All individually have strengths and weaknesses, but in combination they have delivered an understanding of shallow lakes and the central role that submerged macrophytes play in their ecology. It is the diversity of the positive feedback pathways that macrophytes provide, and the different time scales and evolving background against which these operate (Scheffer and van Nes, 2007) that make it impossible to provide a simple all-encompassing mechanistic model relating macrophyte loss to eutrophication. Given that eutrophication itself represents a syndrome of co-occurring pressures, such simplicity must always be questioned.

References

Figure caption: Major interactions in shallow lake ecosystems. The left hand diagram summarises interactions in clear water, macrophyte-dominated lakes, the right hand diagram shows interactions in turbid-water algal-dominated lakes. Pressures on different ecosystem components that may trigger a sudden or gradual shift to algal dominance are shown in the central column. In addition to these pressures interannual variation in water temperature, water depth and sunshine hours will strengthen or weaken particular interactions by affecting, for example, year class strength in fish, hatching dates in zooplankton and the onset of growth in macrophytes. Symbols show the direction of the effect and arrows show the magnitude of the effect. The bottom half of each diagram focuses on bottom up effects related to nutrients. The top half of each diagram shows top-down effects. Dashed arrows show other effects including allelopathy, nutrient sequestering, shading, bioturbation and physiological constraints. The original model of Phillips et al. (1978) dealt with interactions shown within the bottom-up compartment. For simplicity feedback effects of macrophytes on piscivores and littoral invertebrates via provision of refugia are not shown. Note that in some lakes the piscivore, herbivore and molluscivore components will relate to both fish and waterbirds.
Clear water, macrophyte dominated

- **Planktivores**
- **Herbivores** + **benthivores**
- **Littoral inverts**
- **Phytoplankton** +

Bottom up interactions

- **Nutrients**

Key pressures
- Habitat loss, DO and ice-induced fish kills

Top down interactions

- **Zooplankton**

Turbid water, algae-dominated

- **Planktivores**
- **Herbivores** + **benthivores**
- **Littoral inverts**
- **Phytoplankton** +

Bottom up interactions

- **Nutrients**

Key pressures
- Habitat loss, agrochemicals, other toxins, salinity
- Non-native grazers, boating, weed-cutting, invasion, toxins, salinity, water level rise

Internal loading, increased external load