Hybridisation and hybrid speciation under global change

Mario Vallejo-Marín¹,*
Simon J. Hiscock²

¹ Biological and Environmental Sciences, School of Natural Sciences, University of Stirling. Stirling, Scotland. FK9 4LA. Email: mario.vallejo@stir.ac.uk

² University of Oxford Botanic Garden, Rose Lane, Oxford OX1 4AZ. Email: simon.hiscock@obg.ox.ac.uk

* Author for correspondence. Telephone: +44 (0) 1786 467822. Email: mario.vallejo@stir.ac.uk

Table of Contents

Summary .. 3

I. Introduction .. 4

II. Hybrid formation .. 5
 1. Breakdown of geographic isolation ... 6
 2. Erosion of ecological isolation barriers .. 8
 3. Artificial hybridisation ... 9
 4. Weakening of gametic barriers ... 10

III. Hybrid establishment: Overcoming intrinsic and extrinsic post-zygotic barriers 11
 5. Escaping hybrid inviability and sterility ... 11
 6. Persistence of viable but sexually sterile hybrids ... 14
 7. Ecological inviability ... 16

IV. Outcomes of hybridisation ... 17
 8. Hybrid speciation .. 18
 (a) Allopolyploid hybrid speciation ... 18
 (b) Homoploid hybrid speciation .. 22

V. Outlook .. 24

Acknowledgements .. 25

52
53
Summary

An unintended consequence of global change is an increase in opportunities for hybridisation among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographic isolation, phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridisation “experiments”, allowing us to peer into the birth and death of evolutionary lineages.

Keywords: alien; allopolyploidy, genome duplication, global change, hybrid, invasive species, reproductive isolation, speciation.
I. Introduction

‘Global change’, the term often used to describe the combination of planetary change and human societal change, is having a profound effect on biodiversity across the globe. Climate change, industrialization, environmental degradation, and global trade and travel have moved plants and animals around the planet, breaking down previous geographic barriers to gene flow between closely related species (Mooney & Cleland 2001). The loss of ecological and geographic barriers that historically kept closely related species apart is creating unprecedented new opportunities for hybridisation (Mable 2013; Chunco 2014, Brennan et al., 2015; Taylor et al., 2015), which could potentially have a profound impact on biodiversity and ecosystems worldwide.

Hybridisation has been defined in many different ways, from crosses between genetically distinct populations (Abbott et al., 2013), to crosses between genetically distinct taxa resulting in the production of viable offspring (Mallet 2007), thus occurring both within and between species (Rieseberg & Carney 1998). Here we focus on inter-specific hybridisation. Interspecific hybridisation is a regular natural phenomenon and it is estimated that as many as 25% of plant species and 10% of animal species hybridise naturally (Mallet 2007). Hybridisation has long attracted the interest of evolutionary biologists, in part because it seems to undo the very process responsible for the generation of species diversity (Dobzhansky 1937, Mayr 1942, Stebbins 1959, Grant 1971, Abbott et al., 2013). However, the consequences of hybridisation between genetically distinct lineages can result in a variety of outcomes that may influence diversity, including gene flow from one taxon to another (introgression) (Rieseberg & Wendel, 1993), the displacement and/or extinction of one or both parental taxa (Ellstrand & Elam, 1993), the fusion of previously divergent taxa (Grant & Grant, 2014), or the creation of new, stable hybrid taxa and, ultimately, speciation (Mallet 2007, Abbott et al., 2013, Thomas 2015). Hybridisation and its consequences have been best studied in plants (Grant, 1971; Arnold, 1997; Rieseberg & Carney, 1998; Abbott et al., 2013), but the biological features and evolutionary mechanisms that contribute to the variation in the occurrence, persistence, and evolution of hybrids are relatively little understood in both plants and animals.

Whether the incidence of hybridisation at a global scale is changing, and if so at what rate, is still unclear, yet analyses of well-studied floras, such as the British Isles, indicate that a significant fraction of hybrid taxa may involve introduced taxa (Stace et al., 2015, Stace & Crawley 2015). Among the flora of Britain and Ireland hybridisation involving introduced (non-native) taxa is well documented (Stace et al., 2015, Stace & Crawley 2015, Table 1), and a recent survey revealed that 33% of hybrid taxa (301/909) involve introduced (non-native) taxa (Preston & Pearman 2015). Approximately half of these non-native hybrids have arisen spontaneously in the wild, while the remainder were introduced as hybrids. Studying the origin and fate of these hybrids is timely and
important if we are to understand the consequences of ongoing changes in the distribution of global biodiversity.

Because hybrid formation does not equate to hybrid success, the long term consequences of contemporary hybridisation under global change are hard to predict. Here we present an overview of the consequences of this new era of increased hybridisation opportunities drawing on the flora of Great Britain and Ireland because it is probably the best documented hybrid flora in the world. Specifically, our review addresses the following questions: How does global change alter the likelihood of hybrid formation? Does global change alter the relative importance of prezygotic and postzygotic barriers in maintaining species apart? What is the incidence of human-made hybrids in current floras and is likely to increase or decrease under global change? What are the biological characteristics that make some hybrids more likely to become established than others? Why are recently formed hybrids relatively common, but their allopolyploid derivatives rare? We suggest that global change is clearly increasing opportunities for hybridisation, for example directly by moving species around the world or indirectly by eroding phenological and ecological barriers. Human-made hybrids, created for example for horticultural purposes, can also significantly contribute to current floras as exemplified in the naturalised flora of Britain and Ireland. We speculate that this new scenario is shifting the relative importance of prezygotic and postzygotic barriers from what is generally seen in natural systems, and therefore the consequences of secondary contact in this changing world may depend more heavily on postzygotic than on prezygotic barriers. The persistence of newly formed hybrids, and their evolutionary fate, will hinge on mechanisms that stabilise hybrids including asexual reproduction, selection for increased fertility, polyploidy, and ecological niche diversification, among others. In the next sections, we take a comprehensive approach to understand the processes and mechanisms leading to: (1) hybrid formation, (2) the establishment of hybrids, and (3) the ecological and evolutionary outcomes of hybridisation.

II. Hybrid formation

Understanding hybridisation and the potential for global change to alter its incidence requires analysis of the conditions that allow hybrid formation and establishment. Speciation involves the origin of barriers preventing gene flow between incipient species (Coyne & Orr 2004, Baack et al., 2015), but hybridisation bypasses these barriers. Isolating barriers are traditionally classified as those acting before (pre-zygotic) and after zygote formation (post-zygotic) (reviewed in Coyne & Orr 2004) (Fig. 1). In plants, pre-zygotic barriers include: (i) Pre-pollination barriers such as geographical and ecological barriers (e.g. habitat preferences), flowering phenology and pollinator preference and behaviour, which prevent or reduce the likelihood of interspecific mating; and (ii) post-pollination
barriers which act before zygote formation, such as unilateral interspecific incompatibility (Hiscock et al., 1998), and gametophytic selection, in which conspecific pollen is favoured over heterospecific pollen (Rieseberg & Willis 2007). The breakdown of geographic isolation is usually treated separately from other isolating barriers (Coyne & Orr 2004) as it may reflect both biological differences in habitat preference and non-biological and historical features causing species to occur in different geographic locations (Dobzhansky 1937). However, we include geographic isolation in our discussion because global change, including the movement of species around the globe, has had a direct impact in increasing the opportunities for secondary contact between previously isolated taxa.

Although the potential for human-induced environmental change to influence the rate of hybridisation has long been recognised (e.g., Anderson 1948), the evidence to support this view is only just beginning to accumulate (Walther et al., 2009, Garroway et al., 2010, Hoffmann & Sgrò 2011, Campbell & Wendlandt 2013, Chunco 2014, Chown et al., 2015). In this section, we discuss how hybrids may overcome pre-zygotic isolating barriers and geographic isolation, paying attention to those barriers that are likely to be affected by global change.

1. **Breakdown of geographic isolation**

The breakdown of geographic isolation when species increase their range, either as a consequence of climate change (e.g. during periods of glaciation), or through anthropogenic dispersal, provides historically isolated taxa with new opportunities for hybridisation. Human-mediated transport of species, either accidental or deliberate, is the most dramatic of these and has been going on for thousands of years, but has been accelerating rapidly in Europe and North America (Hulme et al., 2008). Increased international trade and travel in the current era of globalisation means that the spread of non-native species is likely to increase (Hulme et al., 2008). The pathways of human-assisted dispersal are varied, and include accidental long-distance dispersal events that result in translocation of terrestrial plant species across oceanic barriers, facilitated dispersal (e.g., along roadsides and railroads), and intentional introductions (e.g., horticultural trade). Although long distance dispersal events occur with low probability, theoretical analyses have shown that these events can accelerate migration rates in plants by an order of magnitude (Higgins & Richardson 1999), greatly increasing opportunities for secondary contact.

Long distance dispersal where propagules are transported as contaminants of commodities (e.g., grains, timber, and wool) and in ships' ballasts is well documented (Stace & Crawley 2015). For instance, in the early 20th century, the River Tweed in the English-Scottish border hosted 384 introduced plant species growing along its banks (Myers & Bazely 2003). Many of these plants originated in Europe, Asia, Australasia, and the Americas and were brought as wool contaminants, which were then washed into local rivers during the cleaning process (Silvertown 2011). In addition,
anthropogenic activities can also facilitate range expansion by creating dispersal routes that can then be exploited by natural means. Roads and railways provide corridors that can act as dispersal routes allowing species to spread rapidly to new areas. The introduced hybrid *Senecio squalidus* (Oxford ragwort, Asteraceae), originally from Mount Etna, Sicily, escaped from cultivation in the Oxford Botanic Garden in the late 19th century, but it was not until the development of railway lines in the 1800’s that it began spreading throughout the British Isles (Abbott *et al.*, 2009). The spread of *S. squalidus* in the British Isles has resulted in novel hybridisation events with native *Senecio* species. Crosses between *S. squalidus* and *S. vulgaris* have given rise to three new fertile hybrid taxa via a sterile triploid intermediate (‘bridge’) *S. x baxteri*: the tetraploid introgressant ‘radiate groundsel’, *Senecio vulgaris var. hibernicus*, the allohexaploid *S. cambrensis* (Welsh groundsel), and the tetraploid *S. eboracensis* (York radiate groundsel, Abbott & Lowe 2004). Additionally, hybridization between *S. squalidus* and native *S. viscosus* has given rise to the sterile triploid *S. subnebrodensis* (Lousley 1946).

In addition to facilitating long distance dispersal events, global change in the form of climate change can increase previously existing areas of sympatry among species, or bring previously isolated taxa together through shifts in their range (Hoffmann & Sgrò 2011, Brennan *et al.*, 2015). For example, changes in temperature or precipitation can result in increased range overlap, and the creation or expansion of hybrid zones (Campbell & Wendlandt 2013, Taylor *et al.*, 2015). Because hybrid zones often occur at the range limits of the parental species, changes to the geographic boundaries where these species occur should have a particularly strong impact on the location and extent of hybrid regions (Chunco 2014). There are a number of historical examples of this within the British flora. For instance, the hybrid waterlily *Nuphar x spenneriana* (Nymphaeaceae) is postulated to have arisen during the Late Glacial period ~10,000 years ago when the ranges of its parental species *N. pumila* (tolerant of cold water) and *N. lutea* (preferring warmer water) overlapped (Preston and Croft 1998). *N x spenneriana* then subsequently displaced *N. lutea* at its more northerly locations due to its competitive advantage in tolerating cooler water. A similar story may account for the current distribution of *Circaea x intermedia* (Onagraceae), a hybrid between *C. alpina* and *C. lutetiana* which has all but displaced its cold-loving parent *C. alpina* in northern Britain since the ice retreated (Marren 1999).

Climate change can also facilitate the spread of invasive populations which can then contribute to hybridisation events either with native species, or with other invasive taxa. For example, warmer climates may allow the migration of species from warmer regions into regions that were formally too cold for their long-term survival as well as allowing introduced species from warmer regions to overwinter more successfully and extend the growing season, thus facilitating the establishment and
spread of non-native taxa (Walther et al., 2009). The increases in populations of Orchis simia and O. purpurea in Kent and their spread north into other counties of southern England provides a good example of the former scenario (Fay 2015). Despite the expected importance of climate change on increasing hybridisation rates (Chunco 2014, Brennan et al., 2015), most evidence in plants remains indirect (e.g., perceived changes on the extent of hybrid zones) or correlative (e.g., comparisons of number of hybrids at different time points), and more detailed case studies are needed (e.g., Campbell & Wendlandt 2013).

2. Erosion of ecological isolation barriers

The production of hybrids may be prevented by pre-zygotic, ecological barriers that have evolved as by-products of adaptation to their local environments (Coyne & Orr 2004, Baack et al., 2015) (Fig. 1). For example, broadly sympatric species may still display ecological preferences for different habitats (e.g., mesic vs. arid habitats and forested vs. open habitats), or be reproductively isolated by virtue of flowering at different times. Habitat modification, including increased disturbance and fragmentation, can erode ecological barriers and facilitate hybrid formation (Anderson 1948, Stebbins 1950, Buggs 2007). Moreover, altered and disturbed habitats, e.g., arising as a consequence of agricultural practices or urbanisation, can provide hybrids with new environments where they can establish. Among the British flora Silene dioica x S. latifolia (= S. x hampeana, Caryophyllaceae) (Marren 1999) provides a good example of how habitat modification may facilitate hybridisation, while Senecio squalidus and S. cambrensis (Asteraceae) are examples of how hybrids can establish in new environments (Abbott et al., 2009). Human-induced breakdown of ecological isolation has also been implied in hybridisation between Centaurea erythraea and C. litorale (Gentianaceae). These two species generally occur in different habitats, but human disturbance in sand dune systems is thought to have resulted in mixed populations (Ubsdell 1979), which can be found in coastal regions in England and mainland Europe (Brys et al., 2014). Some of these populations harbour nearly sterile F1 hybrids and backcrosses, which appear to differ in fertility (Ubsdell 1979). Nevertheless, differences in floral morphology and mating system are efficient in reducing hybridisation, at least in mixed populations in Belgium, where established hybrids occur at a frequency of approximately 1% (Brys et al., 2014). Ultimately, the outcome of habitat alteration on hybridisation may be dependent on phylogenetic relationships between taxa. For instance, Brennan et al., (2015) suggest that habitat alteration may be more important for hybridisation between younger taxa, as they are expected not yet to have accumulated strong genetic barriers.

Climate change affects the phenology of many species (Cleland et al., 2007), for instance by causing plants to flower earlier. Changes in the timing of reproductive events, such as flowering, can directly alter the level of reproductive synchronisation between sympatric species, breaking down
temporal isolation barriers, and facilitating hybridisation. For temperature or precipitation changes
to increase hybridisation opportunities, it is necessary for one species to change its phenology while
the other remains stable or changes more slowly (Chunco 2014). Experimental data shows that this
situation may not be uncommon. For instance, artificial warming of experimental plots results in
more reproductive overlap among grassland species (Sherry et al., 2007). The breakdown of
temporal isolation may be particularly important in sympatric species where phenological isolation is
an important reproductive barrier.

A further potential barrier to hybridisation in sympatric populations is isolation resulting from
pollinator preference (Ramsey et al., 2003). If global change affects the distribution of pollinators
and/or their behaviour, we can predict that hybridisation could be facilitated by a breakdown of
pollinator isolation barriers (Campbell & Wendlandt 2013). Recent studies show that the distribution
of certain species of butterfly in the British Isles and Europe is changing and that their choices of
host (brood) plants are changing as a consequence (Bridle et al., 2013). If these changes mean that
pollinators visit a broader range of species, it is conceivable that this creates new opportunities for
hybridization. Paradoxically, changes in visitation preferences could hypothetically reduce
hybridisation, for instance if generalist pollinators change their preference to ignore rarer plant
species, thereby resulting in a reduction in heterospecific pollen transfer. In addition to changes in
visitation preferences, loss of pollinator diversity may also alter opportunities for hybridization. For
example, if pollinators that are specialised on individual plant species are lost, pollen transferred by
generalist pollinators may deposit a proportionally higher fraction of heterospecific pollen on
stigmas. Clearly, the consequences of changes in pollinator distribution, diversity and abundance can
have complex repercussions on hybridization, and these may depend on the particular assemblage
of plant and pollinator species. Future studies, akin to that of Bridle et al., should seek to address
these questions.

3. Artificial hybridisation

Traditionally, artificial hybridisation is not considered in discussions of the ecological and
evolutionary significance of hybrids (Rieseberg 1995, Arnold 1997). However, hybrids can be
produced artificially and then become part of the natural environment. In the context of global
changes to species distribution, the importance of artificial hybrids may be substantial, at least at
ecological levels. For example, in the flora of the British Isles, approximately 17% (152/909) of
hybrids were introduced as hybrids (Preston & Pearman 2015). Moreover, some of these are
deliberate introductions of hybrids of agricultural or horticultural interest such as Mentha
(Lamiaceae), Mimulus (Phrymaceae), and Verbascum (Scrophulariaceae). Although most
horticultural varieties do not persist outside cultivation (Mack 2005), horticultural introductions do
contribute to the non-native component of many floras, including the British Isles (Clement & Foster 1994, Stace 2010).

Artificial hybrids may have a disproportionate contribution to hybrid floras, as artificial hybridisation can bypass other pre-zygotic barriers such as pollinator isolation, phenology, habitat isolation and geographic isolation. Furthermore, artificial selection on horticultural hybrids may coincidentally increase their probability of establishment and spread (Ellstrand & Schierenbeck 2000). For example, horticultural varieties are often selected on the basis of traits such as hardiness and cold-tolerance (Milne & Abbott 2000), or ease of propagation and large plant size, which may allow the establishment of cultivars beyond the ecological range of their wild parental species (Mack 2005). Indeed, it would be interesting to investigate whether artificial hybrids deliberately introduced through the horticulture trade have a larger range than those that originated spontaneously. Artificial crosses from both the horticultural trade and botanic gardens are a relatively unappreciated source of plant hybridisation (Knobloch 1972, Ellstrand & Schierenbeck 2000), but the contribution of artificial hybrids to ecological and evolutionary phenomena is likely to increase in an era of global change.

4. Weakening of gametic barriers

In some cases, pre-zygotic, post-pollination ‘gametic’ barriers must also be overcome for hybrid formation. This type of post-pollination barrier can arise from gametophytic incompatibilities and conspecific pollen precedence (Hiscock et al., 1998, Howard 1999, Husband et al., 2002). Gametic/gametophytic barriers should be little affected by processes associated with global change, unless these affect the relative receipt of heterospecific pollen (e.g., by increasing the number of heterospecific matings). Because conspecific pollen precedence often depends on the relative amounts of conspecific and heterospecific pollen received on stigmas (Howard 1999), an increase in heterospecific pollen receipt may translate to higher rates of hybrid production. This could be the case if an introduced species becomes invasive and comes to dominate a particular habitat where related native species occur (Morales & Traveset 2009). Pollinators would then carry an increased pollen load of the alien species with corresponding increased chance of cross-pollinating the native species. Thus we predict that the main consequence of global change on pre-zygotic, post-pollination barriers will be through increasing the deposition of heterospecific pollen as non-native species become more abundant, thereby weakening conspecific pollen precedence and facilitating hybridization.

In summary, global change is clearly altering the opportunities for hybrid formation, and we would expect the incidence of hybridization to continue increasing. Increased opportunities for hybrid formation may result as a consequence of multiple and not mutually exclusive processes,
such as the global re-shuffling of species through human-mediated dispersal, shifting species distributions and phenology as a consequence of climate change, the erosion of ecological barriers, including the “hybridisation of the habitat”, changes in pollinator preference and diversity, the expansion of non-native species, and the artificial production and spread of hybrids. Although we think that hybrid formation is likely to increase, an alternative view may be that we have reached “peak” hybridisation, and the rate of hybridisation is slowing down. For example, it may be argued that both species introductions and invasions reduce local biodiversity, and fewer species should mean fewer hybridisation opportunities. Similarly, loss of habitat may reduce contact zones between potentially hybridising taxa. However, we think that the effect of global change in promoting hybridisation through the mechanisms reviewed in this section will by far exceed any hypothetical reduction in hybridisation opportunities. As our records of local floras continues improving, monitoring the temporal patterns of hybridization in floras around the world becomes feasible. Of particular interest will be to monitor floras in developing countries where expansion of international trade, and colossal changes in land use as economies grow, may fast-track the upward trend in the formation of hybrids.

III. Hybrid establishment: Overcoming intrinsic and extrinsic post-zygotic barriers

After hybrids are formed, their short-term fate is partly determined by their ability to overcome both intrinsic (e.g., environment-independent low viability and sterility), and extrinsic (e.g., ecological selection) post-zygotic isolation barriers (Coyne & Orr 2004) (Fig. 1). In natural settings, pre-zygotic barriers may contribute more to total reproductive isolation than post-zygotic barriers (Lowry et al., 2008, Baack et al., 2015). However, given the potential for global change to by-pass pre-zygotic barriers and geographic isolation, as argued in the previous section, we speculate that post-zygotic isolation may be the most important hurdle to overcome in the early stages of neo-hybridisation. Intrinsic post-zygotic isolation barriers have been relatively well characterised at the genetic level, in comparison to pre-zygotic barriers (Lowry et al., 2008, Widmer et al., 2009, Rieseberg & Blackman 2010). As in animal systems, post-zygotic isolation barriers are expected to increase as a function of genetic divergence (Coyne & Orr 2004), although evidence of this from plant systems is limited (Moyle et al., 2004, Scopece et al., 2007).

5. Escaping hybrid inviability and sterility

Hybrids are not uniformly unfit (Arnold & Hodges 1995, Rieseberg & Carney 1998), and within a single hybrid taxon (or sometimes a single hybrid cross) it is possible to find individuals with lower, similar or higher fitness relative to their parents (Taylor et al., 2009). Nevertheless, many hybrids
have to overcome severe intrinsic post-zygotic barriers before they can become established (Lowry et al., 2008).

Post-zygotic barriers include intrinsic hybrid inviability and sterility (Fig. 1), and may be caused by a variety of mechanisms (Rieseberg & Blackman 2010, Baack et al., 2015), including differences in chromosome structure and ploidy level (Stebbins 1971, Rieseberg 2001, Levin 2002), nuclear-nuclear and nuclear-cytoplasmic genic incompatibilities (Lowry et al., 2008), and parental genomic conflict during seed development (Köhler et al., 2010) (Fig. 1). Genic incompatibilities associated with reduced hybrid fertility and viability have been extensively studied at the genetic level in many plant hybrids (Lowry et al., 2008). The most widely accepted model for the accumulation of such hybrid incompatibilities is the Dobzhansky-Muller (DM) model, in which allopatric populations fix different (and mutually incompatible) alleles at one or more loci (Rieseberg & Willis 2007, Baack et al., 2015). An example of a post-zygotic hybridisation barrier that arises through genic incompatibilities is hybrid necrosis, which resembles plant responses to stress including pathogens (Bomblies & Weigel 2007). Hybrid necrosis can be debilitating or lethal, and generally acts in early (F₁ and sometimes F₂) hybrid generations (Bomblies & Weigel 2007). Other examples of genic-based, intrinsic post-zygotic barriers in inter-specific crosses include hybrid inviability in Iris (Iridaceae) (Martin et al., 2008), and hybrid sterility in Mimulus (Phrymaceae) (Fishman & Willis 2001) and Solanum (Solanaceae) (Moyle & Graham 2005). Postzygotic barriers can thus affect hybrids at different stages (e.g., immediately after zygote formation or in later hybrid generations) and with different consequences (e.g., killing or debilitating hybrids, or rendering them partially or completely sterile).

Among the strongest postzygotic barriers are those due to differences in the structure and number of chromosomes of hybridising species (Levin 2002, Husband 2004, Karlsdóttir et al., 2008, Chapman & Abbott 2010). Hybrid viability can be severely affected by differences in the number of chromosomes between hybridising species, especially in interploidy crosses (Stebbins 1958). Hybridisation between a diploid and a tetraploid is often associated with endosperm failure, a phenomenon known as triploid block (Bretagnolle & Thompson 1995, Köhler et al., 2010). However, triploid block may represent a porous hybridisation barrier (Scott et al., 2013). For example, hybrid inviability associated with triploid block is often asymmetric, meaning that the viability of the hybrid depends on whether a given taxon is the maternal or paternal parent (Ramsey & Schemske 1998). In the British Isles a good example of this asymmetry is Nasturtium x sterile (2n = 48 (45-58), Brassicaceae), where attempts to produce this well-established hybrid through artificial crosses are successful only if N. microphyllum (2n =64) is used as the maternal parent and N. officinale (2n = 32) as the paternal (Howard & Manton 1946, Stace et al., 2015). The British flora has many examples of
young, established hybrids produced from parents of different ploidy, including a number of species of recent origin, in which at least one of the parents is a non-native taxon such as *Anchusa ochroleuca* × *A. officinalis* (Boraginaceae), *Brassica napus* × *B. rapa* (Brassicaceae), *Fallopia balschuanica* × *F. japonica* (Polygonaceae), *Gaultheria mucronata* × *G. shallon* (Ericaceae), *Mimulus guttatus* × *M. luteus* (Phrymaceae), *Rorippa austriaca* × *R. sylvestris* (Brassicaceae), *Rumex crispus* × *R. frutescens/R. obovatus*, *Rumex crispatus* × *R. palustris* (Polygonaceae), *Senecio vulgaris* × *S. squalidus* × *S. vulgaris* (Asteraceae), *Spartina alterniflora* × *S. maritima* (Poaceae), and a number of *Verbascum* (Scrophulariaceae) hybrids (Stace *et al.*, 2015). These taxa provide excellent opportunities to further investigate how inter-ploidy hybrids overcome viability barriers such as triploid block, and to what extent natural hybrid populations have an asymmetric origin.

Once a viable hybrid has been produced, a subsequent major challenge is to overcome partial or complete sexual sterility. Interploidy hybrids are often sterile (or have strongly reduced fertility), as a consequence of problems in chromosome pairing during meiosis, leading to unbalanced aneuploid gametes, which are often non-functional (Ramsey & Schemske 1998, Comai 2005) (Fig. 2). This pairing problem is expected to be most conspicuous in triploids and hybrids with an odd-number set of chromosomes (Griffiths *et al.*, 2000, Comai 2005), but may also arise in other hybrids in which meiotic pairing results in univalents or odd-numbered multivalents (De Storme & Mason 2014). However, occasionally, interploidy hybrids, such as triploids, produce viable gametes (Ramsey & Schemske 1998, Husband 2004, De Storme & Mason 2014) (Fig. 2). Viable gametes could be produced through multiple routes (Fig. 2), including the production of gametes with the somatic number of chromosomes (unreduced gametes; Köhler *et al.*, 2010, De Storme & Mason 2014, Mason & Pires 2015). Although unreduced gametes are produced at a low rate in non-hybrids (0.0056), their rate of production in hybrids is 50 times higher (0.275) (Ramsey & Schemske 1998). This difference in the rate of production of unreduced gametes is consistent with the observation that polyploids are more common in interspecific hybrid crosses than in crosses within species (Ramsey & Ramsey 2014). Incidentally, the production of unreduced gametes may also help hybrids to bypass the triploid block. For example, mating between the unreduced gametes of a diploid and a tetraploid would produce a hexaploid zygote, without the need to go through a triploid stage. Interestingly, it has been suggested that environmental stress, such as extremes of temperature, may increase the rate at which unreduced, and potentially viable, gametes are formed (De Storme & Mason 2014). Together, this leads to the tantalising idea that global change could facilitate hybridization between diploids and tetraploids—with or without triploid stages—that in the absence of extreme weather events would have remained reproductively isolated.
Even in species with the same number of chromosomes, hybrid fertility can be negatively affected by structural differences between parental species including chromosomal re-arrangements (e.g., fusions, fissions, deletions, insertions and inversions) (Rieseberg 2001), and differences in the size of homologous chromosomes (Levin 2002). Reduced fertility among species with structural chromosomal differences is often caused by pairing irregularities during meiosis, which result in unbalanced, and unviable, gametes (Rieseberg 2001, Levin 2002). The strength of this type of chromosomal barrier thus depends on the level of differentiation between the hybridising genomes, and the extent to which these differences cause pairing irregularities (Levin 2002). Bivalent pairing during meiosis may partly reflect structural similarity of the hybridising genomes, although recent work in both auto- and allopolyploid systems suggests that it may also be under the control of a few genes (Hollister 2015). Chromosomal re-arrangements have been shown to contribute to hybrid sterility in many plant groups (Rieseberg & Carney 1998), and they may be particularly important in mediating secondary contact between previously allopatric species (Rieseberg 2001). However, artificial selection on fertility of initially near-sterile hybrids has shown that increased chromosome pairing and more stable meiosis can evolve very rapidly and drastically improve hybrid fertility (Grant 1966). Indeed, some hybrid derivatives between species with divergent chromosome structure have overcome initial reductions in fertility, and formed evolutionarily stable lineages (Rieseberg et al., 1996).

6. Persistence of viable but sexually sterile hybrids

Hybrids may prevail even when the initial F1 is highly sterile, if they are able to propagate by other means (clonally, apomictically, Fig. 3; Table 1) or by evolving higher sexual fertility (Grant 1966). In addition, polyploid derivatives produced via unreduced gametes (Fig. 2) or somatic mutation can have increased fertility (Rieseberg 2001, Stathos & Fishman 2014); the evolutionary fate of these neo-polyploids is discussed in the Allopolyploid speciation section.

When sexual reproduction is severely impaired, asexual reproduction can allow individuals to persist and spread (Grant 1971). In the British Isles, perennial hybrids that can propagate through clonal reproduction are more widespread than those that cannot (Preston & Pearman 2015; Table 2), showing that the capacity for vegetative reproduction is correlated with spatial coverage. Furthermore, analysis of introduced taxa in the recently published alien flora of the British Isles (Stace & Crawley 2015) indicates that approximately 20% of introduced hybrid taxa reproduce exclusively via clonal propagation, compared to only 8% of non-hybrid introduced taxa (Table 2). Examples of sterile hybrid lineages that persist through vegetative propagation include *Circaea x intermedia* (Onagraceae), *Drosera x obovata* (Droseraceae) and *Stachys x ambigua* (Lamiaceae) (Stace et al., 2015). Some of these sterile lineages, for instance the triploid hybrid *Spartina x*
townsendii have not spread widely (Strong & Ayres 2013). In contrast other clonal taxa such as the sterile triploid hybrid *Mimulus x robertsii* have spread more extensively (Preston et al., 2002, Vallejo-Marín & Lye 2013; Box 2). The ability to disperse over larger geographic areas through vegetative propagation alone, may depend on the characteristics of the habitat. For instance, hybrids growing along dynamic habitats (e.g., rivers and streams) may disperse clonal propagules more extensively than those where dispersal relies on clonal growth on solid ground. For hybrids exploiting dynamic riparian habitats such as those occupied by introduced *Mimulus* populations in the British Isles, global change may facilitate their spread. For example, if extreme weather events result in more intense or frequent flooding, changes in water flow regimes could help spread clonal propagules further. Thus clonal propagation provides a (temporary) escape route to sexual sterility in hybrids, and extreme weather events brought by global change may amplify its effects on the spatial spread of some hybrids.

Another way in which asexuality can bypass sexual failure is through the evolution of agamospermy, i.e., the production of seeds without sex (Fig. 3). Agamospermy (often referred to as apomixis, Whitton et al., 2008) is frequently associated with polyploidy and to a lesser extent hybridisation (Grant 1971, Briggs & Walters 1997, Otto & Whitton 2000). Seeds produced through apomixis are genetically identical to the parental plant, and because there is no sexual reproduction they are reproductively isolated from progenitor taxa, so act as ‘good’ biological species. For this reason, collections of similar apomictic lineages are sometimes called microspecies, agamospecies, agamocomplexes or syngameons (Briggs & Walters 1997). The flora of the British Isles includes numerous examples of cryptohybrids (ancient hybrids stabilised by apomixis) including syngameons in the genera *Euphrasia* (Orobanchaceae), *Sorbus* (Rosaceae; see Box 1), *Rubus* (Rosaceae), *Hieracium* (Asteraceae), *Taraxacum* (Asteraceae) and *Rosa* (Rosaceae), all of which are relatively understudied. However, apomixis does not necessarily result in the complete loss of sex. Many facultative apomictic species, such as *Sorbus* (Box 1), display sexual ‘leakiness’, and produce viable pollen and ovules that can contribute to subsequent hybridisation events (Ludwig et al., 2013). A further example of variation in reproductive system in apomicts is *Hypericum perforatum* (Hypericaceae). This species is a facultative agamospermous tetraploid (2n = 32), where sexual reproduction results in diploid offspring, and agamospermy results in tetraploid and hexaploid plants (Barcaccia et al., 2006). *H. perforatum* hybridises with other taxa, including diploid and tetraploid *H. maculatum* (2n = 16, 32) with which it produces 3x, 4x, and 5x hybrids, which show variable levels of pollen and seed fertility. Yet, it is not known whether these hybrids reproduce sexually, apomictically, or using a combination of both. An unusual form of reproduction via seeds that has evolved in hybrids with odd-numbered chromosomes, occurs in species such as *Rosa canina* (2n = 5x...
The *R. canina* complex contains a large number of species in which a permanent state of odd-ploidy is maintained by fusion of gametes with complementary genomes (Grant 1971). Permanent chromosomal heterozygosity results from fertilisation and syngamy between pollen with 7 chromosomes and ovules with 28 chromosomes (Grant 1971). Determining the incidence and genetic consequences of occasional bouts of sexuality and recombination in hybrids with facultative apomixis and other unusual forms of reproduction is of key importance to understand their fate, as lack of sex can have both potential benefits and costs for the maintenance of hybrids at ecological and evolutionary timescales.

One of the potential benefits that arises from bypassing regular sexual reproduction is that the genetic constitution of the hybrids can be preserved ('fixed heterozygosity'), since gene combinations are not broken down by meiosis and recombination. Viable F1 hybrids have the capacity to show increased vigour (heterosis) relative to their parents (Barton 2001), and this hybrid vigour can be maintained in the absence of sex and recombination. Therefore, clonality and apomixis may be important not only for the persistence of hybrids, but also as a mechanism to maintain hybrid vigour. In the context of global change, the advantages of asexual reproduction, including fixed heterozygosity, may be balanced by a limited ability to deal with rapidly changing environments due to low genotypic diversity. Yet, in recently formed asexual hybrid populations, genotypic diversity may still occur as remnants of the initial hybridisation event (e.g., in hybrids formed from diverse parental stock) or as a consequence of multiple origins of the same hybrid (*Mimulus x robertsi*; Vallejo-Marín and Lye 2013), which may provide enough raw material for short-term evolutionary change through genotypic selection. Moreover, many highly asexual populations can preserve significant levels of genetic and genotypic diversity (Vallejo-Marín *et al.*, 2010), as even rare bouts of sexual reproduction can significantly increase genetic variation (Bengtsson 2003). Populations of asexual hybrids may also be able to deal with rapid environmental change through phenotypic plasticity (Nicotra *et al.*, 2010). Additionally, epigenetic variation can also contribute to rapid adaptation to environmental challenges, as suggested by the ecologically differentiated populations of the invasive species *Fallopia japonica* which display abundant epigenetic diversity, despite genetic uniformity (Kilvitis *et al.*, 2014). The variety of mechanisms available to asexual hybrid populations to adapt to different environments may make hybrids more resilient to the rapid modifications brought by global change.

7. Ecological inviability

Hybrids may suffer from low fitness when they are unable to find a suitable ecological niche, even if they are not affected by intrinsic developmental problems (Coyne & Orr 2004). For instance, hybrids which have intermediate phenotypes might be selected against in parental habitats, resulting in
ecological hybrid inviability (Baack et al., 2015). A potential example of such an extrinsic barrier to hybridisation in the British Isles flora is the hybrid between *Geum urbanum* and *G. Rivale*, *(G. x intermediate)* (Rosaceae). Although the parents of *G. x intermediate* have broadly overlapping distributions they occupy slightly different habitats: *G. urbanum* occurs in well-drained soils, in areas partially shaded or sometimes in open disturbed habitats, while *G. rivale* is usually found in wetter soils and more open habitats (Stace et al., 2015). Experimental crosses have shown that F1 hybrids are viable and fertile, and that seeds produced in zones of contact contain a variety of hybrid genotypes (Ruhsam et al., 2013). Yet, among adult plants only F1s and backcrosses to *G. rivale* are observed (Ruhsam et al., 2011). Using an experimental garden, Ruhsam et al. (2013) showed that hybrids have no intrinsic low fitness, raising the possibility that ecological selection may be filtering out certain hybrid classes (Ruhsam et al., 2013). The agent of selection is unknown, but it is possible that the intermediate morphology of hybrids makes them poorly suited for establishing in parental environments, and explain why some advanced generation hybrid are rare despite obvious intrinsic post-zygotic barriers. The role that ecological barriers play in preventing the establishment of recently formed hybrids remains a relatively unexplored.

IV. Outcomes of hybridisation

The long term outcomes of hybridisation can vary from genetic homogenisation of the parental taxa (genetic swamping; Rieseberg & Ellstrand 1993, Wolf et al., 2001), transfer of neutral and adaptive genetic variation across species (introgression and genetic rescue; Rieseberg & Wendel 1993, Ellstrand & Schierenbeck 2000, Baskett & Gomulkiewicz 2011, Gomulkiewicz & Shaw 2013, Hamilton & Miller 2016), and the evolutionary persistence of hybrids as autonomous entities (with or without speciation; Abbott et al., 2013). The persistence of hybrids over evolutionary time can be achieved through four different, non-mutually exclusive pathways: (1) the stabilisation of hybrid zones (Barton & Hewitt 1989, Baack & Rieseberg 2007), (2) spatial displacement of parental taxa, (3) the expansion of hybrids into new ecological niches (hybrids by virtue of transgressive segregation may be pre-adapted to more extreme habitats, Rieseberg 1991, Rieseberg et al., 1999), and (4) hybrid speciation (Rieseberg & Willis 2007, Abbott et al., 2013) (Fig. 3).

Global change through its effects on habitat modification, change in climate, and alterations in ecological interactions, has the potential to alter the outcomes of hybridisation (Campbell & Wendlandt 2013, Chunco 2014). Probably the most obvious example of such an effect is the facilitation of hybrid persistence through “hybridisation of the habitat” in which parents occupy different ecological niches and hybrids a third, intermediate, niche (Anderson 1948, Arnold et al., 2012). Under the bounded hybrid superiority model, in which hybrids enjoy a higher fitness in intermediate habitats but suffer from lower fitness in parental ones (Moore 1977, Barton & Hewitt
1985), the creation and distribution of these intermediate habitats should influence not only hybrid formation, but also their persistence. Despite the intuitive appeal of the effects of global change on plant hybridisation outcomes, there are few good examples from the British Isles flora. Nevertheless, one tantalizing case for the potential of hybridisation to result in adaptive introgression comes from hybridisation between non-native species of *Rhododendron* (Ericaceae). *Rhododendron ponticum* is widespread in the British Isles and displays the signature of hybridisation with other species, including the more cold-tolerant *R. catawbiense* (Milne & Abbott 2000). Introgression from *R. catawbiense* to *R. ponticum* is more prevalent in colder regions in eastern Scotland than elsewhere in Britain. Given this, Milne and Abbott (2000) raised the possibility that gene flow may confer increased cold-tolerance. However, the hypothesis that hybridisation results in increased cold tolerance in *R. ponticum*, and that selection (either natural or artificial) is responsible for the geographic distribution of introgression patterns remains to be tested. The success of hybrids under the novel ecological conditions brought by global change will depend on both the availability and type of new habitats and ecological niches, and on whether hybrids are better equipped to deal with these new environments, either via the ability to thrive in “intermediate” habitats or through the expression of new adaptive phenotypes, e.g., due to transgressive segregation in hybrids.

8. Hybrid speciation

Although hybridisation may result in the reversal of speciation ("speciation undone", Grant & Grant 2014, Taylor et al., 2006), in some cases new species can be formed following hybridisation events (Mallet 2007, Abbott et al., 2013). Hybrid speciation can occur with or without whole genome duplication (allopolyplid or homopolloid speciation, respectively) (Soltis & Soltis, 2009). The use of genetic and genomic tools has helped to dramatically increase our understanding of hybrid speciation at both homoploid (Rieseberg 1991, 1997, 2006, Gross et al., 2007) and allopolyplid levels (Hegarty & Hiscock, 2008, Soltis et al., 2014a). Below we present a brief overview of these two modes of hybrid speciation, focusing on those speciation events that have been facilitated by the breakdown of reproductive barriers due to global change, particularly the introduction of non-native species into the British Isles flora.

(a) Allopolyplid hybrid speciation

The origin of a new species through hybridisation and polyploidisation can occur rapidly, as taxa with different chromosome numbers are usually characterised by post-zygotic reproductive barriers (Stebbins 1971). In principle, a hybrid can give rise to a new species in a single generation via polyploidisation (Ramsey & Ramsey 2014) leading to a “cataclysmic origin of species” (Dobzhansky 1937, p. 192). Such abrupt speciation is well documented for new British allopolyplid species in the
genera Senecio, Spartina, and Mimulus, all of which have evolved in the last 200 years (Ainouche et al., 2004, Hegarty et al., 2012, Vallejo-Marín 2012), and all of these cases involve hybrids that owe their origin to global change.

The genus Senecio (ragworts and groundsels) provides some of the best examples of recent hybrid speciation and ‘evolution in action’ among the British Flora. Within the last 100 years three new polyploid taxa have arisen in the UK as a consequence of hybridization between native tetraploid Senecio vulgaris (common groundsel) and the introduced invasive diploid species S. squalidus (Abbott & Lowe 2004, Hegarty et al., 2012), providing one of the first examples of hybridization induced by global change. Hybridisation between these two species gave rise to three allopolyploid taxa - allohexaploid S. cambrensis (Welsh groundsel) tetraploid S. eboracensis (York radiate groundsel) and tetraploid S. vulgaris var. hibernicus (radiate groundsel, a stabilized introgressant form of S. vulgaris). The latter of these hybrid taxa occurs sporadically throughout the UK, but S. eboracensis, first discovered in a York car park, is now probably extinct (Lowe & Abbott 2000, 2003, Abbott et al., 2009).

Senecio cambrensis, which was discovered in North Wales in 1948 (Rosser 1955) is locally common in North Wales (Hegarty et al., 2012) and most likely arose following a genome duplication event in the sterile triploid hybrid S. x baxteri, as hexaploid plants with similar morphology to the wild form of S. cambrensis can be produced by treating synthetic triploid S. vulgaris x S. squalidus hybrids with colchicine (Weir & Ingram 1980, Hegarty et al., 2005). In 1982 S. cambrensis was found growing in Edinburgh (Abbott et al., 1983) and subsequent molecular marker analyses revealed that this represented an independent second origin in Scotland (probably during the 1970s) rather than dispersal from Wales (Ashton & Abbott 1992, Harris & Ingram 1992). Unfortunately, the Edinburgh lineage may now be extinct as the species has not been recorded in Edinburgh since 1993 (Abbott & Forbes 2002). Independent origins of recently formed allopolyploids are common as has been shown for the allotetraploid Tragopogon of the USA (Soltis et al., 2004) – themselves another example of hybridization facilitated by global change.

Another recently discovered example of rapid allopolyploid speciation in the British Isles is Mimulus peregrinus, which has evolved at least twice, independently in southern Scotland and the Orkney Isles (Vallejo-Marín et al., 2015; Box 2). As in the case of Senecio, M. peregrinus owes its origin to global change bringing together previously isolated species. This species is derived from a sexually-sterile triploid hybrid (M. x robertsii), which is the product of hybridisation between two non-native species: diploid M. guttatus (native to North America) and tetraploid M. luteus (native to South America). The triploid hybrid persists in the wild and can form large, naturalised populations where it reproduces clonally (Vallejo-Marín & Lye 2013). Unlike the triploid, the allohexaploid derivatives are pollen and seed fertile (Vallejo-Marín 2012). The mechanism for the formation of the
allohexaploid from triploid hybrids is unknown, but one likely route is through mating between unreduced gametes (Husband 2004, Mason & Pires 2015). *Mimulus peregrinus* is an example of how a sterile hybrid taxon has escaped the sterility barrier through genome duplication to form a fertile species.

Given the young age (<200 years) of allopolyploids such as *Senecio cambrensis* (Hegarty et al., 2012), *Spartina anglica* (Ainouche et al., 2004), and *M. peregrinus* (Vallejo-Marín 2012), their long term persistence is still uncertain. Allopolyploid species often go through severe bottlenecks during their formation (Soltis et al., 2014a), as potentially a single allopolyploid hermaphroditic individual can give rise to a new allopolyploid taxon. This initially low population size may impose severe ecological barriers, such as costs due to matings between individuals with different ploidy (minority cytotype exclusion, Levin 1975; Figure 3), as well as simple stochastic extinction. Yet allopolyploids tend to be formed recurrently, and most allopolyploid species have multiple origins (Soltis et al., 2014a). To the extent that these independently originated allopolyploids are interfertile (Modliszewski & Willis 2012), interpopulation crosses could, in principle, increase genetic and phenotypic variation in nascent lineages, as appears to have been the case in *S. cambrensis* (Abbott et al., 2007). Indeed, inter-population crosses between accessions from the two known localities for *M. peregrinus* produce viable and fertile offspring (Vallejo-Marín et al., unpublished), although whether this results in increased phenotypic diversity remains to be established. Determining the degree of phenotypic and ecological diversity of recently allopolyploids seems fundamental to predict their long term fate, particularly as global change continues to alter environments and presents novel challenges to their long term survival.

It has long been recognised that hybridisation and polyploidy have the potential to generate ecological novelty (Levin 1983, Otto 2007, Soltis et al., 2014a). The development of genomic tools for recently formed allopolyploids opens the opportunity to take these early hypotheses and investigate the underlying genetic changes associated with ecological innovation. Unlike the case of homoploid hybrids, which have been subject of intense scrutiny at the interphase between ecology and genomics (Yakimowski & Rieseberg 2014), genomic approaches have been rarely used to study the ecology of natural populations of allopolyploids (Ramsey & Ramsey 2014, Soltis et al., 2014b). A rare example of such a study from the British flora is a recent study of the allopolyploid species complex *Dactylorhiza majalis*, *D. traunsteinerii*, and *D. ebudensis* (Orchidaceae) by Paun et al., (2011).

Analysis of genome-wide markers (cDNA-AFLPs) showed that these allopolyploids have higher variation in gene expression than their diploid relatives. Paun et al., (2011) suggest that variable gene expression, and potentially having more plastic phenotypes, have facilitated the colonisation of different ecological niches by these three allopolyploid orchids. A similar situation may be
responsible for the success of S. cambrensis which also shows altered patterns of gene expression relative to its parents (Hegarty et al., 2006) and also changed patterns of DNA methylation (Hegarty et al., 2011) suggesting the possibility of an epigenetic element to the generation of phenotypic novelty in allopolyploids. Studying the genomic basis and evolution of ecological novelty in polyploids is particularly timely, as we have increasing access to genomic tools for non-model organisms, and because understanding ecological adaptation becomes urgent as populations face the challenge to adapt or perish in the new environments brought by global change.

Beyond the earliest stages of allopolyploid speciation, the British Isles flora contains several examples of older allopolyploid taxa, including Mentha spp., Rubus, Euphrasia, Rorippa, and Nasturtium to name just a few (Stace et al., 2015). A particularly intriguing case is the rare Scottish primrose, Primula scotica (2n = 6x = 54, Section Aleuretia), endemic to the north of Scotland and Orkney Isles. Early genetic work showed clear evidence that P. scotica was formed through an allopolyploidisation event (Glover & Abbott 1995). Furthermore, P. scotica is thought to have given rise to another allo-octopolyploid species, P. scandinavica (2n = 8x = 72), through a hybridisation event with P. farinosa (Guggisberg et al., 2009), and it may even be involved in the origin of the 14x-polyploid P. stricta (Guggisberg et al., 2006). Currently, the distribution of P. scotica’s putative parents, P. farinosa and P. halleri (Guggisberg et al., 2009), and its potential derivatives P. scandinavica and P. stricta, does not overlap with P. scotica, suggesting that they may occupy different ecological niches, a hypothesis that could be tested using ecological niche modelling (e.g., McIntyre 2012). Recent work on polyplolid taxa in Primula Sect. Aleuretia has shown that polyploids in this section tend to have a smaller distribution and narrower niche breadths than diploids (Theodoridis et al., 2013), which could indicate that genome duplication is associated with habitat specialisation. Primula scotica and other taxa in Section Aleuretia are wonderful examples of how allopolyploid taxa can not only persist over evolutionary time, but also continue to speciate and diversify. The development of genomic tools in Primula, including a draft reference genome for P. veris (Nowak et al., 2015), has the potential to elevate this group as a system for the study of evolutionarily established allopolyploids. Notably, the timing of the formation of some of these Primula allopolyploids seems to coincide with large-scale environmental changes brought by historical climate change (e.g., end of glacial maxima), which spurs further speculation on the incidence and importance of allopolyploid speciation in times of environmental upheaval.

Recently formed hybrids, including those potentially associated with global change, are much more common than the new allopolyploid species they have generated (Stace et al., 2015, Thomas 2015), posing the question, why? Polyploids are thought to be most commonly formed by fusion of unreduced gametes (Levin 2013), and the rate of unreduced gamete formation in hybrids
can be extremely high in some plant groups (> 25%, Ramsey & Schemske 1998), indicating ample opportunities for their formation. In the case of sterile hybrids, one key hurdle to overcome in order for an allopolyploidisation event to result in a new taxon is the restoration of sexual fertility. In some cases, genome duplication can restore fertility when sterility arises from structural or numeric differences in the parental chromosome sets (Stebbins 1958, Coyne & Orr 2004). However, if sterility is rooted in genic incompatibilities between the parents, genome duplication alone will not be sufficient for fertility restoration. Thus one would expect that those hybrids that have produced allopolyploid species should tend to show few or no genic incompatibilities. This hypothesis can be experimentally tested by inducing polyploidy in sterile hybrids (Hegarty et al., 2013) and assessing their level of fertility (Statthos & Fishman 2014). If synthetic polyploids are as sterile as their parents, then genic incompatibilities can be inferred (Coyne & Orr 2004). If polyploidy restores fertility, the absence of allopolyploids in nature could be explained by ecological or perhaps stochastic causes. Ultimately, determining why allopolyploids are rarer than their hybrid ancestors remains an open question. Their absence is puzzling given the high rate of unreduced gamete production in hybrids (Ramsey and Schemske 1998). Beyond the barrier of overcoming sexual sterility in allopolyploids, other extrinsic post-zygotic mechanisms such as minority cytotype disadvantage (Levin 1975), and ecological competition with their hybrid ancestors, may pose significant barriers to the establishment of recently formed allopolyploids. It is also possible that our records of neo-allopolyploids will continue to accumulate as more recently formed hybrids come of age (Thomas 2015). Recently formed allopolyploids may be difficult to spot in botanical surveys, particularly in the initial stages when they are quite rare. Large-scale searches for cryptic allopolyploids among recently formed hybrids, using direct or indirect measurements of genome size such as flow cytometry (e.g., Castro et al., 2012), and pollen and stomata size, may provide an effective way to establish if recent allopolyploids are indeed as rare as they appear to be.

(b) Homoploid hybrid speciation

In contrast to allopolyploid speciation, homoploid hybrid speciation appears less common, although the number of confirmed cases of homoploid hybrid speciation is increasing (Gross & Rieseberg 2005, Abbott et al., 2013, Schumer et al., 2014). This apparent rarity of homoploid speciation may therefore simply reflect the difficulty in detecting it (Abbott et al., 2013). Homoploid hybrid speciation requires the evolution of a hybrid that is reproductively isolated from its parents in the absence of differences in ploidy level (Gross & Rieseberg 2005, Yakimowski & Rieseberg 2014). Reproductive isolation between parental and hybrid taxa could thus be based on differences in chromosome structure, ecological divergences, spatial isolation, or a combination of the above (Rieseberg 1997). In the British Isles flora, the only confirmed case of recent homoploid hybrid
speciation is Senecio squalidus (Oxford ragwort) although the place of origin of the hybrid plants was Sicily (reviewed in Abbott et al., 2013). S. squalidus is a recent homoploid hybrid species, which evolved in the UK following its introduction from a S. aethnensis x S. chrysanthemifolius hybrid zone on Mt Etna ~300 years ago. Senecio aethnensis is endemic to of high altitudes of Mt Etna, whereas S. chrysanthemifolius, a native of Sicily, is more widespread at lower altitudes. At mid altitudes on the volcano the distribution of the two species frequently overlaps leading to the formation of stable hybrid zones around the circumference of the volcano (Brennan et al., 2009). Material from this hybrid zone was introduced to the Oxford Botanic Garden in the early 1700s from where plants subsequently escaped and colonized the masonry of college walls and roadsides. During the industrial revolution the clinker beds of the expanding railway network provided an ideal habitat (akin to the volcanic slopes of Mt Etna) for S. squalidus to thrive and spread. During the next 300 years S. squalidus diverged phenotypically and to a lesser extent genetically in allopatric isolation from its parental species, such that it now meets the criteria for a new homoploid species (James & Abbott 2005, Abbott et al., 2013). S. squalidus and its parental species are divergent in their morphology, flowering phenology, and in ecologically important traits even though they are genetically very similar and completely interfertile (Chapman et al., 2013, Osborne et al., 2013). Nevertheless, the ~300 years of allopatric isolation have allowed S. squalidus to adapt to the cooler climate and non-volcanic soils of the UK, resulting in the ecological and phenotypic divergence seen today. Other potential candidates for homoploid hybrids in the British flora are found in the complex assemblage of interspecific hybrids in annual, hemiparasitic Euphrasia. Species of Euphrasia in the British Isles include both diploid and tetraploid taxa, which are strongly reproductively isolated across ploidy levels (Yeo 1968). However, hybrids within ploidy levels are often fertile (Stace et al., 2015), and Yeo (1968) suggests that some of these hybrids may have produced new hybrid taxa. The high fertility of within-ploidy hybrids means that for homoploid speciation to occur, reproductive isolation between parental and hybrid taxa will depend on ecological divergence and spatial isolation (Yeo 1968, Rieseberg 1997). Future studies of Euphrasia will determine whether the hypothesis of homoploid hybrid speciation holds for this group. Taken at face value, homoploid hybrid speciation seems to be rarer than polyploid hybrid speciation (Abbott et al., 2013). The apparent higher facility of allopolyploids to form and establish may be linked, in part, to the reproductive isolation barriers introduced by differences in ploidy level between derivative and parental taxa. But allopolyploid taxa also have the added feature of genome-wide redundancy conferred by polyploidisation (Soltis et al., 2014a). It is tempting to speculate that genomic redundancy is causally linked to evolutionary success in allopolyploids, for
example by allowing duplicated subgenomes to differentiate and specialise in different functions (subfunctionalisation and neofunctionalisation; Ohno 1970; Soltis et al., 2014b). This higher evolutionary potential of allopolyploids may not be immediately realised upon genome duplication (or seen in synthetic allopolyploids; Hegarty et al., 2006), but instead may accumulate as lineages diverge. The higher incidence of allopolyploids vs. homoploid hybrid species may thus reflect an evolutionary advantage over the longer term in taxa with highly redundant and malleable genomes. Whether recently formed allopolyploids can keep up with rapid global change remains to be seen.

V. Outlook

Hybridisation and hybrid speciation permeates the evolutionary history of plants, and is certainly not a novel phenomenon. However, the accelerating transformation of the world’s biota brought about by global change make the study of hybridisation both current and urgent if we are to understand the consequences of eroding reproductive barriers between evolutionarily distinct lineages. For instance, hybridisation can threaten the conservation of local biodiversity by altering the genetic integrity of native species through introgression, and genetically swamp rare ones (Vilà et al., 2000, Wolf et al., 2001, Brennan et al., 2015, Chown et al., 2015, Taylor et al., 2015). Changes to ecological communities due to hybridisation involving non-native species can also change ecological communities, and hybrids can compete for pollination services and fruit dispersers (Vilà et al., 2000). Moreover, hybrids themselves can become significant invasive pests (Ellstrand & Schierenbeck 2000) with negative effects for local economies and biodiversity. On the other hand, the consequences of hybridisation and its effects on biodiversity need not necessarily always be negative since hybridisation can spur accelerated rates of speciation and thus increase biodiversity (Thomas 2015). More studies are needed to gauge whether the balance of neo-hybridisation is positive or negative.

Although the ecological and evolutionary consequences of recently formed hybrids are hard to predict, many hybrids are probably innocuous to local ecosystems as we know them. Regardless of their perceived costs and benefits, recently formed hybrids provide us with the unique opportunity to study, in real time, the breakdown of reproductive barriers and the processes allowing newly formed hybrids to become established, and in some cases speciate (Mallet 2007, Abbott et al., 2013). The dynamic and rapidly changing nature of our planet’s biota has created a global experiment on hybridisation. We now have the timely opportunity to use this unplanned experiment to study the basic biological phenomena responsible for the birth and death of species. Capitalizing on this opportunity needs a multidisciplinary approach, combining classic taxonomic studies and catalogues of hybrid floras (Stace et al., 2015) with ecological experiments, phylogenetic analysis,
quantitative genetics, and bioinformatics to exploit the new genomic resources available for non-
model organisms.

Acknowledgements

We thank A.C. Brennan and R. Hopkins for insightful comments and suggestions on a previous
version of the manuscript, and C.D. Preston, D.A. Pearman, and C.A. Stace for access to their hybrid
databases. We also thank the careful and constructive comments by the Editor and three referees.
We particularly appreciate the insightful comments of Referee 3, which greatly helped us refine and
explain our ideas, and follow through with their implications.

References

CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS,
Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martínez-Rodríguez
Hybridization and speciation. J. Evol. Biol. 26: 229-246. 10.1111/j.1420
-9101.2012.02599.x.
origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort (Senecio
Abbott RJ, and Forbes DG. 2002. Extinction of the Edinburgh lineage of the allopolyploid neospecies,
Senecio cambrensis and S. eboracensis in the British Isles. Biological Journal of the Linnean
Society 82: 467-474.
Abbott RJ, Noltie HJ, and Ingram R. 1983. The origin and distribution of Senecio cambrensis Rosser
Ainouche M, Baumel A, Salmon A, and Yannic G. 2004. Hybridization, polyploidy and speciation in

Figure 1. Reproductive isolation barriers preventing the formation and establishment of hybrids. Reproductive isolation barriers are usually divided in pre-zygotic and post-zygotic. Notice that in plants, some barriers such as pollen precedence act after mating (pollination) but before zygote formation.

Figure 2. Meiosis in hybrids is adversely affected by differences in chromosome number and structure between parental species. The result will generally be gamete inviability, but, rarely, gametes with atypical chromosome numbers (aneuploid and unreduced gametes) may be produced and viable. The figure shows ways in which viable gametes could be produced in a hypothetical triploid hybrid (2n = 3x). Unpaired chromosomes during meiosis (in both univalents and multivalents) migrate to either cell pole at random, resulting in unbalanced gametes (top pathway). Most of these unbalanced gametes will be inviable, causing a very severe reduction in fertility. A small fraction of these gametes may by chance end up with the parental cytotype, and are thus viable. Another small fraction may be viable despite carrying new aneuploid combinations. Occasionally, gametes may be produced with the entire set of chromosomes present in the hybrid (unreduced gametes), which may be subsequently involved in polyploid formation.

Figure 3. Potential fate of viable hybrids that are able to persist over ecological or evolutionary timescales after their origin and initial establishment.
Table 1. Examples of the “Significant Eight” alien hybrid complexes of the British Flora recognised by Stace & Crawley (2015). Introduced taxa (neophytes) are indicated with *. Data compiled by Stace & Crawley (2015) and Stace et al. (2015).

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Parents</th>
<th>Sexual Fertility</th>
<th>Clonal reproduction</th>
<th>Allopolyploid derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallopia x bohemica (2n = 66)</td>
<td>F. japonica (2n = 88)</td>
<td>Low</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>F. sachalinensis (2n = 44)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senecio x baxteri (2n = 30)</td>
<td>S. vulgaris (2n = 40)</td>
<td>Very low</td>
<td>No</td>
<td>S. cambrensis (2n = 60)</td>
</tr>
<tr>
<td></td>
<td>S. squalidus (2n = 20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spartina x townsendii (2n = 62)</td>
<td>S. maritima (2n = 60)</td>
<td>Very low</td>
<td>Yes</td>
<td>S. anglica (2n = 124)</td>
</tr>
<tr>
<td></td>
<td>S. alterniflora (2n = 62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimulus x robertsi (2n = 44-46)</td>
<td>M. guttatus (2n = 28)</td>
<td>Very low</td>
<td>Yes</td>
<td>M. peregrinus (2n = 92)</td>
</tr>
<tr>
<td></td>
<td>M. luteus (2n = 60-62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calystegia x lucana (2n = 22)</td>
<td>C. sepium (2n = 22)</td>
<td>High</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>C. sylvatica (2n = 22)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyacinthoides x massartiana (2n = 16, 24)</td>
<td>H. non-scripta (2n = 16, 24)</td>
<td>High</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>H. hispanica (2n = 16, 24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhododendron x superponticium (2n = 26)</td>
<td>R. ponticum (2n = 26)</td>
<td>High</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>R. catawbienese, R. maximum, R. macrophyllum (2n = 26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centaurea x gerstlaueri</td>
<td>C. nigra</td>
<td>C. jaceae*</td>
<td>High?</td>
<td>Yes (but limited lateral spread)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>(2n = 44)</td>
<td>(2n = 44)</td>
<td>(2n = 44)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Reproductive mode and occurrence of 274 alien angiosperm hybrids and 1,590 non-hybrid aliens in the British and Irish flora. Data from Stace and Crawley (2015). Hectad = 10km x 10km square.

<table>
<thead>
<tr>
<th>Propagation Mode</th>
<th># Hybrid alien taxa (proportion)</th>
<th>Average # of hectads per hybrid taxon (maximum)</th>
<th># Non-hybrid alien taxa (proportion)</th>
<th>Average # of hectads per non-hybrid taxon (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds only</td>
<td>48 (0.175)</td>
<td>180 (2,242)</td>
<td>559 (0.351)</td>
<td>224 (3,530)</td>
</tr>
<tr>
<td>Clonal only</td>
<td>55 (0.200)</td>
<td>157 (1,147)</td>
<td>122 (0.077)</td>
<td>212 (2,723)</td>
</tr>
<tr>
<td>Seeds and clonal</td>
<td>71 (0.259)</td>
<td>199 (2,419)</td>
<td>330 (0.207)</td>
<td>218 (2,535)</td>
</tr>
<tr>
<td>No reproduction in the British isles</td>
<td>100 (0.365)</td>
<td>32 (444)</td>
<td>579 (0.364)</td>
<td>37 (1,738)</td>
</tr>
<tr>
<td>Total</td>
<td>274</td>
<td>126 (2,419)</td>
<td>1,590</td>
<td>153 (3,530)</td>
</tr>
</tbody>
</table>
Box 1. The Avon Gorge: A hotspot of hybrid diversity

The genus *Sorbus* (Rosaceae) includes sexual diploid species and apomictic species/taxa with varying ploidy (usually 3x and 4x) that have arisen through hybridisation between sexual species and rare backcrosses with their apomictic allopolyploid derivatives (Rich & Robertson 2015). There are 31 *Sorbus* agamospecies native to the British Isles, 10 of which are reported in Stace et al., (2015). The parentage of these hybrids is often complex but molecular data is helping to resolve their origins (Robertson et al., 2010). ‘Hotspots’ for *Sorbus* diversity in the British Isles include: the Isle of Arran, Cheddar Gorge, the Wye Valley and the Avon Gorge (Rich & Robertson 2015) – the latter being by far the richest, possibly the richest in the world.

The Avon Gorge contains at least 21 *Sorbus* taxa, six of which are endemic and shown to have evolved within the Gorge, probably within the last 10,000 years since the last ice-age (Robertson et al., 2010; Ludwig et al., 2013). Studies using molecular markers revealed that this *Sorbus* diversification has been driven primarily by a series of interspecific hybridisations and backcrosses among closely related taxa, with each new genotype being fixed and perpetuated via apomixis (Robertson et al., 2010; Ludwig et al., 2013). Once established these new microspecies then occasionally participate in further rare hybridisation events leading to a complex pattern of ongoing reticulate evolution (Robertson et al. 2010; Ludwig et al., 2013). This occurs because of subtle variation ('leakiness') in the apomictic mating system that permits occasional sexual unions, usually involving pollen from the most common species, *S. aria*, which is diploid and sexual (outcrossing) and its close tetraploid relative *S. porrigentiformis*, apomictic. Pollen from these taxa is essential for apomictic seed production by the triploid apomictic hybrid taxa (*e.g.*, *S. bristoliensis* and *S. wilmottiana*) because apomixis is pseudogamous (endosperm formation requires fertilization of the central cell by sperm) and triploids (unlike tetraploids) are self-incompatible (SI) (Ludwig et al., 2013; Ludwig & Hiscock in preparation). This unusual mating system therefore fuels the possibility of rare hybridisations being successful because interspecific pollination is required for apomictic seed production in the triploids, which in all but one microspecies tested, are genetically identical (indicating a single hybrid origin event) and therefore incompatible because they all share the same self-incompatibility (S) genotype (Ludwig et al., 2013). Populations of at least two undescribed microspecies have been identified together with numerous puzzling individuals, which do not fit known taxa (Tim Rich pers. comm.) indicating that these evolutionary processes are ongoing. The 2km long Avon Gorge which cuts through Carboniferous Limestone to a depth of 80m, displays a great diversity of habitats (including woodland, scrub, open rocks and quarries) which has probably facilitated and continues to facilitate the survival of newly divergent (perhaps pre-adapted) *Sorbus* taxa (Rich et al., 2010). Conservation strategies for the rare *Sorbus* taxa endemic to the Avon Gorge have taken these findings on board in revising management regimes such that all *Sorbus* taxa are considered so as to conserve the evolutionary process rather than just the rare ones.
Box 2. Monkeyflower hybrids: The birth of a new species

Mimulus has a long tradition in studies of hybridisation, reproductive isolation and speciation (Vickery 1959, Bradshaw et al., 1995, Fishman & Willis 2001, Brandvain et al., 2014). The spread of some *Mimulus* species beyond their native range thanks to human-assisted dispersal, has created new opportunities for hybridisation between previously isolated *Mimulus* taxa (Vallejo-Marín & Lye 2013). The best studied case is the invasion of the British Isles by two related monkeyflower taxa: The North American diploid *M. guttatus*, and the South American tetraploid *M. luteus*. Both species were introduced into the British Isles in the early 19th century as botanical curiosities, and quickly became naturalised (Stace et al., 2015). Hybridisation between these two taxa produce a highly sterile triploid, which is nevertheless capable of vegetative growth. The hybrid has been established in the wild since at least the 1870’s, and it is currently the second most abundant *Mimulus* in the UK after *M. guttatus* being present in approximately 40% of extant populations (Vallejo-Marín & Lye 2013). The triploid hybrid *M. x robertsii*, has produced the new allopolyploid species *M. peregrinus*, which has originated at least twice, independently, in Scotland (Vallejo-Marín 2012, Vallejo-Marín et al., 2015). *M. peregrinus* produces both viable pollen and seeds, as well as retaining its capacity for vegetative reproduction. Multiple origins seem to be the rule rather than the exception for the formation of allopolyploids (Soltis et al., 2014b), and this provides a natural system to investigate hybrid speciation in a replicated fashion.

Although the parentage of *Mimulus* hybrids and the origin of *M. peregrinus* has been recently documented using genome-wide analyses (Vallejo-Marín et al., 2015), a missing piece of the puzzle is to determine which taxon has served as the maternal parent and which as the paternal parent in hybrid formation. Inter-ploidy hybridisation often results in asymmetric reproductive barriers, and it is likely that hybridisation between *M. guttatus* and *M. luteus* does not work equally well in both directions (Roberts 1964). Determining the ancestry of inter-specific hybrids can be done by analysing uniparentally inherited genomes (e.g., chloroplast and mitochondria) (Rieseberg & Brunsfeld 1992, Twyford & Ennos 2012). However, genetic analysis of hybrid ancestry can be complicated by limited availability of species-diagnostic polymorphism in uniparentally-inherited genomes. Recent studies have pointed out how whole genomes of cytoplasmic organelles are recovered in both targeted and whole-genome sequence projects, as by-products of even low-depth sequencing efforts (genome skimming, Dodsworth 2015). This trove of genetic information can be used to identify the taxon that acted as the maternal parent of hybrids, even in the absence of closely related reference genomes (Bakker et al., 2016). Vallejo-Marín et al., (in press) applied a genome skimming approach to determine the ancestry of *Mimulus* hybrids in the British Isles. They used data obtained from both whole-genome and targeted sequencing projects, to rescue chloroplast and mitochondrial genomes of *M. x robertsii* and *M. peregrinus* and their parental taxa. They showed that hybrids have been produced unidirectionally, with *M. guttatus* as the maternal and *M. luteus* as the paternal parent. Genome skimming (Straub et al., 2012) holds great potential to investigate the ancestry of neo-hybrids, and we expect similar approaches to be increasingly exploited in the near future.