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The e�ect of memory size on the evolutionary
stability of strategies in iterated prisoner’s dilemma

Jiawei Li, Member, IEEE, and Graham Kendall, Senior Member, IEEE

Abstract�The iterated prisoner’s dilemma is an ideal model
for the evolution of cooperation among the payo�-maximizing in-
dividuals. It has attracted wide interest to develop novel strategies
since the success of tit-for-tat in Axelrod’s iterated prisoner’s
dilemma competitions. Every strategy for iterated prisoner’s
dilemma utilizes a certain length of historical interactions with
the opponent, which is regarded as the size of the memory,
in making its choices. Intuitively, longer memory strategies
must have an advantage over shorter memory strategies. In
practice, however, most of the well-known strategies are short
memory strategies that utilize only the recent history of previous
interactions. In this paper, the e�ect of the memory size of
strategies on their evolutionary stability in both in�nite length
and inde�nite length n-person iterated prisoner’s dilemma is
studied. Based on the concept of a counter strategy, we develop a
theoretical methodology to evaluate the evolutionary stability of
strategies and prove that longer memory strategies outperform
shorter memory strategies statistically in the sense of evolutionary
stability. We also give an example of a memory-two strategy to
show how the theoretical study of evolutionary stability assists
in developing novel strategies.

Index Terms�Evolutionary stability, strategies, iterated pris-
oner’s dilemma, game theory.

I. Introduction

THE prisoner’s dilemma is a non-zero-sum game in which
two players try to maximize their payo� by cooperating

with, or betraying the other player [34], [35]. The payo�
matrix of the game is shown in Figure 1.

Fig. 1. Payo� matrix of the Prisoner’s Dilemma.

In the payo� matrix, R, S , T , and P denote Reward for
mutual cooperation, Sucker’s payo�, Temptation to defect, and
Punishment for mutual defection respectively, and T > R >
P > S . The constraint motivates each player to play non-
cooperatively.

J. Li is with the School of Computer Science, ASAP research group,
University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham,
UK, NG8 1BB. E-mail: jiawei.li@nottingham.ac.uk

G. Kendall is with the School of Computer Science, ASAP Research Group,
University of Nottingham, UK. E-mail: graham.kendall@nottingham.ac.uk
and University of Nottingham Malaysia Campus, Jalan Broga,
43500 Semenyih, Selangor Darul Ehsan, Malaysia. E-mail:
graham.kendall@nottingham.edu.my

Manuscript received December 28, 2012; Accepted October 9, 2013.
Copyright (c) 2012 IEEE.

When both players are rational and they make their choice
independently, the theoretical outcome of the game is a Nash
equilibrium, in which both players choose to defect and each
receives a ’Punishment for mutual defection’. It is worse for
each player than the outcome they would have received if they
had cooperated.

In the Iterated Prisoner’s Dilemma (IPD) game, two players
have to choose their mutual strategy repeatedly, and they also
have memory of their previous behaviors and the behaviors of
the opponents. R > 1

2 (S + T ) is set to prevent any incentive to
alternate between cooperation and defection. IPD is considered
to be an ideal test bed for the evolution of cooperation among
sel�sh individuals and it has attracted wide interest since
Robert Axelrod’s IPD tournaments and ‘The Evolution of
Cooperation’ [4], [5], [11], [21], [27], [28].

The winner of Axelrod’s tournaments was the ‘tit-for-tat’
(TFT) strategy. TFT starts with cooperation, and then copies
the opponent’s previous move. Axelrod attributes the success
of TFT to its properties of ‘nice’, ‘forgiving’, ‘retaliating’ and
‘simple’. However, later research has shown some weaknesses
of TFT such as vulnerability to noise and being unable
to exploit unconditional cooperators [28], [39]. Since then,
researchers have attempted to develop novel strategies that
can outperform TFT in either round-robin IPD competitions
or evolutionary dynamics and some IPD strategies have been
developed, for example, ‘win-stay lose shift’ [29], ‘generous-
TFT’ [33], ‘gradual’ [6], and very recently ‘group strategies’
[22], [36], [24], and ‘zero-determinant’ [31], [37]. Also, evo-
lution of strategies in replicator dynamics with in�nite or �nite
population, spatial, and noisy environments has been studied
in [1], [2], [8], [9], [15], [16], [17], [19], [20], [32], [26].

Di�erent IPD strategies may use di�erent lengths of historic
interactions. TFT, for example, is a memory-one strategy,
only making use of information from the previous stage of
interaction in making its next decision. ‘Tit-for-two-tats’ is
a memory-two strategy. Most well known IPD strategies are
memory-one and memory-two strategies and only a limited
number of strategies use a memory size greater than three.

Intuitively, the players with longer memories can perform
at least as well as those with shorter memories. However, it
is still not clear whether longer memory strategies outperform
shorter memory strategies. Few IPD strategies developed in
either experiments or tournaments uses a very long memory. A
non-trivial question is whether or not a longer memory grants
a strategy advantage in IPD?

Experiments have revealed that memory helps learning and
cooperation in evolution [41], [14], [13]. Posch [30] studied
win-stay, lose-shift with diverse memory size and showed that
win-stay, lose-shift with longer memory performed better than
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those with shorter memory in computer simulations. Ashlock
and Roger [3] showed that several strategies utilizing long
term memory outperformed control strategies in evolutionary
IPD. Press and Dyson [31] proves that the shortest memory
strategy sets the rule of 2-player IPD games. That is, longer
memory strategies do not have an advantage over shorter
memory strategies in 2-player IPD. However, this result cannot
be extended to n-player (n > 2) IPD cases and the memory-
one zero-determinant strategies are not evolutionarily stronger
than those known IPD strategies [37], [42].

In this study, we investigate the e�ect of memory size on
the evolutionary stability of IPD strategies. In order to evaluate
the evolutionary stability of IPD strategies, we develop the
concept of a counter strategy. A strategy is a counter strategy
against another strategy if it receives no less payo� than
any strategy in interacting with the opponent. Based on this
concept, a number of theorems which show the relationship
between the length of the history a strategy uses and its
evolutionary stability are proven. The contributions of this
paper include:

a. We propose a theoretical methodology to evaluate the
evolutionary stability of IPD strategies. Based on the concept
of a counter strategy, the evolutionary stability of a strategy is
evaluated by whether the strategy is a counter strategy against
itself and the probability that the strategy is a counter strategy
against an arbitrary strategy.

b. The e�ect of the memory size of IPD strategies on
their evolutionary stability is analyzed. We prove that longer
memory strategies have an advantage over shorter memory
strategies in both in�nite length and inde�nite length n-IPD.
A longer memory strategy has a higher probability of winning
against an arbitrary strategy than a shorter memory strategy.

The rest of paper is structured as follows. Section 2 intro-
duces the concept of counter strategy and how the evolutionary
stability of IPD strategies can be evaluated by means of a
counter strategy. Section 3 presents three theorems and their
proofs. The theorems show the e�ect of memory size of
strategies on their evolutionary stability. Finally, section 4 has
concluding remarks.

II. Evolutionary stability of IPD strategies
An inde�nite length IPD has a discount rate ! (1 � ! > 0).

The game continues with probability ! and the expected num-
ber of iterations of the game are 1=(1�!). If ! = 1, the game
is in�nite. In this paper, we focus on n-player in�nite length
and inde�nite length IPDs and ignore the �nite length IPD.
Let S i (i = 1; : : : n) denote the strategy of the ith player and
E(S i; S j) the payo� of S i playing against strategy S j. Then the
payo� of S i playing against all n strategies (including playing
against itself) can be expressed as E(S i) =

Pn
j=1 E(S i; S j).

A. Counter strategy
Let HL denote a history of L moves of interactions between

two players before the current move. A strategy that makes
use of HL is called a memory-L strategy. A player should
have at least L length of memory in order to adopt a memory-
L strategy.

The strategies in IPD can be categorized according to the
length of memory they use. Some well known IPD strategies
are shown in Table I. Descriptions of all strategies used in
this paper can be found in [23]. For those strategies that have
variable memory length, the memory length is the longest
memory that they use. Let f (HL) denote a memory-L strategy.
The strategy space of a length-L IPD is determined by f f ; HLg
and the strategy space of an in�nite or inde�nite length IPD
is determined by f f ; H1g.

TABLE I
Some well known IPD strategies with different size of memories.

Memory-zero Memory-one
Always-cooperate Tit-for-tat, GRIM triger

Always-defect Generous TFT, Contrite TFT
Random Win-stay-lose-shift, Gradual

Zero-determinant

Memory-two Memory-L(L > 2)
Tit-for-two-tats Fortress
Two-tits-for-tat Prober

Group strategies

In order to evaluate the evolutionary stability of IPD strate-
gies, we introduce the concept of a counter strategy. A strategy
S is a counter strategy (CS) against another strategy S 1 if, for
any strategy S 0

E(S ; S 1) � E(S 0; S 1) (1)

A CS receives the highest payo� in playing 2-IPD against
another strategy. In an inde�nite length 2-IPD, for example,
Always-defect (AllD) is a CS against always-cooperate; TFT
is a CS against TFT. For an arbitrary strategy, there must be
at least one CS against it.

Specially, strategy S is a CS against itself (CSI) if, for any
strategy S 0

E(S ; S ) � E(S 0; S ) (2)

A strategy S is a CS against a population of strategies fS ig
(i = 1; : : : ; n) if, for any S 0 and S i, there is

E(S ; S i) � E(S 0; S i) (3)

If a strategy is a CS against a population, it is a CS against
any member of the population and thus it receives the highest
payo� in playing n-IPD against the population.

There is an equivalence between a CS against a mixed
strategy and a CS against a population. Assume that S is a CS
against a population of n strategies fS ig. Consider the mixed
strategy flS that assigns probabilities pi = 1=n to S i,

flS =

8>>>>>><
>>>>>>:

S 1; p1
S 2; p2
� � �
S n; pn

The expected payo� for S playing against flS is,

E(S ; flS ) = p1E(S ; S 1) + p2E(S ; S 2) + � � � + pnE(S ; S n)

=
1
n

nX

i=1

E(S ; S i)
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According to the de�nition of a CS, we have for any S 0,

E(S ; flS ) �
1
n

nX

i=1

E(S 0; S i) = E(S 0; flS )

Thus, S is also a CS against flS . On the other hand, if a
strategy is a CS against a mixed strategy, it must be a CS
against a population that contains all pure strategies of the
mixed strategy. As shown in the following subsection, the
concepts of CSs can be used to evaluate the evolutionary
stability of IPD strategies.

B. Evolutionary stability

An evolutionarily stable stategy (ESS) is a strategy such
that, if all the members of a population adopt it, then no
mutant strategy can invade the population under the in�uence
of natural selection. According to [25] the condition for a
strategy S to be ESS is that for any S 0,

E(S ; S ) � E(S 0; S ) (4)

This condition is actually equivalent to a Nash equilibrium
in a two-player IPD. In order for a homogeneous population to
resist invasion of mutant strategies, a more restrictive condition
is de�ned. According to [38], the condition for a strategy S
to be ESS is that for any S 0,

E(S ; S ) � E(S 0; S )
E(S ; S 0) > E(S 0; S 0) (5)

This condition guarantees that an ESS always outperforms
mutant strategies so that a homogeneous population can be
maintained in evolutionary dynamics. However, most evolu-
tionary algorithms for IPD do not satisfy the hypothesis of
ESS and it has been proven that no strategy is ESS in in�nite
length or inde�nite length n-player IPD [7], [40]. Except in
speci�c situations, the condition of ESS cannot be used to
analyze the evolutionary stability of IPD strategies.

There is a relationship between CS and ESS. A strategy is
ESS if it is the only CS against all IPD strategies. Assume
that S is a CS against all strategies. For any strategy S 0, we
have

E(S ; S ) � E(S 0; S )

and
E(S ; S 0) � E(S 0; S 0)

Comparing the inequalities with (5), we know that S is ESS
if it is the unique CS against all strategies. Since the condition
of ESS is too strict, we need another criterion to measure the
evolutionary stability of IPD strategies.

It is easy to verify that any CSI is Maynard Smith’s
de�nition of ESS. If strategy S is a CSI, (4) always holds
for any strategy S 0. There is an in�nite set of CSIs in n-IPD.
Some well known strategies, for example, AllD, TFT, and two-
tits-for�tat (TTFT) are such strategies. A CSI is an equilibrium
choice for a player and thus it is superior to any non-CSI in
maintaining a homogeneous population.

In order to evaluate the evolutionary stability of CSIs, we
need another criterion. Given a strategy S , let p(S ) denote the

probability that S is a CS against an arbitrary IPD strategy. A
strategy with a high value of p(S ) is more likely to win in an
n-IPD competition or evolution. We call p(S ) the evolutionary
stability value of S . For any strategy, there is 1 � p(S ) � 0. A
strategy is ESS if it is the only strategy satisfying p(S ) = 1.

Here we give an example of computing the evolutionary
stability value of a random strategy. Let S denote a random
strategy that chooses between C and D in every move, and
S 0 an arbitrary strategy. In an inde�nite length n-IPD with
discount rate !, the expected length of interaction between S
and S 0 is 1=(1 � !). It needs to make the ‘correct’ choice in
every move in order for S to be a CS against S 0. Because S is
a random strategy, the probability that it makes the ‘correct’
choice in each move is 0:5. Therefore, the probability that S
is a CS against S 0 is 0:5 1

1�! .
Di�erent IPD strategies can be compared according to

whether or not they are CSI and their evolutionary stability
values. A CSI outperforms any non-CSI and a CSI with a
higher evolutionary stability value outperforms another CSI
with a lower evolutionary stability value. In the following sec-
tion, several theorems are given to show that longer memory
strategies outperform shorter memory strategies.

III. The effect of memory length on evolutionary stability

Di�erent IPD strategies use di�erent history lengths of
interactions among players to determine their choices. In a
�nite length IPD that iterates exactly L rounds, the history
length a strategy can access is at most L. In an in�nite length
IPD, however, the history length is in�nite. A non-trivial
question is whether the full history length is useful for an
individual player to interact with others optimally?

It has been proven that every �nite history length is possible
to occur in an in�nite length n-IPD. This is expressed as the
following theorem [40].

Theorem 1: In the in�nite length n-IPD where the probability
of further interaction is su�ciently high, every �nite history
of interactions among the n players occurs with positive
probability in any evolutionarily stable mixture of pure
strategies.

It is easy to verify that Theorem 1 also holds in an inde�nite
length n-IPD. In an inde�nite length IPD, the probability that
the game continues to any limited number of stages is positive.
Thus, every �nite history occurs with positive probability.

A direct conclusion from Theorem 1 is that every �nite
history may be useful in order for a strategy to interact with
an arbitrary strategy optimally. As to the relationship between
the history length a strategy uses and its evolutionary stability,
we have the following theorems.

Theorem 2: For any strategy that uses a limited history
length, there always exist some strategies with longer memory
against which the strategy cannot be a counter strategy.

Proof: Consider a memory-L strategy S . Let HL denote a
speci�c L length history of interactions between S and an
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arbitrary strategy S 1.
a. If S is a pure strategy, without loss of generality, assume
that S responds D (or C) to HL. Let H0

L+1 denote a L+1 length
history in which the �rst L moves are the same as HL and the
opponent plays D (or C) at the last move. Another strategy S 2
is de�ned as below,

S 2 =

8>>><
>>>:

S 1 in the �rst L moves
always � de f ect if H0

L+1
cooperate otherwise

(6)

S 2 is a memory-(L + 1) strategy. We now prove that S is
not a CS against S 2. Consider a strategy S 0 de�ned as below,

S 0 =

8>>><
>>>:

S in the �rst L moves
C if HL
S otherwise

(7)

In the 2-IPD between S 0 and S 2, S 2 plays cooperate after
L + 1 moves, while in the 2-IPD between S and S 2, S 2 plays
always-defect after L + 1 moves. It is easy to verify that
E(S ; S 2) < E(S 0; S 2).
b. If S is a mixed strategy, without loss of generality, assume
that S responds D to HL with probability p > 0 (responds C
with probability 1�p). Let H0

L+1 denote a L+1 length history in
which the �rst L moves are the same as HL and the opponent
plays D at the last move. Consider two strategies S 2 and S 0

as de�ned in (6) and (7). There is E(S ; S 2) < E(S 0; S 2).
Thus, S is not a CS against S 2. �

Theorem 3: Any strategy that uses a limited history length
cannot be an ESS in an in�nite length or inde�nite length
n-IPD.

Proof: It is a direct conclusion from theorem 2 that any
limited memory strategy cannot be ESS in an in�nite length
n-IPD. Consider a memory-L strategy S in an inde�nite
length n-IPD with discount rate ! > 0. Since the probability
that the game continues more than L stages is positive, there
is always a positive probability that S meets a memory-(L+1)
strategy against which S is not a CS. Thus, S cannot be an
ESS. �

Lemma 1: If a strategy is a CS against a memory-L strategy,
this strategy will eventually play a periodic sequence in the 2-
IPD against the memory-L strategy and the period will be � L.

Proof: Consider an arbitrary memory-L strategy S 1. S 2 is a CS
against S 1. If L = 0, S 2 must be always-defect and Lemma 1
holds. We only need to consider the case of L > 0.
a. Assume that S 1 is a pure strategy. Let h1 and h2 denote two
continuous length-L history of interactions between S 1 and S 2,
s1 and s2 denote two sequences of moves played by S 1 in h1
and h2 respectively, and l1 and l2 denote two sequences of
moves played by S 2 in h1 and h2 respectively, as shown in
Fig.2.

Because S 1 is a memory-L pure strategy, the �rst move of
s2 is determined by s1 and l1. Since S 2 is CS against S 1, l1
must be the optimal sequence of moves such that S 2 receives
the highest payo� in playing against both s1 and the �rst

Fig. 2. Two continuous length-L sequences of moves in the interaction
between S 1 and S 2.

move of s2. Given s1, l1 and the �rst move of s2, the second
move of s2 is determined, ... and etc. Given s1 and l1, each
move of s2 is determined and thus l2 is determined. Since l1
is the payo�-maximizing sequence, there must be l2 = l1.

b. If S 1 is a mixed strategy, without loss of generality, assume
that S 1 assigns probabilities over m pure strategies S 0

i , each
of which is memory-L or less.

S 1 =

8>>>>>><
>>>>>>:

S 0
1; q1

S 0
2; q2

� � �
S 0

m; qm

S 2 is a CS against any pure strategy S 0
i (i = 1; : : : m).

According to the proof in section a, S 2 will eventually play a
periodic sequence against any S 0

i and the period will be � L. �

Theorem 4: There are always longer memory strategies that
have a higher probability of being a CS against an arbitrary
strategy than a shorter memory strategy in an in�nite length
or inde�nite length n-IPD.

Proof: We �rst consider the case of in�nite length n-IPD. Let
S 0 be an arbitrary strategy. If S 0 is a memory-L strategy, a
CS against S 0 must play a periodic sequence with period � L
according to Lemma 1. Without loss of generality, let qi (i =
1; : : : L) denote the probability that the CS plays a sequence
whose period is equivalent to i. There is qi � 0 and

PL
i=1 qi = 1.

Let pL(S ) denote the probability of S being a CS against an
arbitrary memory-L strategy. For a memory-zero strategy S 0,
there is pL(S 0) = 1

2 q1 if S 0 plays a sequence of pure C (or D).
If S 0 plays a periodic sequence whose period is equivalent to
2, we have pL(S 0) = 1

4 q2, and so on.

pL(S 0) =

8>>>>>><
>>>>>>:

1
2 q1; if S 0 plays a period-1 sequence
1
4 q2; if S 0 plays a period-2 sequence
� � �

1
2L qL; if S 0 plays a period-L sequence

Thus, the highest value of pL() for a memory-zero strategy
is,

pL(S 0) = max(
1
2

q1;
1
4

q2; : : : ;
1
2L qL)

A memory-one strategy can shift between a determined
sequence and a period-2 sequence. The highest value of pL()
for a memory-one strategy is,

pL(S 1) = max(
1
2

q1 +
1
4

q2;
1
8

q3 +
1
4

q2; : : : ;
1
2L qL +

1
4

q2)
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Similarly, there are pL(S L) = 1
2 q1 + 1

4 q2 + : : : + 1
2L qL, where

S L is the memory-L strategy that has the highest value of pL().
For any memory-K (K � L) strategy, the highest value of

pL(S K) is,

pL(S K) =
1
2

q1 +
1
4

q2 + : : : +
1
2L qL

Thus, we have,
(

pL(S L) > pL(S L�1) > : : : > pL(S 1) > pL(S 0)
pL(S K) = pL(S L) (for any K � L) (8)

Because S 0 is an arbitrary strategy, without loss of general-
ity, assume that the probability that S 0 is a memory-i strategy
is q0

i . There is q0
i � 0 and

P1
i=0 q0

i = 1.

p(S ) =
1X

i=0

q0
i pi(S )

Let S L be the memory-L strategy that has the highest value
of p() in the set of all memory-L strategies, S L+1 be the
memory-(L+1) strategy that has the highest value of p() in
the set of all memory-(L+1) strategies. There is,

p(S L) =
1X

i=0

q0
i pi(S L)

p(S L+1) =
1X

i=0

q0
i pi(S L+1)

According to (8), we have,
(

pi(S L) < pi(S L+1) (if i > L)
pi(S L) = pi(S L+1) (if i � L)

Thus, there must be p(S L+1) > p(S L) for any limited number
L in an in�nite length n-IPD.

In an inde�nite length n-IPD, the probability that the game
continues more than any limited number of stages is positive.
There is always a positive probability that the game continues
i stages such that pi(S L) < pi(S L+1) and thus p(S L+1) > p(S L)
holds in inde�nite length n-IPD. �

IV. Example of a memory-2 strategy

In this section, we use a memory-2 (MEM2) strategy to
show how the theoretical analysis in the previous section
assists in developing IPD strategies. MEM2 behaves like TFT
in the �rst two moves and then it shifts among three strategies,
AllD, TFT and TFTT, according to the interactions with the
opponent in the last two moves. The logic for MEM2 to choose
which strategy to play based on the following rules.

A. If the payo� in two moves is 2R (two mutual coopera-
tions), then play TFT in the following two moves.

B. If the payo� is T+S, then play TFTT in the following
two moves.

C. In all other cases, play AllD in the following two moves.
D. If AllD has been chosen twice, always play AllD.
MEM2 will cooperate with cooperative strategies according

to Rule A, and it can restore cooperation from an occasional
defection because of Rule B. Rule D makes sure that MEM2

defects against those periodic or random strategies. It is easy
to verify that MEM2 is a CSI strategy.

We run a round-robin IPD competition with 19 strategies,
which include MEM2, AllD, TFT, TFTT, and some strategies
that have appeared in research papers. The strategies play an
IPD with each other and the discount rate of IPD is 0.98,
which means that the average length of the IPD is 50 moves.
The scores (average payo� per move) are listed in Table 2.
MEM2 receives the highest payo�, signi�cantly higher than
other CSI strategies.

TABLE II
Result of a round-robin IPD competition with 19 strategies.

Strategy Score Strategy Score
MEM2 3.045 PAVLOV 2.362
GRIM 2.799 HM 2.314

GRADUAL 2.749 AllC 2.283
TFT 2.668 STFT 2.246
FBF 2.608 PCD 2.243

GTFT 2.598 AllD 2.221
CTFT 2.587 RAND 2.149
TFTT 2.529 RTFT 2.132

RP 2.399 NEG 2.081
NP 2.364

We also run a series of evolutionary IPD simulations. The
initial population contains x= 5; 6:::10 strategies randomly
chosen from the 19 strategies in Table II. Each strategy has 20
identical copies. Stochastic universal sampling is used to select
parents for the next generation. The parents simply copy their
strategies to produce o�spring and no mutation is carried out.
An evolutionary IPD is run for 100 generations. As the out-
come of any single evolutionary IPD is a�ected by chance, we
repeat each evolutionary IPD with the same x value for 50,000
times, and gather statistics on the outcomes. Two measures,
average �tness and average frequency in the population, are
used to measure the performance of the strategies. They are
average values over the results of 50,000 evolutionary IPDs.

The results of simulations are shown in Figs. 3-6. The
average �tness and frequencies of all 19 strategies in the
population after 100 generations are shown in Fig. 3 and Fig.
4. MEM2 outperforms other strategies in all settings of x. The
average �tness and frequency of four strategies, MEM2, AllD,
TFT, and TFTT as functions of generation are given in Fig. 5
and Fig. 6. It shows that the �tness of MEM2 is signi�cantly
higher than other strategies at the beginning of simulations,
which leads to its higher frequency in the population. In
most of the simulations, defective strategies became extinct
after 50 generations and only cooperative strategies remained
in the population. This was the reason why the �tness of
some cooperative strategies tended to be equal at the end of
evolution.

MEM2 shows an example of integrating several di�erent
strategies to form a new CSI strategy. Each strategy has
its advantages and disadvantages. AllD is a CS against all
memory-zero strategies and it receives low payo�s in inter-
acting with most of the memory-nonzero strategies. TFT is a
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Fig. 3. Average �tness of strategies at generation 100.

Fig. 4. Average frequencies of strategies at generation 100.

CS against those strategies that cooperates with the opponent
conditionally. A situation that TFT cannot handle well is a
long series of mutual retaliations evoked by a single defection.
TFTT performs well in this situation by playing one more
cooperation. However, it can be exploited by the strategies that
alternatively play C and D. MEM2 inherits the advantages of
the three strategies and thus outperforms them in evolutionary
IPD. The idea of combining di�erent strategies can be used
to develop longer memory CSI strategies.

V. Concluding remarks
The condition of ESS is so strict that no strategy can be ESS

in in�nite length and inde�nite length n-IPD. With the absence
of an ESS, a criterion is needed to evaluate the evolutionary
stability of IPD strategies. Based on the concept of a counter
strategy, we have proposed a theoretical methodology in which
the evolutionary stability of a strategy is evaluated by whether
it is CSI and the probability it is a CS against an arbitrary
strategy. Di�erent strategies can be compared with each other.
The e�ect of memory size on evolutionary stability is studied
by means of this methodology.

The memory length used by a strategy has a signi�cant in-
�uence on its evolutionary stability in n-IPD. We have proved

Fig. 5. Fitness of strategies MEM2, AllD, TFT, TFTT (x = 10).

Fig. 6. Frequency of strategies MEM2, AllD, TFT, TFTT (x = 10).

that longer memory strategies outperform shorter memory s-
trategies in the sense of evolutionary stability. A well-designed
strategy that uses a longer memory statistically receives higher
payo�s than shorter memory strategies in interacting with an
arbitrary opponent and thus it is more likely to be dominant
in evolution.

It may be di�cult to theoretically check whether a s-
trategy is a CS against another strategy, especially when
both strategies use a long memory, which makes it di�cult
to compute the evolutionary stability value of an arbitrary
strategy. In practice, it is possible to compute approximate
evolutionary stability values of IPD strategies by means of
statistical methodologies. For example, the performance of
strategies in evolution can be measured by running a series of
‘races’ [18]. The idea is further developed to generalization,
a measure for learning performance in co-evolution by using
a set of randomly chosen test strategies. It has been proven
that an estimated value will approach to the true value as the
size of the set of unbiased test strategies increases [10], [12].
As the application of generalization, a statistical methodol-
ogy that takes into account outcomes across varying n-IPD
competitions has been used to evaluate the performance of
IPD strategies [23]. With this methodology, a series of n-IPD
competitions are run and the strategies in each competition are
randomly chosen from a set of representative strategies. The
performance of a strategy is evaluated according to its win
rate which is the frequency of achieving the highest payo� in
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a single competition. The win rate of a strategy is considered
as an approximation of its evolutionary stability value. In this
way, the evolutionary stability value can be computed with
greatly reduced computational complexity.

Theorems 2-4 do not necessarily hold in an IPD with noise
where the players are assumed to make mistakes occasionally.
The e�ect of noise on the performance of IPD strategies
varies although noise generally has a negative e�ect on the
persistence of cooperation. Some strategies are more robust
than others in a noisy environment. The e�ect of memory
size in IPDs with noise will be one topic of our future research.
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