
S T R U C T U R E D P E E R - T O - P E E R O V E R L AY S F O R N AT E D

C H U R N I N T E N S I V E N E T W O R K S

farida chowdhury

Degree of Doctor of Philosophy

Division of Computing Science and Mathematics

University of Stirling

December 2015

A B S T R A C T

The wide-spread coverage and ubiquitous presence of mobile networks has propelled the

usage and adoption of mobile phones to an unprecedented level around the globe. The

computing capabilities of these mobile phones have improved considerably, supporting a

vast range of third party applications. Simultaneously, Peer-to-Peer (P2P) overlay networks

have experienced a tremendous growth in terms of usage as well as popularity in recent

years particularly in fixed wired networks. In particular, Distributed Hash Table (DHT) based

Structured P2P overlay networks offer major advantages to users of mobile devices and

networks such as scalable, fault tolerant and self-managing infrastructure which does not

exhibit single points of failure. Integrating P2P overlays on the mobile network seems a

logical progression; considering the popularities of both technologies. However, it imposes

several challenges that need to be handled, such as the limited hardware capabilities of mobile

phones and churn (i.e. the frequent join and leave of nodes within a network) intensive mobile

networks offering limited yet expensive bandwidth availability. This thesis investigates the

feasibility of extending P2P to mobile networks so that users can take advantage of both these

technologies: P2P and mobile networks.

This thesis utilises OverSim, a P2P simulator, to experiment with the performance of various

P2P overlays, considering high churn and bandwidth consumption which are the two most

crucial constraints of mobile networks. The experiment results show that Kademlia and

EpiChord are the two most appropriate P2P overlays that could be implemented in mobile

networks. Furthermore, Network Address Translation (NAT) is a major barrier to the adoption

of P2P overlays in mobile networks. Integrating NAT traversal approaches with P2P overlays

is a crucial step for P2P overlays to operate successfully on mobile networks. This thesis

presents a general approach of NAT traversal for ring based overlays without the use of a

single dedicated server which is then implemented in OverSim. Several experiments have

been performed under NATs to determine the suitability of the chosen P2P overlays under

NATed environments. The results show that the performance of these overlays is comparable

in terms of successful lookups in both NATed and non-NATed environments; with Kademlia

and EpiChord exhibiting the best performance.

The presence of NATs and also the level of churn in a network influence the routing tech-

niques used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions

posed by NATs but not very robust in high churn environments, whereas iterative routing is

more suitable to high churn networks, but difficult to use in NATed environments. Kademlia

iii

supports both these routing schemes whereas EpiChord only supports the iterating routing.

This undermines the usefulness of EpiChord in NATed environments.

In order to harness the advantages of both routing schemes, this thesis presents an adaptive

routing scheme, called Churn Aware Routing Protocol (ChARP), combining recursive and

iterative lookups where nodes can switch between recursive and iterative routing depending

on their lifetimes. The proposed approach has been implemented in OverSim and several

experiments have been carried out. The experiment results indicate an improved performance

which in turn validates the applicability and suitability of ChARP in NATed environments.

iv

A C K N O W L E D G M E N T S

This thesis would not have been possible without the support of a number of people, all of

whom I wish to acknowledge with gratitude for their help and support.

First of all, I would like to thank my supervisor Dr. Mario Kolberg, an extraordinary mentor,

for his continuous guidance, inspiration, insightful comments and support throughout this

research. He sparked my interests to conduct innovative research and challenged me to reach

my very best. I never felt that I had to wait for my research work’s feedback as he always

provided quick and constructive feedback. I am deeply grateful for his patience.

I would like to thank my second supervisor Professor Evan Magill for his valuable insights

and advice.

This work was funded by the Scottish Informatics and Computer Science Alliance (SICSA)

to whom thanks are due.

My heartfelt thanks go to everyone in the School of Computing Science for making it a

delightful place to work and for all the support I received during my PhD. Special thanks to

my colleagues and friends Erin, Dalila, Jamie and Claire for supporting me throughout the

years.

I also would like to express my sincere thanks to Dr. Andrew Abel for proof-reading this

thesis within a very short period of time.

Special thanks to Shifa and Niaz for sharing my joys and the hardships during my PhD

years.

On the personal level, I would like to deeply thank my parents, Muraduzzaman Chowdhury

and Gulshana Zaman, for their help, encouragement and unwavering belief in me. Without

their support and prayers I wouldn’t come that far. Special thanks to my twin sister Fahmida

Chowdhury for providing me encouragement and mental support over phone from thousands

of miles away. Special mention to my mother-in-law, Sultana Ferdous, who never forgets to

keep me in her prayers.

Finally, my greatest thanks go to my beloved husband Md. Sadek Ferdous Ripul, for keeping

me sane and support me all the time. Without his encouragement and support it would not

have been possible to finish my thesis.

v

To Abbu and Amma, my respected parents

To Ripul, my beloved husband

And to Apa, Leena, Mahruba and Aquib, my lovely sisters and brother.

vi

L I S T O F P U B L I C AT I O N S

• Farida Chowdhury, Jamie Furness and Mario Kolberg. “Performance Analysis of Struc-

tured Peer-to-Peer Overlays”. A journal paper submission in progress.

• Jamie Furness, Farida Chowdhury and Mario Kolberg. “An Evaluation of EpiChord in

OverSim”. In Proceedings of the 5th International Conference on Networks and Communication

(NETCOM 2013), Chennai, India, 27− 29 December, 2013.

• Farida Chowdhury and Mario Kolberg. “Performance Evaluation of Structured Peer-

to-Peer Overlays for use on Mobile Networks”. In Proceedings of the 6th International

Conference on Developments in eSystems Engineering (DeSe 2013), Dubai, UAE, 16− 18

December, 2013.

• Farida Chowdhury and Mario Kolberg. “Performance Evaluation of EpiChord under

High Churn”. In Proceedings of the 8th ACM Performance Monitoring, Measurement and

evaluation of Heterogeneous Wireless and Wired Networks Workshop (PM2HW2N 2013),

Barcelona, Spain, 3− 8 November, 2013.

• Farida Chowdhury and Mario Kolberg. “A Survey of Peer-to-Peer Solutions in Mobile

and Cellular Networks”. In Proceedings of the 13th Annual Post Graduate Symposium on the

Convergence of Telecommunications, Networking and Broadcasting (PGNet 2012), Liverpool,

UK, 25− 26 June, 2012.

vii

TA B L E O F C O N T E N T S

i introduction 1

1 introduction 2

1.1 Motivation . 2

1.2 Thesis Statement . 3

1.3 Research Objectives . 4

1.4 Contributions . 4

1.5 Thesis Structure . 5

2 background and related work 7

2.1 Introduction . 7

2.2 P2P Overlay Networks . 8

2.2.1 Unstructured P2P Overlay . 9

2.2.2 Structured P2P Overlay . 9

2.3 Distributed Hash Table (DHT) based Structured P2P Overlays 10

2.3.1 Chord . 10

2.3.2 Pastry . 12

2.3.3 Kademlia . 13

2.3.4 Broose . 14

2.3.5 EpiChord . 15

2.4 Challenges of Deploying P2P in Mobile Networks 17

2.4.1 Churn Issues . 18

2.4.2 Data Consumption . 20

2.5 NAT and NAT Traversal . 21

2.5.1 NAT Traversal Techniques . 23

2.5.2 Impact of Routing Scheme over NAT . 29

2.5.3 Analysis of Structured P2P Overlays with NAT 35

2.6 Existing P2P Solutions in Mobile Networks . 36

2.6.1 Hybrid Chord Protocol (HCP) . 36

2.6.2 Mobile Node ID Kademlia Architecture 37

2.6.3 Chordella . 37

2.6.4 Cellular Chord (C-Chord) . 38

2.6.5 Bushfire . 39

2.6.6 Discussion . 39

2.7 Review of P2P Simulators . 42

viii

2.7.1 OverSim . 44

2.8 Summary . 46

ii contributions 48

3 performance evaluation of structured p2p overlays under churn 49

3.1 Introduction . 49

3.2 Key Requirements . 49

3.3 Experimental Methodology . 50

3.3.1 Simulation Platform . 50

3.3.2 Performance Metrics . 50

3.3.3 Simulation Setup . 51

3.4 Most Suited Parameter Selection . 52

3.4.1 Chord . 52

3.4.2 Pastry . 54

3.4.3 Kademlia . 56

3.4.4 Broose . 58

3.4.5 EpiChord . 61

3.5 Performance Evaluation . 63

3.5.1 Effects of Churn . 64

3.5.2 Bandwidth Consumption . 67

3.5.3 Effect of Different Workloads . 68

3.5.4 Discussion . 70

3.6 Summary . 71

4 performance evaluation of structured p2p overlays under nat 73

4.1 Introduction . 73

4.2 NAT Traversal using UDP Hole Punching without Dedicated Rendezvous Servers 74

4.2.1 Peers behind the Same NAT . 74

4.2.2 Peers behind Different NATs . 77

4.2.3 Resilience Strategy . 80

4.3 Performance Analysis in NATed and Non-NATed Networks 81

4.3.1 Network Setup . 81

4.3.2 Simulation Setup . 81

4.3.3 Chord . 82

4.3.4 EpiChord . 84

4.3.5 Kademlia . 87

4.3.6 Discussion . 90

4.4 Performance Comparison with Iterative and Recursive Routing under NAT . . 90

4.4.1 Chord . 91

ix

4.4.2 Kademlia . 93

4.4.3 Discussion . 95

4.5 NAT Traversal Implementation in OverSim . 96

4.5.1 Implementation Challenges . 97

4.5.2 Integration with OverSim . 97

4.6 Summary . 99

5 churn aware routing protocol (charp) in nated networks 101

5.1 Introduction . 101

5.2 Churn Aware Routing Protocol (ChARP) . 102

5.2.1 Overview and Design . 102

5.3 Performance Analysis of the Churn Aware Routing Protocol (ChARP) 103

5.3.1 Experiment Setup . 104

5.3.2 Evaluation Criteria . 104

5.3.3 Configuration Parameters . 105

5.3.4 Performance Evaluation . 105

5.4 Summary . 107

iii conclusions 109

6 conclusions 110

6.1 Introduction . 110

6.2 Contributions . 110

6.3 Limitations . 112

6.4 Future Directions . 112

6.5 Summary . 113

iv back matter i

References ii

x

L I S T O F F I G U R E S

Figure 2.1 Overlay network. 8

Figure 2.2 A Chord identifier circle with three nodes (1, 4, 6) consisting of three

keys (1, 2, 6) where each successor of a key contains the key. 11

Figure 2.3 Example of a lookup in Pastry. Routing a message from node 749dfc

with key e75b2a. 12

Figure 2.4 Routing table in Kademlia for a node with a nodeId prefix of 001. The

ovals show the sub-trees in which node 001 must have a contact. . . . 14

Figure 2.5 Basic lookup mechanism for node x for a lookup of id in EpiChord. . . 17

Figure 2.6 Network Address Translation (NAT). 21

Figure 2.7 Full Cone NAT. 22

Figure 2.8 Restricted NAT. 22

Figure 2.9 Port-Restricted NAT. 22

Figure 2.10 Symmetric NAT. 23

Figure 2.11 STUN. 24

Figure 2.12 UDP hole punching. 25

Figure 2.13 TCP hole punching. 26

Figure 2.14 TURN. 27

Figure 2.15 STUNT#1. 28

Figure 2.16 STUNT#2. 28

Figure 2.17 NATBlaster. 29

Figure 2.18 P2P-NAT. 31

Figure 2.19 Different possible routing methods. 32

Figure 2.20 Layered architecture of OverSim: application layer, overlay layer and

underlay layer. 45

Figure 3.1 Chord: Testing on stabilisation delay. 53

Figure 3.2 Chord: Testing on fixfinger delays. 53

Figure 3.3 Chord: Testing on successor list sizes. 54

Figure 3.4 Chord: Testing on check predecessor delays. 54

Figure 3.5 Chord: Testing on extended finger table sizes. 55

Figure 3.6 Pastry: Testing on leaf set. 56

Figure 3.7 Pastry: Testing on bits per digits(i). 56

Figure 3.8 Pastry: Testing on bits per digits(ii). 57

Figure 3.9 Pastry: Testing on neighbourhood set. 57

xi

Figure 3.10 Pastry: Testing on redundant nodes. 58

Figure 3.11 Kademlia: Testing on bucket size, k. 59

Figure 3.12 Kademlia: Testing on siblings, s. 59

Figure 3.13 Kademlia: Testing on redundant nodes, r. 60

Figure 3.14 Kademlia: Testing on bits per digits, b. 60

Figure 3.15 Kademlia: Testing on bucket refresh interval. 61

Figure 3.16 Kademlia: Testing on parallel lookups. 61

Figure 3.17 Broose: Testing on bucket size, k. 62

Figure 3.18 Broose: Testing on bucket refresh interval. 62

Figure 3.19 Broose: Testing on shifting bits. 63

Figure 3.20 Broose: Testing on parallel lookups. 63

Figure 3.21 EpiChord: Testing on stabilise delay. 64

Figure 3.22 EpiChord: Testing on successor list size. 64

Figure 3.23 EpiChord: Testing on parallel lookups(i). 65

Figure 3.24 EpiChord: Testing on parallel lookups(ii). 65

Figure 3.25 Lookup success ratio of Chord, Pastry, Kademlia, Broose and EpiChord

operated on a 10, 000 node networks under various levels of churn. . . 66

Figure 3.26 Sent maintenance bytes/s of Chord, Pastry, Kademlia, Broose and Epi-

Chord operated on a 10, 000 node networks under various levels of

churn. 67

Figure 3.27 Lookup hop count of Chord, Pastry, Kademlia, Broose and EpiChord

operated on a 10, 000 node networks under various levels of churn. . . 68

Figure 3.28 Lookup success ratio for EpiChord in lookup-intensive and churn-

intensive workloads. 69

Figure 3.29 Sent maintenance bytes/s for EpiChord in lookup-intensive and churn-

intensive workloads. 69

Figure 3.30 Lookup hop count for EpiChord in lookup-intensive and churn-intensive

workloads. 70

Figure 4.1 Network topology depicting two private peers under the same NAT. . 75

Figure 4.2 Message flow for establishing communication between private peers

under the same NAT . 76

Figure 4.3 Network topology depicting two private peers residing in different NATs. 78

Figure 4.4 Message flow for establishing communication between private peers in

different NATs . 79

Figure 4.5 Chord: Lookup success ratio under NATed and non-NATed environments. 82

Figure 4.6 Chord: Lookup hop count under NATed and non-NATed environments. 83

Figure 4.7 Chord: Sent maintenance bytes/s under NATed and non-NATed envir-

onments. 84

xii

Figure 4.8 EpiChord: Lookup success ratio under NATed and non-NATed environ-

ments. 85

Figure 4.9 EpiChord: Lookup hop count under NATed and non-NATed environments. 86

Figure 4.10 EpiChord: Sent maintenance bytes/s under NATed and non-NATed

environments. 87

Figure 4.11 Kademlia: Lookup success ratio under NATed and non-NATed environ-

ments. 88

Figure 4.12 Kademlia: Lookup hop count under NATed and non-NATed environments. 89

Figure 4.13 Kademlia: Sent maintenance bytes/s under NATed and non-NATed

environments. 89

Figure 4.14 Chord: Lookup success ratio in iterative and recursive routing under

NATed environments. 91

Figure 4.15 Chord: Sent maintenance bytes/s in iterative and recursive routing

under NATed environment. 92

Figure 4.16 Kademlia: Lookup success ratio in iterative and recursive routing under

NATed environment. 94

Figure 4.17 Kademlia: Sent maintenance bytes/s in iterative and recursive routing

under NATed environment. 94

Figure 4.18 Underlay architecture of OverSim showing where NAT functionalities

are implemented in INET underlay. 96

Figure 4.19 The network topology of a P2P system to implement UDP hole punching

technique without a rendezvous server. 98

Figure 5.1 Flowchart of the proposed Churn Aware Routing Protocol (ChARP). . . 103

Figure 5.2 Lookup Success Ratio of Kademlia using Iterative, Recursive and ChARP.106

Figure 5.3 Sent Maintenance bytes/s of Kademlia using Iterative, Recursive and

ChARP. 107

xiii

L I S T O F TA B L E S

Table 2.1 A summary of NAT traversal techniques. 30

Table 2.2 Comparison of different routing methods. 33

Table 2.3 Comparison of existing mobile P2P. 40

Table 2.4 A comparison of available active P2P simulators. 43

Table 3.1 Simulation parameters for Chord. 52

Table 3.2 Simulation parameters for Pastry. 55

Table 3.3 Simulation parameters for Kademlia. 58

Table 3.4 Simulation parameters for Broose. 59

Table 3.5 Simulation parameters for EpiChord. 62

Table 4.1 Simulation parameters for Chord. 82

Table 4.2 Simulation parameters for EpiChord. 85

Table 4.3 Simulation parameters for Kademlia. 87

Table 4.4 Simulation parameters for iterative and recursive routing in Kademlia. 93

Table 5.1 Simulation Parameters for different Routing Protocols in Kademlia. . . 105

xiv

L I S T O F A C R O N Y M S

API Application Programming Interface

CAN Content Addressable Network

CDN Content Delivery Network

DES Discrete Event Simulation

DHT Distributed Hash Table

DML Domain Modelling Language

ICMP Internet Control Message Protocol

IP Internet Protocol

KBR Key-Based Routing

NAT Network Address Translation

NED Network Descriptor

P2P Peer to Peer

PDA Personal Digital Assistant

PNS Proximity Neighbour Selection

RUDP Reliable User Datagram Protocol

RPC Remote Procedure Calls

SCTP Stream Control Transmission Protocol

SSF Scalable Simulation Framework

STUN Simple Traversal of UDP through NAT

STUNT Simple Traversal of UDP through NATs and TCP too

TCP Transmission Control Protocol

TURN Traversal Using Relays around NAT

TTL Time-To-Live

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications Service

xv

Part I

I N T R O D U C T I O N

1
I N T R O D U C T I O N

1.1 motivation

Peer-to-Peer (P2P) communication networks have been very popular over the last decade due

to their capability to facilitate information storage and retrieval among a potentially very

large number of nodes while avoiding the use of central servers. In particular, Distributed

Hash Table (DHT) based structured P2P overlays offer an efficient routing architecture that is

adaptive, self-organising, fault tolerant, scalable and massively distributed. P2P has been used

primarily for content distribution but more recently it has also been used for multi-casting,

distributed collaboration systems and grid computing.

P2P applications have been very successful on fixed, wired networks. With the explosive

increase in popularity of smartphones, the consumption of data services on the move has

increased substantially, a move which makes the availability of P2P overlay networks very

desirable. The recent Ericsson Mobility Report suggests that by 2020, nearly 70% of the world’s

population will be using smartphones and about 90% of all the global population will be

covered by mobile broadband networks. Also 80% of mobile data traffic will be generated

from smartphones by 2020 [24].

Not surprisingly, the inherent properties of such mobile environments impose several

significant challenges to deploying a P2P system on such networks. For example, mobile

devices used in the mobile network often have strict bandwidth limits which is typically

caused by expensive bandwidth cost. Furthermore, the volatility and uneven coverage of

mobile networks may force the mobile nodes to frequently join and leave such networks,

commonly known as node churn, which may significantly and drastically affect the performance

of the deployed P2P overlay. Indeed, it has been shown that many P2P overlays cannot cope

and simply collapse under high churn rate as the proportion of mobile nodes increases in the

network [48, 62]. Furthermore, the communication link may be impacted by high packet loss

rate and bandwidth fluctuations in mobile networks which make it much more challenging

to maintain a stable P2P overlay on the mobile network. Finally, the mobile handset devices

also have limited battery power. Therefore, P2P systems, if deployed in a mobile network,

are required to minimise their network overhead to prolong device battery life and minimise

bandwidth consumption while coping with high levels of node churn.

These inherent properties of mobile networks and their imposed limitations play a major

role in influencing the performance of a P2P overlay in mobile networks. It is, therefore,

2

essential to understand and investigate the effect of these limitations on the performance of

different P2P overlays. There are a small number of existing approaches reporting the effect

of these limitations in simulated environments. However, all these approaches have limited

scopes and are not extensive in nature. Furthermore, NAT (Network Address Translation) is

a major barrier to the adoption of P2P overlays in mobile networks. To the best knowledge

of the author, no existing research has integrated the NAT functionality within a simulated

environment to investigate its impact on the corresponding P2P systems.

This thesis provides a thorough and extensive investigation of the effect of different limita-

tions imposed by mobile networks on existing popular structured P2P overlays in a simulated

environment where the limitations have been emulated with different simulation paramet-

ers and their selected values. The investigation reveals the potentially best performing P2P

overlay(s) that are suitable to be used in mobile networks. In addition, the thesis describes

how the NAT functionality has been integrated with the chosen simulation framework. It then

studies the effect of NAT on the P2P overlays utilising the same simulation parameters that

emulate the behaviour of a mobile network and identifies the potentially best candidate P2P

overlays for such setting. Finally, this thesis proposes an adaptive routing scheme to allow

any node in the chosen P2P overlays to switch between two routing schemes based on their

lifetimes and investigates the suitability of the proposal by simulating experiments utilising

the chosen simulation parameters in a NATed churn-intensive network.

1.2 thesis statement

P2P overlay networks offer major advantages to users of traditional wired networks such as

scalable, fault tolerant and self-managing infrastructure which does not exhibit single points

of failure. This thesis investigates the feasibility of extending P2P in churn intensive networks

such as mobile networks so that users can take advantages of both technologies:P2P and

mobile networks.

This thesis experiments with the performance of various structured P2P overlays regarding

bandwidth consumption and high churn which are the two most crucial constraints of mobile

networks. Furthermore, NATs are a major barrier to the adoption of P2P overlays in mobile

networks.

The thesis implements a general NAT traversal approach for ring based overlays without

the use of a single server and analyses the performance of selected P2P overlays under

NATs. The presence of NATs and also the level of churn in a network influence the routing

techniques used in P2P overlays. In addition, this thesis proposes an adaptive routing scheme

combining recursive and iterative lookups where nodes can switch between recursive and

iterative routing depending on the rate of churn and NAT connectivity.

3

1.3 research objectives

The key objective of the thesis is to identify the best P2P overlay(s) for using in NATed churn

intensive networks such as mobile networks and to strengthen and improve the performance of

the P2P overlay(s) using an adaptive routing mechanism. To achieve these goals, the following

research objectives have been determined.

• Investigate a number of structured P2P overlays, considering the requirements that

are essential to enable P2P in NATed churn intensive networks, and identify the most

important parameters of the overlays that affect their performance.

• Provide a comparative performance analysis of a number of structured P2P overlays

by utilising the most suitable configuration and evaluate the performance under high

levels of churn according to selected performance metrics such as lookup success rate,

hop count and bandwidth consumption. Based on the result of the analysis, the P2P

overlay(s) will be selected and then will be used for the subsequent research.

• Implement a Network Address Translation (NAT) mechanism to simulate NATed envir-

onments in the chosen P2P simulation framework.

• Analyse and compare the performance of the chosen P2P overlay(s) under churn intens-

ive NATed and non-NATed environments.

• Evaluate the performance impact of different routing protocols of P2P overlays in

presence of NAT.

• Propose an optimised routing protocol to achieve an improved performance in a struc-

tured P2P overlay for NATed churn intensive networks.

1.4 contributions

The main contributions of the thesis are as follows.

• Identification of the most suitable configuration of a number of structured P2P over-

lays: A P2P overlay has a number of configuration parameters that affect the perform-

ance of the overlay for different scenarios. The parameters of Chord, Pastry, Kademlia,

Broose and EpiChord DHTs have been evaluated in high churn environments and

the best performing configuration has been selected on the basis of maximum lookup

success ratio and minimum bandwidth consumption to be used in churn intensive

environments such as mobile networks.

• Comparative performance analysis of a number of structured P2P overlays under

churn: After identifying the best parameters of the chosen P2P overlays, the most

4

suitable overlays have been finalised for using in mobile networks. For this, a comparative

performance analysis has been carried out considering practically relevant scenarios

such as high churn and bandwidth consumption.

• Implementation of Network Address Translation (NAT) and a NAT traversal mech-

anism in OverSim: NAT functionalities have been implemented in the chosen P2P

simulation framework to integrate private networks with public networks and simulate

P2P overlays over the combined networks. To traverse NATs, a NAT traversal approach,

UDP hole punching without a rendezvous server, has also been implemented.

• Performance evaluation of a number of structured P2P overlays under NATed and

non-NATed networks: The performance impact of Chord, Kademlia and EpiChord

P2P overlays under churn intensive NATed and non-NATed environments has been

evaluated and compared to determine the best suitable overlay in such heterogeneous

environments.

• Performance impact of iterative and recursive routing methods under churn in NATed

environments: The presence of NATs in a network influence the routing techniques

used in P2P overlays. Recursive routing is more resilient to IP connectivity restrictions

posed by NATs but not very robust in high churn environments. Whereas, iterative rout-

ing is more suitable to high churn networks, but difficult to use in NATed environments.

Therefore, the performance impact of Iterative and Recursive routing has been analysed

under churn and NATed environments.

• Novel churn aware routing protocol: In order to achieve an improved performance

in a structured P2P overlay for NATed churn intensive networks, an adaptive churn

aware routing protocol has been implemented. The main idea of the protocol is to switch

between iterative and recursive routing techniques according to the current level of

churn of a node.

1.5 thesis structure

The rest of the thesis is structured as follows.

After this introduction, Chapter 2 “Background and Related Work” gives a brief background

on P2P overlays especially on DHT based structured P2P overlays. This chapter also provides

a list of challenges to adopt P2P in mobile and wireless networks. Among the challenges

mentioned, this thesis focuses on three main issues: high churn rate, data consumption and

NAT restriction. It also presents a brief overview of NAT that is a common barrier for any

private network. To make a proper P2P connection in such a network, a suitable NAT traversal

technique is necessary. This chapter also discusses related work on existing NAT traversal

5

techniques and P2P solutions regarding mobile networks. A review of various approaches to

implement P2P overlays in wireless cellular networks are presented and discussed.

Chapter 3 “Performance Evaluation of Structured P2P Overlays under Churn” presents a per-

formance evaluation of Chord, Pastry, Kademlia, Broose and EpiChord in the presence of

high churn and investigates their suitability for mobile networks. Firstly, the parameters

of each overlay have been evaluated in high churn environments and the best performing

configuration has been selected on the basis of maximum lookup success ratio and minimum

bandwidth consumption. After tuning the best parameters, each overlay has been compared

with each other to identify the most suitable overlay to be used in churn intensive networks.

Chapter 4 “Performance Evaluation of Structured P2P Overlays under NAT” evaluates the

performance of Chord, Kademlia and EpiChord under NATed and non-NATed networks. It

further compares the performance of iterative and recursive routing algorithms of Chord and

Kademlia over NATs. Implemented NAT functionalities and the NAT traversal mechanism,

the UDP hole punching technique also have been discussed.

Chapter 5 “Churn Aware Routing Protocol in NATed Networks” presents an adaptive churn

aware routing protocol that improves the performance of a P2P overlay over a fixed (iterative

or recursive) routing method. It also analyses the performance of the proposed protocol.

Chapter 6 “Conclusions” first summarises the main contributions and the findings of this

thesis. The limitations of the thesis are also highlighted. Finally, the thesis is concluded by

presenting a number of directions for future work.

6

2
B A C K G R O U N D A N D R E L AT E D W O R K

This chapter provides some background and discusses a number of existing works relevant to this

thesis. It also emphasises the main challenges to the deployment of P2P in mobile networks. In addition,

Network Address Translation (NAT) imposes a great barrier with regard to mobile networks. Hence,

different NAT Traversal techniques have been discussed. Finally, an overview of a number of prominent

P2P systems proposed for mobile networks is presented.

2.1 introduction

The main goal of this chapter is to provide relevant background information to assist in the

understanding of the following chapters. Section 2.2 describes the background of P2P overlay

networks, mainly the Structured P2P. Next, an abstract overview of a number of established

DHT based Structured P2P overlays, namely Chord [74], Pastry [67], Kademlia [53], Broose

[26] and EpiChord [47] are presented in Section 2.3. The information presented in this section

forms the base required to understand the analysis performed throughout the thesis.

Section 2.4 discusses the main challenges of deploying P2P in churn intensive NATed

environments such as mobile networks. It also presents related work on churn issues and

data consumption. NAT is another major obstacle in P2P as it breaks the original model of

end-to-end connectivity across the Internet. Section 2.5 presents the basic NAT terminology

and NAT Traversal techniques. The routing method has an important effect on NAT; therefore,

Section 2.5.2 discusses the impact of different routing schemes over NAT. There are a small

number of existing works on structured P2P overlays with NAT which are described in Section

2.5.3. Section 2.6 discusses a number of approaches to implement P2P overlays in mobile

networks.

A detailed overview of different P2P simulators is presented in Section 2.7. Among the

presented simulators, OverSim [3] has been selected as the preferred simulation framework

to carry out experiments presented in this thesis. The chapter then concludes with a brief

summary in Section 2.8.

Throughout the thesis, the terms ‘node’ and ‘peer’ have been used interchangeably. Similarly,

the term NATed node or NATed network have been used for a node or a network which is

under a NAT.

7

2.2 p2p overlay networks

A Peer-to-Peer (P2P) network is defined as a multi-node communication network that has

neither central control nor coordination. Each participant (either a computer or a mobile

device) in a P2P network is simply referred to as a peer and the data available on the network

is distributed among all the peers on the network. Each peer simultaneously acts as a client

and a server and has equivalent capabilities and responsibilities. Additionally, each peer can

join and leave the system at any arbitrary time.

A typical P2P architecture creates an overlay on top of the existing IP Network which is

the base for data delivery. Figure 2.1 shows an overlay network situated on top of a physical

network. The overlay orientation is a logical view; therefore, it is not necessary to directly

form a symmetrical view of the physical network. With the rapid growth of the Internet

and the advancement of computing technology, peers provide much more information and

computing resources than from a limited number of centralised servers. Overlay networks

provide benefits to better utilise the Internet information and resources, as routing in overlay

networks is very flexible and on the basis of different parameters, they can detect and avoid

network congestion quickly. Due to the flexibility in routing, the peers in overlay networks

are highly connected to each other. Peers can communicate with each other using the overlay

while the physical network connections exist.

Figure 2.1: Overlay network.

P2P architectures can be broadly categorised as Unstructured and Structured based on the

overlay topology formation.

8

2.2.1 Unstructured P2P Overlay

As this type of overlay is not the focus of this thesis, the category is only included briefly for

completeness. In an Unstructured P2P overlay, there is no particular structure and the links

between peers are established arbitrarily. For a lookup query, a peer in this overlay can use

Flooding or Random Walk. Flooding makes each peer, upon receiving a query, forward that

query to all its neighbours. Examples of P2P overlays deploying this technique are Gnutella

[65] and FastTrack [49]. In random walking, a walker randomly visits different peers and

looks for the respective object. Examples of using this approach are Gia [14] and LMS [55].

Such an overlay is easy to construct as the topology of the network is formed randomly.

However, there is no correlation between the peers and the resources stored at them, which

eventually creates the problem of non-deterministic results; i.e. a peer initiating a query may

or may not receive responses from other peers in the overlay. Unstructured P2P overlay also

suffers from scalability issues as each peer is required to handle a potentially large number of

queries.

2.2.2 Structured P2P Overlay

To overcome the search inefficiency and scalability issues of an unstructured P2P overlay,

Structured P2P overlays have been proposed that connect peers using a particular data structure

or protocol to ensure that queries are more efficient and data discovery can be guaranteed.

Structured P2P overlays utilise a Distributed Hash Table (DHT) to distribute index information

about the shared data items among the participating peers. Each node is assigned a unique

ID (e.g. a hashed IP address) and is responsible for storing a range of keys which are closest

to its node ID. Each data item is also assigned a file ID (e.g. the hash of a file name) and

each node is responsible for a particular range of the file ID space. If a node queries a key,

the network returns the node ID where the associated file with that key is stored. Some

well-known examples of structured P2P overlays are Chord [74], Pastry [67], CAN [63] and

Kademlia [53].

The rigid structure makes this kind of overlay more complex, however, they offer a number

of key advantages:

• Scalable theoretical guarantees on numbers of hops to find a key.

• Query lookups are deterministic, i.e. if data exists in the network, it will be found.

• Appropriate for large-scale implementations due to high scalability.

Structured P2P overlays can be categorised into Multi-hop and One-hop overlays according

to the maximum number of hops taken by a lookup query.

9

Multi-hop overlays require multiple hops to pass a request message from the source node

to the destination node. According to the node degree with size of overlay, this type of overlay

can be further divided into Logarithmic Degree and Constant Degree. If the number of hops is

bounded by O(logN), where N is the number of nodes, it is known as a logarithmic degree

overlay. Chord, Kademlia and Pastry are examples of this. In a constant degree overlay, each

node has a fixed maximum number of hops, independent of the overlay size. Broose is an

example of this type of overlay.

One-Hop or Single-Hop or O(1) overlays are an extreme example of constant overlay in

which only one hop is required to deliver a message from the source to the destination.

It signifies that each node has an almost complete routing table and thus allows passing

messages in one hop. EpiChord is an example of One-hop overlay.

Multi-hop overlays keep their routing table size smaller than the one-hop overlays. In

one-hop overlays, each node needs to be aware of every other nodes. This results in a large

routing table and increased maintenance traffic. However, the overlay improves the message

latency. When the peer churn (i.e. where peers join and leave very frequently in the network) is

low and the network size is reasonably small, the one-hop overlays become practical. Whereas,

in cases where the network size consists of millions of nodes, or the bandwidth requirement

is high, multi-hop overlays might be useful.

2.3 distributed hash table (dht) based structured p2p overlays

This thesis focuses on structured P2P overlays and experiments with a number of popular

DHT based structured P2P overlays such as Chord, Pastry, Kademlia, Broose and EpiChord.

A brief discussion of each overlay is presented next.

2.3.1 Chord

Chord [74] is one of the very first DHT based structured P2P overlays. It is a distributed

lookup protocol that addresses the issue of locating nodes that store particular data items.

Moreover, Chord is scalable and adapts efficiently in the face of churn.

Structure: Chord uses the consistent hash function [40] to generate an m-bit identifier

for each node and the shared data item on the overlay, where m is a pre-defined system

parameter. A node identifier is produced by hashing the node’s IP address, whereas a data or

key identifier is achieved by hashing the data item. Nodes are ordered to form a ring circle of

modulo 2m and the address space ranges from 0 to 2m − 1. A key k is assigned to the first

node whose identifier is equal to or follows k (clockwise) in the ring. This node is called the

successor node of key k and denoted by successor (k). Figure 2.2 shows a Chord identifier

10

circle that has three nodes: 1, 4, and 7. The successor of key identifier 1 is node 1, so key 1

would be located at node 1. Similarly, key 2 would be located at node 4, and key 6 at node 7.

Figure 2.2: A Chord identifier circle with three nodes (1, 4, 6) consisting of three keys (1, 2, 6) where

each successor of a key contains the key.

Lookup: To route a lookup request, each node maintains a routing table which consists

of two parts: the first part is a finger table with (at most) m entries, and the predecessor of

this node. The first finger in the finger table always contains the immediate successor of the

current node. The second part is a neighbour table that contains the successor list of size r.

When a lookup is initiated, it first checks its finger table for its successor node of the given key

and routes the message to that node. If the node does not know the successor for the given

key, it routes the message to a node that is numerically closer than itself. This relaying process

continues iteratively or recursively thereafter until the closest node or destination is found.

Node Join: When a new node n joins the Chord overlay, it first uses the consistent hashing

to obtain its m-bit identifier and then contacts a node which is already participating in the

Chord overlay, known as a bootstrapping node, to lookup the successor node of its identifier.

This successor node s then becomes the new node n’s successor. As a result, s changes it’s

predecessor pointer to the new node n. To ensure a correct routing table, the new node n uses

the stabilisation protocol. Stabilisation protocol is used to keep nodes’ successor pointers up

to date. It is called periodically in the background at each node. The protocol has two main

functions: Stabilise() and Fix_fingers(). The Stabilise() function allows nodes to learn about

new nodes and to update their successors and predecessor, whereas the Fix_fingers() function

ensures the finger table is current.

Performance: To lookup a key, Chord nodes require O(logN) messages, where N is the

number of nodes.

11

2.3.2 Pastry

Pastry [67, 11] is another multi-hop structured P2P overlay, with a lot of similarities with Chord.

It provides a self-organising routing and location service. Several P2P applications built on

top of Pastry are used in global data storage, content distribution and group communication.

Two most popular examples are SCRIBE [12, 69] and PAST [20, 68].

Structure: Similar to Chord, Pastry also consists of a circular identifier space where each

node and data item are assigned a 128-bit identifier with base 2b (b is a configuration

parameter of the algorithm), using a consistent hash function. Each Pastry node uses a routing

table consists of log2bN rows and 2b − 1 columns, where the entries in row n contain routing

information of all nodes whose identifier has the same n first digits with the present node. In

addition to the routing table, each node in Pastry maintains a Leaf set and a Neighbourhood set.

The leaf set L contains the L/2 nodes with numerically closest larger nodeIds, and L/2 nodes

with numerically closest smaller nodeIds, relative to the current node’s nodeId. The leaf set is

used to store object replica and ensures reliable message delivery. The neighbourhood set M

contains the closest nodes in terms of proximity to the current node.

Figure 2.3: Example of a lookup in Pastry. Routing a message from node 749dfc with key e75b2a.

Lookup: To find a node with a specific key, the initiator Pastry node first checks its leaf set if

it has a node whose nodeId is closest to the key. If a node is found, then it forwards the query

directly to the node. If not, the node checks the routing table and the query is forwarded to

a node whose nodeId shares a common prefix with the key by at least one more digit. In

this way, using log2bN steps, where N is the total number of Pastry nodes, the lookup query

can reach its destination node. Figure 2.3 shows the path of an example of a query lookup in

Pastry. For example, the node 749dfc looks up for a key e75b2a and from its routing table it

12

gets e13b51, which shares the first digit common prefix with the key. Then e13b51 checks its

routing table and finds e72315 that shares first two digits common prefix with the key. This

process keep continues until the key is covered by the node e75b0c.

Node Join: When a new node joins in the Pastry overlay, it contacts a well known bootstrap

node in the network. The bootstrap node returns a list of close nodes to the new node. The

new node then issues a join message with its nodeId as the key. One of the existing nodes, that

is numerically closest to new node’s nodeId, receives the join message and sends its routing

table to the new node. All the nodes encountered on the routing path also send their routing

tables to the new node. The new node then initialises its routing table based on the received

information and also informs any nodes that need to be aware of its arrival.

Performance: Pastry can route to any node in O(logN) steps in a network of N nodes.

2.3.3 Kademlia

Kademlia [53] is the most widely deployed structured P2P overlay [13]. Numerous commercial

and open source P2P applications have been implemented using Kademlia, such as Bittorrent

[6] and eMule [22]. Kademlia uses a bitwise exclusive or XOR based distance metric to

calculate the distance between two nodes rather than the numerical closeness of the two nodes.

By using this XOR metric, Kademlia successively finds nodes approximately half as far from

the target node.

Structure: Kademlia assigns a NodeId to each node in a 160-bit key space and maintains a

routing table consisting of k-buckets. Each k-bucket contains a maximum of k entries with

<IP address, UDP port, NodeId> triples of other nodes. The routing table forms a binary tree

where nodes are represented as leaves and the k-bucket is represented as a series of sub-trees

that do not contain the node itself. Figure 2.4 shows a Kademlia routing tree for a node with a

nodeId prefix of 001.

Lookup: Kademlia utilises two important methods in a lookup process. It sends lookup

queries in parallel and exchanges the routing table entries during the same lookups; instead

of sending separate requests for maintenance. During a lookup, a peer computes the XOR

distance to the destination peer and checks in the corresponding k-bucket in its routing

table for the closest α nodes. It then sends parallel requests to these α nodes. In return, each

node responds with the closer nodes to the requested identifier by looking at the entries

in its k-buckets. From the responses, the initiator node again selects α closest nodes and

iteratively sends parallel requests to these nodes. This process is repeated until the requested

node identifier is found. To improve lookup latency, Kademlia also supports redundancy and

caching.

Node Join: When a new node joins a Kademlia overlay, it has to know an existing bootstrap

node, and performs the first lookup to it. The bootstrap node then inserts the new node in the

13

Figure 2.4: Routing table in Kademlia for a node with a nodeId prefix of 001. The ovals show the

sub-trees in which node 001 must have a contact.

appropriate k-bucket according to the new node’s nodeId and replies with information about

other nodes to the new node. Once the new node receives information about other nodes, it

performs lookups to random nodes on each k-bucket, and exchanges routing table entries.

Performance: Kademlia’s routing performance is consistent and achieves a lookup latency

of O(logN), where N is the number of nodes.

2.3.4 Broose

Broose [26] is a P2P protocol inspired by Kademlia and is based on the De-Bruijn topology

that allows a DHT to be maintained in a loose manner. It combines the advantages offered

by the De-Bruijn topology and Kademlia in different aspects of topology maintenance and

lookup performance.

Structure: Similar to other DHT approaches, a key in Broose is an n-bit (where n can

be 128 or 160) binary string. An ID in this 160-bit key space is randomly chosen by each

node. However, as in Kademlia, the key space is not split among different nodes, instead, an

associated information is determined using a specified metric and stored on the nodes which

are closer to the key based on that metric. Each node maintains buckets of possible nodes

which are in charge of specific parts of the key space. In Kademlia, each node requires to

maintain O(logN) buckets whereas each node in Broose only needs to maintain three buckets.

Broose utilises the De-Bruijn graph which, for N = 2n nodes, can be defined as follows.

Each node u is identified with an identifier u[1,n] which essentially represents an n-bit binary

string. Two successors of the node are identified by shifting one bit of the identifier to the

left (u << 1) and then appending a 0 and 1 on the right-most bits. Hence, two successors

are identified as s = u[2,n]0 and s ′ = u[2,n]1. Similarly, the predecessor can be identified by

14

shifting one bit to the right (u >> 1) and then appending a 0 or 1 on the left-most position.

That is, the two predecessors can be identified using: p = 0u[1,n− 1] and p ′ = 1u[1,n01].

This graph structure ensures that each node has a constant in-degree and out-degree of 2

and a lookup can be performed by shifting bits to right from one predecessor to another or

shifting bits to left from one successor to another until the node with the desired key is found.

Broose offers a generalised approach for lookup by shifting bits to left or right utilising a

simple routing table consisting of three buckets. Like Kademlia, no topology maintenance is

needed with regard to join and removal of a node.

Lookup: A lookup process in Broose utilises a right-shift by default whereas a reverse

lookup is carried out by the left-shift procedure. To lookup for a key w initiated by a node u,

a bucket K is initialised with the node itself {u}. Then, the node u estimates the distance d

which depicts the number of hops to a node storing w from u. The distance d is calculated

using the following formula:

d = l+ 1

Here, l represents the length of the longest common prefix of the identifiers of nodes in the

bucket of the querying node. An iteration counter dK is initialised with d (i.e. dK = d) and

the following steps are repeated until dK reaches to 0:

• u contacts one to α (where α is a protocol parameter) nodes in K for a right-shifting

lookup on w for dK hops. Each queried node replies with its bucket containing prede-

cessors on w for dK hops;

• if the reply is for dK hops, K is replaced by the nodes contained in the bucket and dK is

decremented by one;

• if the reply is for dK+1 hops, the nodes contained in the bucket is appended to K;

• if the reply is for more than dK+1 hops, the reply is ignored.

Performance: Broose utilises a fixed size of O(k) routing table where k is a protocol

parameter, and represents an association of k number of nodes. The lookup performance of

Broose is similar to Kademlia and can be performed by contacting only O(logN) nodes.

2.3.5 EpiChord

EpiChord [47] is a DHT algorithm where peers maintain a full routing table and ideally

approach O(1) hop lookup performance, compared to the O(logN) hop performance offered

in many multi-hop networks.

Structure: EpiChord is based on the Chord DHT and organised as a one-dimensional

circular space, with each node assigned a unique node identifier. The node responsible for a

15

key is the node whose identifier most closely follows the key. In addition to maintaining a

list of the k succeeding nodes, EpiChord also maintains a list of the k preceding nodes and a

cache of nodes. Nodes update their cache by observing lookup traffic. Therefore, nodes add

an entry any time they learn of a node not already in the cache and remove entries which are

considered dead. In general terms EpiChord can be thought of as Chord with a cache of extra

node addresses. This results in lookup performance approach one hop with a well-populated

cache. The performance may drop to that of Chord, O(logN) hops, under high churn.

EpiChord uses parallel requests [45] to avoid sending redundant queries. It sends p-way

parallel requests directed to nodes nearest to the destination node that should be responsible

for the desired data. It allows the querying node to receive all information related to the query

path, and hence, update its cache with new entries. Such an EpiChord network with at most p

parallel queries per lookup is called a p − way EpiChord network.

Lookup: EpiChord utilises an iterative lookup algorithm. To lookup a resource with the key

id, a node x will initiate p queries in parallel - one query to the node immediately succeeding

id and the p− 1 queries to the nodes preceding id, as shown in Figure 2.5. When queried, a

node will respond as follows:

• If it owns id, it will respond with the value associated with id, and information about its

immediate predecessor and successor.

• If it is a predecessor of id relative to the querying node, it will provide information about

its immediate successor and the l best next hops towards the destination.

• If it is a successor of id relative to the querying node, it will provide information about

its immediate predecessor and the l best next hops towards the destination.

Here l and p are both system parameters. When a reply is received, further queries are

dispatched in parallel if the querying node learns about any node closer to the target id than

the best successor and predecessor nodes that have responded already.

Node Join: A node that wants to join the EpiChord network will know at least one bootstrap

node that already exists in the network. The new node performs the join operation using two

steps:

• It makes a regular iterative lookup for the successor to its NodeId in the ring with the

help of the bootstrapping node.

• When the successor is found, the new node sends a request to its successor to initialise

its cache. It also generates a join token with its successor and passes the token to its

predecessor.

Once a node finds its successor and predecessor, and obtains a full cache transfer, the join is

complete.

16

Figure 2.5: Basic lookup mechanism for node x for a lookup of id in EpiChord.

Performance: The performance of EpiChord has been measured in two workloads: Lookup-

intensive and Churn-Intensive. A workload is considered as Lookup intensive if the Lookup

rate >> Rate of node join, and it is churn intensive if the Lookup rate << Rate of node join [47].

EpiChord achieves O(1)-hop lookup performance under lookup intensive workloads, and at

most O(logn)-hop lookup performance under churn-intensive workloads.

2.4 challenges of deploying p2p in mobile networks

Current P2P research focuses mostly on fixed networks. Adopting P2P for NATed churn

aware environments containing mobile devices with an array of wireless technologies imposes

a significant number of challenges. A non-exhaustive list of challenges is:

• High Churn Rates - Churn refers to the rate of peer joins and leaves in a mobile

network. High churn rate can be caused by variation in signal strength, data calls being

interrupted by voice calls, and/or simply discharged batteries.

• Energy/Data Consumption - Battery power on mobile devices is limited. Moreover,

sending/receiving data on cellular networks is energy intensive and hence, the number-

/size of P2P maintenance messages should be as small as possible.

17

• Network Address Translation (NAT) and Firewall - NAT routers and Firewalls are

deployed by mobile network operators enabling phone initiated outgoing connections

only. This poses difficulties for P2P networks to connect one node to another.

• Bandwidth Usage - Another important fact is that mobile devices have their bandwidth

limited by mobile networks. Even though, wireless technologies have improved a lot;

the developers should take this into account while developing mobile P2P applications.

There are some other challenges such as Network Access Methods, Nodes and Resource Discovery

and Security, however, this research focuses mainly on the churn, data consumption and NAT

traversal issues. The research works related to churn, bandwidth consumption and NAT are

reviewed next.

2.4.1 Churn Issues

DHT based structured P2P offers high scalability and improved data lookup efficiency,

however, the performance can be affected significantly by frequent join and leaves of mobile

nodes, i.e. churn. Churn imposes two main problems for P2P routing. Firstly, it makes the

routing table out-of-date and the stale entries in the table point to neighbour nodes that are

either dead or have already left the network. This causes multiple round trip time to find a

lost lookup message and hence, the system experiences expensive lookup time-outs. Secondly,

as new mobile nodes join the P2P overlay and stale entries become obsolete, the routing table

needs to be refreshed which does not happen very quickly. As a result, the system experiences

inefficient routing, increasing lookup latency and high overlay maintenance overheads. If the

proportion of mobile nodes increases in the network, many structured overlays simply collapse

under high churn rate [48], [62]. Therefore, the impact of churn needs to be considered when

designing a P2P system targeted for mobile churn intensive environments. A number of

approaches are available that attempt to deal with churn issues.

Stutzbach and Rejaie [75] showed that the node life time or churn distribution could

accurately be modelled by a Weibull distribution but not by the Poisson or Pareto distributions.

They also examined churn at two levels: Group-level characterisation and Peer-level characterisation.

In the group-level characterisation, the behaviour of all participating peers are captured

collectively, whereas in the peer-level characterisation, the behaviour of specific peers are

captured across multiple appearances in the system over time. To characterise these aspects of

peer dynamics, they investigated three different P2P systems: Gnutella, Kad and BitTorrent.

The experiment results revealed that the group-level characterisation of churn exhibited

similar behaviour among all three applications, but peer characterisation in BitTorrent were

significantly different.

Rhea et al. [64] stated that existing DHT implementations could not handle high levels of

churn. They identified three factors that improved the DHT performance under churn which

18

were: Reactive versus Periodic Recovery from failure, Lookup Timeouts and Proximity Neighbour

Selection (PNS). The authors used periodic recovery in their design, as reactive recovery

might lead to a feedback cycle that crowded the network. For calculation of lookup timeouts,

they showed that TCP-style timeout calculation achieved the best results when compared to

alternative Fixed Timeout or Virtual Coordinate techniques. For PNS, they considered Global

Sampling, Neighbours’ Neighbours (NN) and Neighbours’ Inverse Neighbours (NIN) techniques;

and found that combining Global Sampling with any other technique was more effective than

simply selecting NN or NIN.

Wu et al. [76] provided directions to design a DHT under churn. They conducted an analyt-

ical study of three features - lookup strategy, lookup parallelism and lookup key replication

- to improve the DHT lookup performance under churn. They compared the performance

of two lookup strategies: Recursive Routing (RR) and Iterative Routing (IR). Furthermore, they

proposed two enhanced alternatives. One is a two-phase routing strategy (RR+IR), where the

RR is used in the first phase and if RR fails, IR is conducted as the second phase. Another one

is Recursive Routing with ACK strategy (RR+ACK), where an ACK is sent by an intermediate

node, containing the address of the next hop to the originator along with the RR. Through

simulation, the authors showed that the RR+ACK technique performs better than others in

different churn conditions. For lookup parallelism, the authors showed that a parallelism

degree of two or three can increase the overall lookup performance. Lookup Key Replication is

another important feature in which one data key is replicated in multiple peers. They studied

two replication policies: replication without repair mechanism and replication with repair

mechanism and found that the necessity of a repair mechanism depends on the peer lifetime

distribution. In Exponential Distribution, a repair mechanism is required no matter what the

churn level is; however, in Pareto Distribution, if there is a very heavy tail, simple replication is

enough to guarantee a sufficient long lifetime of the replicated key.

Ou et al. [60] evaluated the performance of a P2P system in mobile environments in the

presence of different levels of churn. Kademlia [53] was used as the underlying DHT algorithm

and P2P Protocol (P2PP) as the signalling protocol in their design. After conducting simulation

and implementing a prototype on a mobile platform, they concluded that a lookup parallelism

degree of three and resource replication degree of three were good enough to make the system

robust under various levels of churn and ungraceful leaving of nodes. They also showed that

a good success ratio could be achieved by parallel lookup even without using KeepAlive

messages. However, they only simulated the overlay with 400 nodes and they did not compare

the performance of the overlay with any other overlays.

Li et al. [48] presented a Performance Vs. Cost (PVC) framework to compare the effects of

different features of various DHTs under churn. The authors simulated Chord, Kademlia,

Kelips [33], OneHop [32] and Tapestry [79]; and used PVC to determine the most important

features to handle churn. The results revealed some important observations about DHT design

19

choices, such as, increasing the routing table size is better than faster stabilisation; parallel

lookup is more efficient than stabilisation; and learning about new nodes from lookup can

replace stabilisation.

2.4.2 Data Consumption

Energy consumption is closely related with how much data is transferred, which ultimately

dictates the data consumption of a particular network. Hence, the consumption of energy and

data is another challenging issue in mobile devices. As the battery power of a mobile device

is limited and the mobile phones may not be always online due to user requirements and

user mobility outside of the network coverage, one main concern of the developer should

be developing the mobile application in an energy optimised way. Some contributions have

focused on the energy consumption perspective.

Gurun et al. [34] assessed the energy consumption utilising a structured P2P chat application

on a Personal Digital Assistant (PDA) device and showed that it was feasible to develop

lightweight P2P protocols and applications on limited-power, embedded devices, such as

PDAs or mobile phones. They also specified that the power savings could be improved if

overlay messages were batched and sent periodically.

Nurminen and Noyranen [58] carried out measurements of energy consumption of Bit-

Torrent [16] on hand-held devices and their results indicate that P2P content sharing on

mobile phone is feasible from the energy consumption point-of-view, which is in line with

previous studies. They also showed that active uploading and downloading of contents did

not consume extra energy while acting as a full peer. However, it is recommended that the

uploading should be terminated as soon as the downloading was finished to save energy. For

a comparative analysis, they performed the measurements for both 3G and WLAN access

networks.

Kelényi and Nurminen [41] installed a DHT client in mobile devices and measured the rate

of energy consumption of mobile devices over Wi-Fi. They reported that a mobile device could

only last a couple of hours when it was acting as a full peer. The same group of researchers

proposed an energy optimised, load balancing protocol for Kademlia based DHT which allows

mobile devices to reduce energy consumption by selectively dropping incoming messages over

WLAN [43]. Their measurement study revealed that energy consumption could be reduced as

much as 55% by dropping 50% of incoming messages. However, dropping 70% of the request

could not achieve any significant benefit.

Ou et al. [59] implemented a prototype to evaluate the feasibility of mobile nodes acting as

fully fledged peers and measured the power consumption. The consumption results showed

that the WLAN access mode consumed less power than the UMTS access mode. Furthermore,

20

in the UMTS access mode, the protocol packets of 200 bytes or less were the most energy

efficient.

Kelényi et al. [44] used broadband routers to improve the energy-efficiency of BitTorrent

downloads to mobile phones. It was shown that using a proxy server could save energy for

mobile phones.

Network Address Translation or NAT is another major challenge for deploying P2P. The

next section elaborates on NAT and existing NAT traversal techniques offering transparent

traversal abilities to keep the P2P connection alive.

2.5 nat and nat traversal

NATs are used to provide a mapping of a single public IP address onto several end systems

on a private network, thereby allowing many computers in the private network to access the

Internet using the single public IP address [21]. The basic idea is to let a NAT based router

replace the IP header of the packets and maintain a mapping table that contains the address

information in outgoing and incoming messages. Figure 2.6 shows the general NAT approach.

Figure 2.6: Network Address Translation (NAT).

Depending on the address mapping schemes, there are four types of NAT: Full Cone NAT,

Restricted Cone NAT, Port Restricted Cone NAT and Symmetric NAT [66].

• Full Cone NAT: In a full cone NAT, all requests from an internal IP address and port are

mapped in the same public external IP address and port. Additionally, other external

hosts can send a packet to the internal host using the mapped external address. Figure

2.7 shows an example of full cone NAT.

• Restricted Cone NAT: A restricted cone NAT is like a full cone NAT; the only difference

is that an external host with the IP address X can send a packet to an internal host only

21

Figure 2.7: Full Cone NAT.

if the internal host previously sent a packet to the host with the IP address X. Figure 2.8

shows the behaviour of the restricted cone NAT.

Figure 2.8: Restricted NAT.

• Port Restricted Cone NAT: A port restricted cone NAT is similar to the restricted cone

NAT. Additionally, it requires the external host to use the same port number that the

internal host previously used to contact it. Figure 2.9 shows an example of a port

restricted cone NAT.

Figure 2.9: Port-Restricted NAT.

22

• Symmetric NAT: A symmetric NAT creates a different IP address and port number

mapping according to a session IP and an arbitrarily chosen externally used port number.

Figure 2.10 illustrates the behaviour of the symmetric NAT.

Figure 2.10: Symmetric NAT.

2.5.1 NAT Traversal Techniques

NAT is suitable for any typical Client-Server communication when the client is on a private

network and the server is in the global address realm. A P2P network is different from the

Client-Server network. In a P2P network peers have equal positions without any classification

of client and server. They are directly connected to other peers and they both act as client

and server simultaneously. In NATed environments, any general NAT architecture makes it

difficult for two nodes on different private networks to communicate with each other directly.

Therefore, it is important for NAT device makers, protocol designers and P2P application

vendors to provide smooth and secure two way direct communication, including unsolicited

incoming connection attempts for hosts residing in NATed environments.

Different NAT traversal mechanisms have been designed to provide direct communication

between peers behind NATs. Some are based on NAT gateway optimised and plugged

techniques such as Universal Plug and Play (UPnP) [8] and Application Level Gateway (ALG) [72],

whereas some are based on fall-back (making use of the Client-Server model) approaches, in

which they depend on a relay server or a rendezvous server on either or both sides of the NAT

gateway. Some examples of such techniques are STUN [66] and TCP/UDP hole punching [25].

Among them, the hole punching is the most robust and practical NAT traversal technique as

it works consistently for both UDP and TCP and can be deployed by applications without

special requirements or privileges [25].

The next subsections will provide a brief review of a number of currently known techniques

for implementing P2P communication over existing NAT devices.

23

2.5.1.1 STUN

Simple Traversal of UDP through NAT or STUN [66] is a simple client-server protocol that is a

well known and the most widely used VoIP NAT traversal solution for UDP traffic. It allows

applications to discover the presence and types of NATs between them and the public IP

address.

Figure 2.11: STUN.

A possible STUN configuration has been shown in Figure 2.11. The host behind a NAT is

called a STUN client, and the server on the external side is called a STUN server. The STUN

client sends a Binding Request over UDP to the STUN Server which typically resides in the

public address realm. The UDP request packet may traverse several NAT devices to reach the

STUN server. The Server discovers the last NAT-modified source address and port and then

copies the source address and port into a Binding Response which is then sent back to the

STUN client. By comparing the local address and port in the response packet with its own

record, the STUN client can discover if it is behind a NAT device.

When the client detects that it is behind a NAT, it does a series of tests to determine its

exact type. These tests consist of asking one or two STUN servers to send their responses

from different ports and analysing these responses to determine how the NAT has mapped

each outgoing request. After detecting the existence and type of the NAT, the client uses the

mapping that the NAT allocated for the STUN server to construct its messages.

The main advantage of using STUN is that it does not need any changes to NAT devices.

Clients can discover NAT devices automatically. However, it does not support symmetric

NATs which are reasonably common. STUN requires client applications to be upgraded to

24

support STUN and an additional STUN server residing in the public domain. The use of

STUN can be hindered due to these reasons.

2.5.1.2 UDP Hole Punching

The Hole Punching technique [25] enables direct P2P communications between hosts or peers,

even if the peers are both behind NATs, with the help of a well-known rendezvous server. The

rendezvous server allows the peers to discover each others’ endpoints (IP address and port)

so that they can communicate directly.

Figure 2.12: UDP hole punching.

Figure 2.12 shows an example of the UDP hole punching process. Suppose peers A and

B are both behind different NATs M and N respectively. A and B have established a UDP

session to the server and, the NAT M and N will create UDP translation states and assign a

temporary external port number for each internal peer. Afterwards, the server will relay the

information containing their IP address and port number back to peer A and peer B.

Now peer A sends packets to the public address of the peer B. Since the remote NAT N

does not have a translation entry for this connection yet, it drops all messages. Now B sends

data packets to the public address of A, to the exact IP address and port where the previous

message came from. Although the message of A was dropped, N created a translation entry

on its NAT device which now allows the message from B to pass. This enables the UDP

connection to be established.

Hole punching is well understood for UDP, but it can also work for TCP communication

[25]. To establish a direct P2P TCP connection between peers under NAT is a little more

25

complex than for UDP. It works in a similar way to UDP hole punching, only with the added

complexity of establishing the TCP handshake between the peers.

Figure 2.13: TCP hole punching.

Suppose two peers A and B are both behind different NATs as shown in Figure 2.13. Similar

to UDP, both peers establish an active TCP connection to the same rendezvous server S. The

peers also register their private and public addresses on the server. Each peer’s first SYN

packet to the other peer creates a ‘hole’ in its respective NAT. In the situation when A’s first

SYN packet to B reaches at B’s NAT before B’s first SYN packet to A reaches at B’s own NAT,

B’s NAT tags A’s SYN packet as unsolicited and therefore, drops it. However, B’s SYN packet

can get through A’s NAT successfully because B’s public address is recognised by A’s NAT as

part of the outgoing session to B that A had already initiated.

Hole punching preserves the transparency of NAT and works even with multiple levels of

NATs. However, it also has some disadvantages. By introducing a server, it turns the part of a

P2P network into a Client-Server model. It adds overhead to the bandwidth and increases

communication latency as well.

2.5.1.3 TURN

In some scenarios, a direct connection between nodes behind different NATs is impossible,

particularly if nodes are behind a symmetric NAT. In these cases, it is necessary to relay the

communication via an external intermediate node. Traversal Using Relays around NAT (TURN)

[50] is a protocol that provides a relaying service via a TURN server. As this approach makes

heavy use of relay techniques, it works in almost every imaginable situation. However, this

service is expensive to maintain as it is required to maintain a robust and high-capacity TURN

26

server. Consequently, in most situations, TURN is used as a fall-back mechanism for other

methods, such as hole punching, to solve the NAT connectivity problem. This approach works

both for TCP or UDP.

Figure 2.14: TURN.

The principle of TURN is to provide a client with a public Internet address, which are

usually hidden by NAT devices. This allows the clients to request a public address and

port from the TURN server. The TURN server communicates to the TURN client with some

requests/responses besides relaying and the server is transparent to external peers. Even so,

one client behind the NAT and the TURN server does not receive the messages from the third

(other) peers.

Unlike STUN, TURN does not allow direct connectivity between two hosts behind their

NATs. Although TURN can traverse each type of NAT including symmetric NAT, the TURN

protocol will burden the public TURN server with heavy loads and might cause delays. Due

to its associated high cost, TURN will be the last resort to use in practice. The Figure 2.14

shows the TURN architecture.

2.5.1.4 STUNT

STUNT (Simple Traversal of UDP through NATs and TCP too) [31] is a protocol that extends

STUN to include TCP. It includes two approaches for traversing NATs. The first approach is

known as STUNT#1, which has been illustrated in Figure 2.15. The figure shows that the two

peers A and B are behind two different NATs M and N respectively and the STUNT server is

on the public Internet. In this approach, both peers send an initial SYN with a high enough

TTL to cross their own NATs, however, the TTL is low enough that the packets are dropped

in the network (once the TTL expires). The peers learn the initial TCP sequence number by

listening for the outbound SYN over PCAP or a RAW socket. Both peers inform the STUNT

server of their respective sequence numbers and the STUNT server replies with a SYN-ACK

27

(spoofed) to both peer with the appropriate sequence numbers. The ACK completes the TCP

handshake and therefore goes through the network as usual.

Figure 2.15: STUNT#1. Figure 2.16: STUNT#2.

This approach has four significant problems. Firstly, it requires the peer to determine a

TTL that is large enough to cross its own NATs but low enough not to reach the other peer’s

NAT. The problem is that when the two outermost NATs share a common interface, such

a TTL does not exist. The second problem is that the ICMP TTL - exceeded error could be

generated in response to the SYN packet and this might be interpreted by the NAT as a fatal

error. Thirdly, the TCP sequence number of the initial SYN might be changed when it arrives

at the NAT. The fourth problem is that it depends on a third-party to spoof a packet for an

arbitrary address.

In the second approach, which is known as STUNT#2, it is also required that the STUNT

server, which is omitted in Figure 2.16, discovers the public IP address and port number of

the NAT and the NAT type. Unlike STUNT#1, the STUNT server does not need to spoof the

SYN-ACK packet and therefore, it does not need to have the root or administrator privilege.

Only one peer sends out a low-TTL SYN packet and then terminates the connection attempt

and creates a TCP socket (passive) on the same address and port. The other peer then initiates

a regular TCP connection, as shown in Figure 2.16. As with STUNT#1, it is important for the

peer to pick an appropriate TTL value and the NAT must not consider the ICMP error to be a

fatal error. It also requires that the NAT accepts an inbound SYN following an outbound SYN

which is a sequence of packets not normally seen.

The main contributions of the STUNT are to predict the next port number and establish the

direct TCP connections.

2.5.1.5 NATBlaster

NATBlaster [5] is another approach similar to STUNT#1 but avoids the IP spoofing requirement.

In this approach, both peers initiate an outbound connection and keep the record of their

initial sequence number. The two peers then interchange the sequence numbers and each peer

sends a SYN-ACK packet to another. The SYN-ACK packet is sent into the network using

28

a RAW socket. Once the SYN-ACKs are received by both peers, ACKs packets are sent to

complete the connection setup. Figure 2.17 shows the packet flow in NATBlaster.

Figure 2.17: NATBlaster.

Like the STUNT#1 approach, NATBlaster also requires the peer to properly select the TTL

value, requires the NAT to ignore any ICMP error and it fails if the NAT changes the sequence

number of the SYN packet. In addition, it requires the client applications to have access to

RAW sockets, which are usually available at root or administrative privilege levels.

2.5.1.6 Peer-to-Peer NAT

The mechanism of Peer-to-Peer NAT [25] is similar to STUNT#2. In Peer-to-Peer NAT, both

peers send SYN packets and listen for any incoming connections to the same port at the same

time. One of the NATs will end up following the simultaneous open sequence, where the other

one follows the regular open sequence. Figure 2.18 shows the packet flow in Peer-to-Peer NAT.

Basically this approach is not as popular as STUNT#2 and it additionally requires the peer to

retry failed connection attempts until a time-out occurs.

Table 2.1 presents a brief summary of all the NAT traversal techniques along with their

advantages and disadvantages described here. In the second column of the table, ’Cone’

means full cone, restricted cone and port restricted cone; as described in Section 2.5.

2.5.2 Impact of Routing Scheme over NAT

Selecting a proper routing algorithm is another crucial factor to design a P2P overlay. The

routing algorithm defines how the information will be routed through the P2P network.

29

Table 2.1: A summary of NAT traversal techniques.

NAT traversal

techniques

NAT

types

UDP

/TCP

Advantages Limitations

STUN Cone UDP 1) Does not require

any changes on NAT

devices. Clients can

learn NAT devices

automatically. 2) Easy

and standardised.

1) Short term solution. 2) Requires cli-

ent application to be upgraded to sup-

port STUN and an additional STUN

server residing in the public Internet.

UDP Hole

Punching

Cone UDP 1) Preserves the trans-

parency of NAT 2)

Works even with mul-

tiple levels of NATs.

1) By introducing a server, it turns

the part of a P2P network into Client-

Server model. 2) It adds overhead to

the bandwidth and increases commu-

nication latency as well.

TCP Hole

Punching

Cone Both Provides a direct TCP

connection which is

a reliable connection

with error detection

and packet retransmis-

sion

Additional processes required to estab-

lish the TCP handshake as well as to

synchronise the packet sequence num-

bers.

TURN All

types

Both 1) TURN can traverse

every type of NAT

including symmetric

NATs. 2) TURN is used

to relay media stream-

ing between peers.

1) TCP data is proxyied by a third

party which creates a potential net-

work bottleneck. 2) Requires excess-

ive network resource requirements 3)

TURN server must remain available

for the whole duration of the alloca-

tion. 4) Unlike STUN, TURN does not

allow a direct connectivity between

NATed hosts.

STUNT#1 All

types

TCP Direct TCP connection 1) Need supervisor privileges. 2) De-

termining a proper TTL value. 3) Re-

quires IP address spoofing.

STUNT#2 All

types

TCP 1) Direct TCP connec-

tion. 2) No need for ad-

ministrator privilege.

Determining a proper TTL value.

NATBlaster All

types

TCP Does not require IP

Spoofing.

1) Need supervisor privileges. 2) De-

termining a proper TTL value.

P2P-NAT All

types

TCP Easy. 1) It is not as popular as STUNT#2. 2)

Packet flood may occur.

30

Figure 2.18: P2P-NAT.

There are two common routing schemes among existing DHT based P2P overlays: Iterative

Routing and Recursive Routing. Furthermore, the recursive routing has four other variants:

Full-Recursive, Semi-Recursive, Hybrid and Full-Hybrid Routing.

2.5.2.1 Iterative routing

In Iterative Routing, the initiating node sends a request to an intermediary node which replies

directly to the initiator node with a nearer location. The initiator then sends a new request to

the nearer recommended node and the lookup process continues until the final target node is

reached.

2.5.2.2 Recursive Routing

In Recursive Routing, the initiator sends the request to an intermediary node. If this intermedi-

ary node does not have the resource, it forwards this request to another node that it believes

to be the nearest to the destination. This continues until the request arrives at the destination

node. Then the destination responds back to the initiator using a reverse path that the request

has traversed to reach the destination.

2.5.2.3 Full-Recursive Routing

The Full-Recursive routing is similar to recursive routing, except the response is routed

recursively back to the originator using its own routing table to which a connection already

exists.

31

(a) Iterative. (b) Recursive.

(c) Full-Recursive. (d) Semi-Recursive.

(e) Hybrid. (f) Full-Hybrid.

Figure 2.19: Different possible routing methods.

2.5.2.4 Semi-Recursive Routing

In Semi-Recursive Routing, the lookup query is routed in the same way as recursive routing,

however, the way the response is routed back is different. Here, once the destination is reached,

the response is directly sent back to the initiator.

32

2.5.2.5 Hybrid Routing

Hybrid routing is a combination of iterative and recursive routings. It is basically a recursive

routing with an additional step where at every hop, a node sends an acknowledgement back

to the initiating node except the first neighbouring contacted node. Therefore, the initiating

node constantly receives an update about the path [46].

2.5.2.6 Full-Hybrid Routing or Direct Routing

This approach is similar to hybrid routing. The only difference is that the acknowledgement is

also received from the first contacted node.

Figure 2.19 shows each routing scheme.

2.5.2.7 Discussion

Researchers argue that recursive routing is more efficient due to the reduced number of

total messages transmitted, which eliminates the corresponding latency between sending the

messages and obtaining a response [10]. In addition, it is more resilient to IP connectivity

restrictions and advantageous when dealing with NAT.

On the contrary, iterative routing is heavily affected when a querying node cannot commu-

nicate directly with some nodes on the path due to NATs.

Semi-recursive routing arguably has the smallest lookup hop count as well as a smaller

lookup latency than the recursive and iterative routings. As it follows the similar technique of

recursive scheme, it is also advantageous over NAT.

Both Hybrid and Full-Hybrid routings have the advantage of the lower delay of recursive

routing and the faster failure recovery of iterative routing.

Table 2.2 presents the total number of messages passed in a lookup query involving i nodes

[10].

Table 2.2: Comparison of different routing methods.

Routing Scheme Maximum possible number of

messages passed

Total number of additional

NAT holes to be punched

Iterative 2(i− 1) i− 1

Recursive 2(i− 1) 0

Full-Recursive i 0

Semi-Recursive i 1

Hybrid 2(i− 1) − 1 i− 1

Full-Hybrid 2(i− 1) i− 1

33

As NATs prohibit a direct communication between nodes, those nodes behind NATs have

to rely on some other techniques such as STUN, TURN or the hole punching mechanism in

order to communicate with each other. For the above discussed routing schemes, NATs have

different implications on their efficiencies.

For example, in the hole punching technique, a hole (or a connection) must be estab-

lished between the communicating nodes, and that the hole also needs to be maintained by

exchanging keep-alive messages in some cases.

Considering every node is behind a NAT, Table 2.2 shows the total number of new NAT

hole punches that must be made by all nodes for the lookup query. It is considered that

during periodic DHT maintenance, the connections to immediate neighbours have already

been established and therefore, it is not included in the count. It is also considered that the

first query is always sent to a neighbour (such as Chord).

In recursive routing, a node establishes a hole with only neighbouring nodes and has

no need to establish new holes on the way as responses are routed back through the same

connections. Similarly in full-recursive routing, the response of the destination is routed back

to the originator through the known nodes, there is no need to punch any extra hole.

The semi-recursive routing is similar to recursive routing, except when the resource is

found, a new connection (or a hole) needs to be opened between the source and destination

node. This extra cost of hole-punching is included in the cost of the semi-recursive routing.

In the iterative routing, each hop needs to establish a new connection. The originator node

sends the first lookup query to its direct neighbour and all subsequent connections are with

non-neighbours. Therefore, i− 1 new NAT connections (holes) must be established, where i is

the total number of querying nodes in the network.

The hybrid and full-hybrid routing are the combination of iterative and recursive routing

and, each hop needs to establish a new connection except that the first neighbour will not

send any reply/acknowledgement to the originator. Therefore, i− 1 new NAT holes must be

punched.

Evidently in a NATed environment, the recursive and full-recursive routing eliminate the

number of new connection that must be established through the NATs to allow communication

over other routing schemes. Again, in the recursive (and full-recursive) and hybrid (and full-

hybrid) routing networks, the intermediate nodes send and receive more messages than the

source and destination node. In a communication network such as mobile network where

the nodes have limited processing power it is important to reduce the burden of processing

power.

34

2.5.3 Analysis of Structured P2P Overlays with NAT

There are a very small number of attempts to apply NAT Traversal techniques in structured

P2P overlays. This section will analyse two of them.

2.5.3.1 SMBR

SMBR (Selective-Message Buddy Relaying) [77] uses a server-less distributed NAT traversal

mechanism for DHT based P2P overlays. DHT algorithms have two kinds of messages: control

messages and data messages. Control messages are small sized packets used to search and

publish the resource file, whereas data messages are big sized packets used to transfer the

files. SMBR uses different techniques for traversing control messages and data messages. At

first, the Private Nodes (PNs), which are behind NATs randomly select buddies, which are

Global Nodes(GNs) that have public IP addresses. Once the PNs have found their buddies, they

can traverse the control messages via the buddies’ relay. For traversing the data messages, a

direct connection is made with the help of the buddies. If the communication has to be made

in between two PNs, the UDP hole punching technique is used. In this case, the traversal

time is higher than relaying which is used to traverse the control messages. The authors claim

that this is cost efficient as the two nodes send and receive a lot of data after traversal. Again,

the load of the buddies is only for sending and receiving a small number of packets and

processing these packets, which is much lighter than relay. Therefore, the system can achieve

a balance between the traversal time and the buddy’s load.

The authors implemented this technique in a prototype system of Kademlia and tested this

approach in a smaller LAN environment. There is no evaluation regarding the performance

of the overlay. It has not been evaluated how the SMBR will perform, if the network has

high churn. The authors also claimed that the approach could be used in Chord with minor

changes but they did not describe how it could be possible. Furthermore, the selection process

of buddies is random and does not ensure that it will reach the destination node in a shorter

distance.

2.5.3.2 MaidSafe

The MaidSafe Platform [51] is a distributed P2P network that allows individuals and com-

panies to create secure, efficient and fast applications to manipulate all kinds of data, share

applications, data and communications between individuals and/or groups. It uses a P2P sys-

tem and replaces existing client-server centric systems. It utilises Kademlia-based routing and

the routing performs the hole punching technique to enable direct communication between

each pair of nodes in combination with the MaidSafe-RUDP which is an implementation of

reliable UDP. Hole punching can be achieved even without the requirement for any servers.

But this technique works as long as both communicating nodes are not behind any symmetric

35

NAT. If both nodes are behind symmetric routers, the relay option is used to traverse the NAT.

Fairness is an issue in this case where the relay node has to provide more bandwidth to the

NATed node.

2.6 existing p2p solutions in mobile networks

In this section, various approaches to implement P2P overlays in wireless cellular networks

are presented and discussed. The approaches discussed here are based on structured P2P

overlays and the deployed systems are not simply using off-the-shelf DHT algorithms, instead

they use novel designs directly addressing mobile network issues.

2.6.1 Hybrid Chord Protocol (HCP)

The Hybrid Chord Protocol (HCP) [80, 82] establishes a structured P2P network to cope more

efficiently in mobile environments. It is based on the Chord Protocol [74]. The HCP is

structured by addressing two different nodes, Static nodes and Temporary nodes. Static nodes

are highly available nodes and have high data rate connections to other static nodes as well

as large CPU and storage capabilities. On the other hand, the temporary nodes are low-

performance nodes that join the network only for a short period of time. The routing tasks

are performed by all nodes in the network, however, storing and providing the shared object

references are processed only by the static nodes. Therefore, the availability of shared contents

increases. Temporary nodes store only a pointer to their closest static successor. Thus, if a

temporary node receives a request for an assigned key, it simply forwards the request to its

closest static successor which stores the corresponding references for this key.

The authors have shown that the routing and maintenance traffic in the overlay can be

reduced significantly as the object references are shifted only when static nodes, which

normally have long session times, join or leave the network.

The main issue of this protocol is the high dependency on static peers. In the evaluation,

the authors have shown that 40% of the nodes have to be static in the HCP network [82]. On

the other hand, if the mean online time of temporary peers such as PDA or mobile peers

decreases from 10 minutes to 2 minutes then the failure probability increases from 35% to 50%

which clearly shows that the system is not efficient in high churn scenarios such as in mobile

networks. Most importantly, mobile networks come with the NAT functionalities, which are

not covered in this system.

36

2.6.2 Mobile Node ID Kademlia Architecture

Huiyou et al. [78] introduced the Mobile Node ID Kademlia Architecture for transmitting multi-

media streams in wireless networks. In this system, the key space is divided into two parts:

the main ID and the assistant ID; where the main IDs are distributed to the stable nodes and

the assistant IDs are considered for unstable nodes such as mobile phones. The main ID nodes

take part in DHT for locating resources whereas the assistant ID nodes communicate only

with the main node. When an assistant node wants to get a resource, it must contact the

corresponding main node first and then it can calculate the location through another hash

table on the main node. The authors further designed the Virtual Channel Caching Mechanism

and the Motion Estimated Caching Mechanism to guarantee the continuity of the multimedia

data.

In this system, if a node joins/leaves frequently, only the direct main nodes are affected

without causing any harm to the whole system. The authors argued that their approach would

work efficiently in large networks and allow fluent multimedia streaming.

The drawback of this architecture is that the main ID nodes have to be very robust and stable

nodes with a number of properties such as large network bandwidth, computing ability and

the connective ratio. The architecture has been implemented in a P2P simulator considering

a very small network of 1, 000 nodes. The simulated performance is compared only with

Kademlia. This system is also aimed for mobile networks; however, it does not deal with high

churn and NAT traversal.

2.6.3 Chordella

Chordella [37] is a two-tier P2P overlay network system designed for mobile networks. The

system architecture defines two different classes of peers: Super-Peers and Leaf-Nodes. The

upper level peers are Super-peers that are participating devices with substantial resources and

have a more reliable network connection. They establish a ring-shaped structured DHT overlay

based on Chord. A Super-peer connects to the Leaf-nodes and acts as a proxy to allow them to

participate in the overlay. The low level nodes are Leaf-nodes which are resource-constrained

wireless devices such as mobile phones. They do not provide high data rates, nor do they

require high computational power or even a certain uptime for their participation in the

network. As the Leaf-nodes only maintain an overlay connection with their Super-peers, they

need to be able to recognise and react to a Super-peer failure. To solve this, they periodically

run a simple PING/PONG algorithm. They also store a list of other available Super-peers in

the system to be able to rejoin the overlay network on the failure of a Super-peer.

In addition to the basic DHT features, a Load Balancing Algorithm [83] was implemented to

ensure the same load levels of the participating Super-peers. Another Optimal Operation Point

37

Selection Algorithm [81, 84] was designed to adjust the number of Super-peers dynamically

to a cost-optimal value. An integrated Caching Algorithm was implemented to improve the

system performance and reliability by adaptively caching references to popular contents.

The main focus of this system is on cost optimisation and load balancing between the

participating super-peers. However, during the churn phase, which is set for 2 hours in the

simulation, the Chordella shows worse load balancing performance [83]. Again, the system

does not deal with NAT traversal.

2.6.4 Cellular Chord (C-Chord)

The Cellular Chord (C-Chord) P2P system [85] integrates the cellular users into the well-known

Chord P2P system in a topology-aware fashion. The C-Chord provides the cellular users a

choice of downloading the contents either from the Internet peers at a faster rate or from the

other cellular peers within the same base station, avoiding the Internet data penalty. The model

consists of one main Chord (m-Chord) ring that contains Internet peers, and several auxiliary

Chord (a-Chord) rings equal to the number of base stations containing all cellular peers.

a-Chord rings are connected to the m-Chord ring with a special key. Every base station has a

unique Cell-ID and cellular users retrieve this Cell-ID through a cell search procedure. An

m bit identifier, denoted as idcell, is generated by hashing each Cell-ID. The data associated

with this identifier idcell is a list of J number of IP addresses of cellular users in the a-Chord

under the same base station and has the format of IPkey = {ip1, ip2,, ipJ}. The cellular

peer in the a-Chord ring maintains a gateway called IPgw which is a list of {ip1, ip2,, ipJ ′ }

containing the IP addresses of the successor and predecessors of the special key. For efficient

lookup, the m-Chord ring and a-Chord rings also maintain finger tables. However, each cellular

peer maintains a finger table with fewer entries, as the number of peers in each a-Chord is

less than the number of Internet peers in the m-Chord; therefore, the system reduces the high

management cost of routing information.

The peer selection module is based on the Stable Marriage (SM) Algorithm [27], which

chooses the appropriate candidate from the discovered potential senders. However, this

algorithm requires a lot of messages (i.e. O(n2 −n+ 1) messages, where n is the number of

requesting peers) and it becomes unrealistic when the number of requesting peers or potential

senders is large. The authors proposed an alternative Heuristic Peer Selection scheme which is

near-optimal and requires fewer messages (i.e. O(n) messages).

The system does not measure the degree of churn and fault tolerance. Again, NAT traversal

has not been considered in this design.

38

2.6.5 Bushfire

Bushfire [7] is a framework based on a structured P2P overlay that operates in mobile networks

and supports developers to create third party applications. It consists of two main parts:

a handset component to interface with the third party applications and a proxy server,

called SysProxy, to overcome the constraints imposed by NAT and the mobile network

operators. Kademlia DHT is implemented on top of the star topology network. The Kademlia

implementation and the NAT traversal functionality together work as a framework.

The proposed Bushfire framework utilised a ‘proof of concept’ software application, referred

to as BUTE (Budapest University of Technology & Economics) [42]. The main difference between

BUTE and Bushfire is that the BUTE application works using only WiFi capability, in the range

of a WLAN access point; whereas Bushfire provides the connection of the P2P nodes into the

public GSM mobile telephone network using appropriate mobile handset API functionality.

Again, BUTE does not support the NAT traversal capability; whereas Bushfire gains full

Internet access and overlay connectivity through the mobile operator network using SysProxy.

However, placing a SysProxy server in the design is a significant bottleneck for data flow

and the system resiliency. Another limitation of Bushfire is that a maximum 14, 535 users can

be supported in the application. Node churn and data longevity within the overlay are two

other key factors that have not been considered in Bushfire.

2.6.6 Discussion

From the above discussions, it is clear that a number of different structured P2P approaches

exist that can potentially be used for large scale applications in mobile networks. The different

characteristics of the presented systems make it difficult to compare and contrast them

directly against each other. Table 2.3 presents different approaches according to the main

goal of the architecture, P2P overlay protocol, overlay structure, lookup process, overlay

maintenance, performance evaluation, churn handling, proposed applicability and prototype

implementation.

It is interesting to analyse that the main design goal of the maximum approaches presented

here is to perform the efficient lookup and to reduce the maintenance overheads, thereby

improving stability in mobile networks.

The structured P2P solutions compared here are mainly based on either Chord or Kademlia.

Using the concept of a superpeer is a good way to handle different issues regarding the

power consumption of resource constrained mobile devices with short battery lives. In a

hierarchical P2P network, mobile peers could collaborate with a static/fixed peer with high

39

Table 2.3: Comparison of existing mobile P2P.

Protocols HCP Mobile Node ID

Kademlia

Chordella C-Chord Bushfire

Main goal To perform

faster

lookup and

increase

the stabil-

ity of the

structure.

To minimise the

huge mainten-

ance overheads

by introducing

the heterogeneity

of participating

nodes.

To provide ef-

ficient resource

lookup in highly

heterogeneous

environments

using diverse

devices.

To provide

cellular users

an effective

P2P platform

in a topology-

aware fashion.

To provide

a framework

to support

developers

to create

3rd party

applications.

P2P Over-

lay Pro-

tocol

Chord Kademlia Chord Chord Kademlia

Overlay

Structure

Ring Tree Ring Ring Star

Lookup

Process

When a

tempor-

ary node

receives a

query, it

simply for-

wards the

request to

its closest

static node.

For Lookup, the

requesting node

gets the main ID

first; then it reads

its hash table for

the desired node.

When a Leaf-

node asks for a

resource, the dir-

ectly connected

Super-peer re-

solves the lookup

by determining

the responsible

Super-peer based

on the object’s

key.

The cellular

peer sends a

query to its

own a-Chord

successor or

to any of the

nodes from the

list IPgw.

SysProxy

forwards the

ping message

to the appro-

priate device.

Receiving the

response; the

FindValue

routine takes

further actions.

Overlay

Mainten-

ance

Uses

Token-like

stabil-

isation

where two

or more

tokens

circulate

in counter-

clockwise

direction

on the ring.

Three differ-

ent operations

can take place

according to dif-

ferent situations:

Replace-when

there is a better

main node; Split-

when the current

main node has

too many as-

sistant nodes;

Combine-when

there is no new

candidate.

Super-peers

periodically run

Chord’s original

STABILISE and a

slightly modified

FIX-FINGER

algorithms. Fur-

thermore, the

Super-peers

refresh all the

references peri-

odically in order

to keep them

up-to-date.

Both m-Chord

and a-Chord

maintain

finger tables

and with less

entries in the

cellular peer’s

finger table,

the system

reduces the

management

cost of routing

information.

All high level

logical activ-

ities related

with routing,

DHT main-

tenance and

data storage or

retrieval from

the network

are managed

by ping,

findNode,

findValue

and store

messages.

40

Protocols HCP Mobile Node

ID Kademlia

Chordella C-Chord Bushfire

Performance

evaluation

It reduces

the main-

tenance

traffic by a

factor of 1/α

compared

to Chord;

where α is

the ratio of

the mean

online time

of static

nodes in

HCP and

the mean

online time

of all nodes

in Chord.

The system

performs

better than

standard Ka-

demlia when

the resource

file is big and

the number

of nodes in

the network is

large.

It ensures the

same load level of

the participating

Super-peers using

a Load Balancing

Algorithm. Also

dynamically ad-

justs the number

of Super-peers

to a cost-optimal

value and im-

proves the system

performance and

reliability by ad-

aptively caching

references to

popular content.

It improves

the perform-

ances with

smaller

hop-count

per lookup

query com-

pared to

traditional

Chord.

Energy op-

timisation

experiments

reveal that the

mobile device

consumed less

power when

the routing

table refresh

frequency is

longer.

Churn

handling

Handles a

moderate

level of

churn.

Does not

handle churn.

Considers a

churn phase

upto 2 hours but

performs poorly.

Does not

handle

churn.

Does not

handle churn.

NAT Tra-

versal

Not avail-

able.

Not available. Not available. Not avail-

able.

Implemented

NAT traversal

using a proxy

server.

Proposed

Applicabil-

ity

File sharing. Multimedia

Streaming.

Content sharing,

Person tracking,

Dynamic services.

File sharing. Any kind of

3rd party apps.

computational power for basic operations such as resource discovery or maintaining the

connectivity of the mobile peer through the mobile network. In this way, those static or

superpeer nodes can provide the mobile peer the capability of full interaction between the

other peers in the network. HCP, Chordella and C-Chord are particularly adapted in that way

to implement the P2P approach in a mobile network; however, each approach has different

routing and design techniques. The mobile node ID Kademlia architecture also allows the

41

system to have stable and unstable nodes where the stable nodes have the larger network

bandwidth and only they can participate in the DHT system for resource discovery.

Each approach performs better for some specific criteria; however, it is not mentioned how

they will perform in other criteria. For example, HCP reduces the maintenance traffic, but how

the participating static peers in the network balance the load is not stated. Again, C-Chord

minimises the hop-count, but the authors of the protocol have not mentioned how to tackle

fault-tolerance of the system.

HCP and Chordella have been measured under a moderate level of churn, but both of them

have performed poorly. The rest of the approaches have not considered churn in their systems.

Unlike others, Bushfire is a software development framework to incorporate P2P applica-

tions and can handle the NAT/Firewall functionality using a proxy server.

HCP and C-Chord are designed mainly for file sharing applications, the Mobile Node ID

Kademlia approach is applicable for media streaming whereas Chordella is applicable for

content sharing, person tracking and dynamic services.

2.7 review of p2p simulators

A large number of simulations have been performed throughout the thesis to evaluate the

performance of DHT based P2P overlays using a P2P network simulator. There are a number

of active P2P simulators available. To select a P2P simulator with the desired functionalities, a

detailed review of the existing P2P simulators has been carried out. A summary of these tools

is provided in Table 2.4.

A brief discussion of each simulator is presented below.

PeerSim [54] is a Java based simulator whose main focus is to provide high scalability, with

network sizes of up to 106 nodes. However, this scalability comes at the cost of omitting the

behaviour of the underlying communication network.

P2PSim [30] is a discrete event simulator for P2P overlays written in C++. Models for Chord,

Accordion [23], Koorde [39], Kelips [33], Tapestry [79], and Kademlia are available. However,

these implementations are specific to P2PSim and do not model all features of the protocols.

P2PSim has been simulated with up to 3, 000 nodes using the Chord implementation. This

simulator is largely undocumented and therefore hard to extend.

Overlay Weaver [70] is a toolkit for P2P Overlays written in Java. It has been tested with

tens of thousands of nodes (their website quotes 300, 000). Chord, Kademlia, Pastry, Tapestry

and Koorde models are available. The simulations have to be run in real-time environments

and there is no statistical output which limits its use.

PlanetSim [28] is a discrete event simulation framework for both structured and unstructured

overlays, written in Java. It has a modular, well-structured architecture and services can be

re-used for other overlays. Chord and Symphony [52] models exist and can consist of up to

42

Table 2.4: A comparison of available active P2P simulators.

Simulator P2P Protocols Network Size Language

PeerSim Collection of internally developed P2P

models

>106 Java

P2PSim Chord, Accordion, Koorde, Kelips,

Tapestry, Kademlia

3, 000 C++

Overlay Weaver Chord, Kademlia, Koorde, Kelips,

Tapestry and FRT-Chord

Tens of thousand Java

PlanetSim Chord, Symphony 100, 000 Java

NS-2 Gnutella Not known C++/OTel

NS-3 CAN, Pastry Not known C++, Python

SSFNet Chord, EpiChord 33, 000 Java/C++

OverSim Chord, Kademlia, Broose, Pastry, Bam-

boo, Gia

100, 000 C++

PeerfactSim.Kom CAN, Chord, Kademlia, Gia, C-DHT,

Pastry

50, 000 Java

D-P2P-Sim+ Chord 400, 000 Java

100, 000 nodes. However, it provides rather limited support to collect statistics. It has a much

simplified underlying network layer without consideration of bandwidth and latency costs.

NS-2 [38] is a discrete-event simulator that provides substantial support for simulation of

lower layer protocols. Only one P2P protocol, Gnutella, is available in NS-2. Simulations in

NS-2 are built using C++ and OTcl. It is mostly used with small networks and due to the

models’ complexity is generally unsuitable for large scale P2P networks.

NS-3 [57] is a general-purpose and discrete-event simulation framework that provides

models for packet data networks and provides a simulation engine to conduct simulation

experiments. It is not a backwards-compatible extension of NS-2, but a new simulator. It is

constructed using C++ and Python with scripting capability. There is no official P2P model

released in NS-3, however, contributors modelled CAN and Pastry using NS-3.

SSFNet [17] is a discrete-event simulation framework written in Java and C++. This frame-

work is built on the Scalable Simulation Framework (SSF) and uses the Domain Modelling Language

(DML) to configure networks. Chord and EpiChord have been implemented in SSFNet. There

is a claim that SSFNet manages to run models with 33, 000 nodes, however, the authors of the

original EpiChord paper [47] could not simulate networks with more than 10, 000 nodes.

43

OverSim [3] is an open-source P2P simulation framework for the OMNeT++ simulation

environment. It provides a generic lookup mechanism and an RPC (Remote Procedure Calls)

interface to facilitate additional protocol implementations. It allows large-scale simulations

of simplified networks as well as complex heterogeneous underlay networks. Several P2P

algorithms such as Chord, Kademlia, Bamboo [64], Broose, Koorde [39], NICE [4], NTree [29],

Pastry, and GIA [14] have been implemented in OverSim. Models can scale to over 100, 000

nodes.

PeerfactSim.Kom [73] is a discrete event based P2P simulator environment. Its focus is on

being extensible and on large scale network models. This simulator offers the potential to

model different types of P2P systems including distributed Content Delivery Networks (CDNs),

streaming applications and overlay systems. It comes with a built-in churn generator. The

simulator includes models of lower layers but does not yet include TCP.

D-P2P-Sim+ [71] is a distributed simulation environment which employs multi-threading,

asynchronous message passing and a distributed environment with a graphical user interface.

There is little information on this simulator besides a short paper and a poster. These report

simulated network sizes of up to 400, 000 nodes. It seems that the only implemented overlay in

this simulator is Chord. The system is extensible and other algorithms could be implemented.

Multiple computers running the simulator may be interconnected to achieve larger simulated

network sizes.

Based on this study OverSim has been selected for the experimentation due to its flexibility

with respect to underlay characteristics, possible high scalability and strong support for

DHT-based P2P algorithms. OverSim also provides an interactive GUI and real-time messages

which are extremely useful for debugging models. Other surveys of P2P network simulators

can be found in research by Brown and Kolberg [9], and Naicken et al. [56].

2.7.1 OverSim

OverSim [3] is a modular simulation framework that uses Discrete Event Simulation (DES) to

simulate exchange and processing of network messages. The layered architecture of OverSim

consists of an Application layer, an Overlay layer and an Underlying Network which is illustrated

in Figure 2.20. The Common API provides the communication between overlay and application

layers [18]. Each overlay protocol that wants to use this API has to provide at least a Key-Based

Routing (KBR) interface to the application. The application layer can further be divided into

two sub-layers: Tier 1 and Tier 2. Simple applications can be implemented in the Tier 1 layer,

whereas complex applications are programmed in the Tier 2 layer.

To facilitate the implementation of multiple overlays, OverSim supports several functions

such as an overlay message handler, generic lookup function and global observer. The message

handler provides a Remote Procedure Calls (RPC) interface to deal with time-outs and packet

44

retransmission due to packet losses. It also collects message related to statistical data. The

lookup function supports a generic iterative and recursive lookup interface. The Global

Observer offers a global view of the overlay network in every simulation.

Figure 2.20: Layered architecture of OverSim: application layer, overlay layer and underlay layer.

The underlying network in OverSim is abstracted using an underlay model as shown in

Figure 2.20. OverSim supports different models of underlay, namely: Simple Underlay, INET

Underlay and SingleHost Underlay. The Simple Underlay is the default underlay model in

OverSim where nodes are added within a logical access network in a 2-dimensional Euclidean

space. With its low computational overhead and highly accurate performance, this model is

suitable for large scale simulation. The SingleHost Underlay emulates a single host within

an overlay. It provides a middleware facility to allow OverSim nodes to communicate with

real networks. The INET Underlay is based on the INET framework which offers much more

flexibility in simulating different network topologies and facilitates extensibility to develop

additional functionalities. The framework itself is based on OMNeT++ and utilises the same

concept where modules can communicate with each other by message passing. The framework

also provides a full-stack implementation of different link-layer models such as PPP, Ethernet

and 802.11, and several other network protocols such as IPv4, IPv6, TCP, SCTP and UDP.

45

2.8 summary

This chapter provided a brief background on P2P overlays especially on DHT-based structured

P2P overlays. In addition, it discussed related work on existing NAT traversal techniques and

P2P solutions regarding mobile networks.

Section 2.2 defined the P2P overlay with a discussion of its two categories: unstructured

and structured P2P overlays. The unstructured P2P overlay does not follow any particular

structure; peers can be organised using a random data structure, whereas the structured P2P

overlay strictly follows a tightly controlled data structure such as Ring, Mesh or Tree structure

and provides a unique mapping between the nodes and the data objects using distributed

hash tables. This type of P2P is much more efficient than unstructured P2P especially on data

lookup. Therefore, this thesis focuses solely on structured P2P overlay networks. Next, Section

2.3 described five popular structured P2P overlays which will be evaluated and experimented

in the next chapter to identify the most suitable configuration of these overlays in order to

achieve the optimal performance in mobile environments.

Section 2.4 provided a list of challenges to adopt P2P in mobile and wireless networks.

Among the challenges mentioned, this thesis focuses on three particular issues: high churn

rate, data consumption and NAT restriction. Next, a review of some efforts undertaken

to solve the churn problem were presented. The researchers have identified some design

considerations and methods to deal with churn. A review of some works relevant to the

energy and battery consumption of mobile devices was presented as well. These works reveal

that developing a P2P overlay in mobile devices is feasible, however, making the system

energy efficient is still very difficult.

Section 2.5 presented a brief overview of NAT and NAT terminologies. To make a proper

P2P connection and overcome the NAT barrier over mobile networks, a suitable NAT traversal

technique is necessary. This section also explained a number of available techniques for NAT

traversal. STUN and UDP hole punching are for UDP traffic, and STUNT, NATBlaster, P2P

NAT are for TCP traffic, whereas, TURN and TCP hole punching are for both UDP and TCP

traffic. All the techniques bring some benefits as well as have some drawbacks. Almost all

techniques employ a central server or a rendezvous server to solve the NAT issue. However,

the hole punching is the most robust and practical NAT traversal technique. This section

also provided a discussion regarding the impact of routing schemes over NAT. The iterative

routing is heavily affected when a querying node cannot communicate directly with some

nodes on the path due to NAT, whereas the recursive routing eliminates the number of new

connections that must be established through the NATs to allow communication with the

iterative routing scheme. Two new techniques (SMBR and MaidSafe platform) were discussed

which had been implemented to provide server-less distributed NAT traversal mechanisms

for DHT-based P2P overlays.

46

Finally, Section 2.6 provided a number of novel approaches to implement P2P overlays in

wireless cellular networks. The existing mobile P2P overlays were analysed. It has been found

that only a small number of structured P2P solutions are available on cellular networks and

there is not a single approach that solves the churn, energy consumption and NAT problems.

Again, only a very small number of approaches have been implemented in real systems.

Substantial efforts addressing these issues are still required to adapt DHT-based P2P overlays

to the characteristics of mobile networks.

Throughout the thesis, all the experiments have been carried out using a P2P simulator,

OverSim. Before choosing OverSim, it was necessary to review available P2P simulators.

Section 2.7 presented a review of a number of available P2P simulators and justified why

OverSim was selected for the experimentations.

The next chapter will start with the evaluation of a number of structured P2P overlays and

identify the most suitable overlay to be used in mobile networks based on high churn and

bandwidth consumption.

47

Part II

C O N T R I B U T I O N S

3
P E R F O R M A N C E E VA L U AT I O N O F S T R U C T U R E D P 2 P O V E R L AY S

U N D E R C H U R N

The previous chapter provided background information on P2P, the issues regarding deploying P2P in

mobile networks and NAT traversal. From the related work, it is found that there is no P2P approach that

solves the problem of high churn, bandwidth consumption and NAT issues. This chapter investigates

churn and bandwidth consumption issues further by evaluating the performance and efficiency of a

number of popular DHT based structured P2P overlays.

3.1 introduction

We have witnessed a tremendous growth of P2P in high speed wired networks. Recently there

has been a trend in exploring the use of P2P applications in wireless mobile networks. Moving

from high powered desktop computers to hand-held mobile devices with limited battery

power and restricted resources highlights the importance of performance and efficiency of

P2P.

Therefore, it is important to investigate DHT based P2P overlays considering the essential

requirements to enable P2P in mobile networks and identify the most important parameters

of DHTs that affect their performance. The overlays also need to be compared under different

conditions of mobile networks such as churn and bandwidth consumption. A series of

simulations have been used to evaluate the performance and efficiency of five popular DHT

based structured P2P overlays: Chord, Pastry, Kademlia, Broose and EpiChord, taking into

account the conditions as seen in mobile networks.

The rest of this chapter is organised as follows. Section 3.2 briefly summarises the key

requirements to deploy P2P from the perspective of mobile networks. Section 3.3 describes

the experimental methodology used in this research. Then in Section 3.4, a number of DHT

based structured P2Ps have been evaluated to find the most suited parameters with respect to

the features identified in Section 3.3. Section 3.5 evaluates the performance and efficiency of

the overlays. Finally, Section 3.6 briefly summarises the chapter.

3.2 key requirements

Before starting the experimentation, a set of key features that can be used to compare Chord,

Pastry, Kademlia, Broose and EpiChord must be identified in order to determine the suitability

49

of these DHTs in mobile networks. A set of features suitable for application scenarios running

on mobile networks was proposed in [35]. Below, the key requirements are briefly summarised.

• Suitability for Mobile Devices: Mobile devices connected to mobile networks will be

the primary devices connecting to the P2P network. The network connections used by

these devices offer lower bandwidth than wired nodes. Thus, a suitable DHT should

require as little bandwidth as possible.

• Delay in DHTs: Generally, mobile connections offer slower transmission speeds than

wired connections. Minimising the number of hops for each lookup will therefore

minimise the delay for lookup operations in DHTs.

• Robustness: A DHT suitable for use in mobile networks should be able to handle the

higher degree of node churn experienced in such environments. Node churn may be

introduced due to variation in signal strength, or using the network connection for voice

services. A key metric to indicate the robustness of a DHT is its lookup success ratio.

The DHT should achieve an acceptable lookup success ratio during periods of high

churn.

3.3 experimental methodology

3.3.1 Simulation Platform

For all experiments throughout the thesis, the OverSim [3] platform, implemented in C++ and

developed on top of the OMNeT++ framework, has been used, due to its strong support of

DHT based P2P algorithms. It provides a generic lookup mechanism and an RPC interface to

facilitate additional protocol implementations. It allows large-scale simulations of simplified

networks as well as complex heterogeneous underlay networks. It also provides an interactive

GUI and real-time messages which are extremely useful for debugging. OverSim has been used

in a number of other P2P works, making the results easily comparable to other researchers’

works [2].

3.3.2 Performance Metrics

The following performance metrics are evaluated from the simulation results:

• Lookup Success Ratio: The percentage of successful lookups in the overlay.

• Lookup Hop Count: The mean number of overlay hops to send a message from a source

to a destination node.

50

• Mean Maintenance Traffic Load: The mean number of maintenance bytes sent per

second by each node. This metric will be considered as a parameter for bandwidth

consumption in this thesis.

3.3.3 Simulation Setup

Throughout the evaluation and experimentation discussed in this chapter, the following setup

has been used, unless stated otherwise.

• Network Size: Experiments have been carried out using a 10, 000 node network.

• Churn: The level of churn is simulated by various node lifetime values between 100

seconds and 1, 000 seconds. A shorter lifetime means a higher level of churn. The node

lifetime of 100 seconds to simulate high churn scenarios has been selected according to

the study presented in [36].

• Churn Model: The simulations employ OverSim’s Lifetime Churn model with a Weibull

distribution consisting of scale parameter, a and shape parameter, b. Here, a is calculated

in the following way:

a = LifetimeMean
tgamma(1+ 1

b)

Where LifetimeMean is the average node lifetime, tgamma function returns the

gamma function of (1+ 1
b) and b = 1.0.

The Weibull distribution has been shown to model churn in P2P overlays much more

accurately [75].

• Lookup Interval: Each node issues lookups for random keys at intervals exponentially

distributed with a mean of 60 seconds. Unless otherwise stated, all simulations are

carried out using this lookup interval.

• Transport Protocol: The selected P2P overlays for the experimentations use only UDP

as a transport protocol, except Chord. Thus, UDP has been used in the evaluations.

• Routing: As iterative routing works better in high churn environment [76], the overlays

have been configured to use Iterative routing.

• Repetition: Each configuration has been repeated 5 times, and results have been averaged.

In the plots, the 95% confidence intervals have been calculated across the repetitions, to

increase the credibility of the simulation results [61].

51

3.4 most suited parameter selection

The overall evaluation process includes two simulation steps. During the first step, the

values of key parameters for each overlay are determined in order to yield the best possible

performance under high churn. Thus, this step fine tunes the parameters to yield an optimal

configuration for each overlay. For this step, the performance has been investigated at 100

seconds and 1, 000 seconds of average node lifetime. In the second step, the best performing

configurations of all overlays are compared against each other to identify the best performing

overlay under churn.

Next, the first step of simulation results of Chord, Pastry, Kademlia, Broose and EpiChord

are analysed over a range of tunable parameters and their values.

3.4.1 Chord

For Chord, Table 3.1 lists the key parameters, which are stabilisation delay, fixfinger delay,

successor list size, check predecessor delay and extended finger table size, along with the varied

range of values. Figure 3.1 to 3.5 show the simulation results for success ratio and bandwidth

consumption with varying values for these simulation parameters.

Table 3.1: Simulation parameters for Chord.

P2P Protocol Parameters First step Second step

Chord Stabilise Delay (s) 5, 10, 20, 30, 40, 50, 60, 120 20

Fixfinger Delay (s) 30, 60, 90, 120, 180, 240, 300 30

Successor List Size (nodes) 4, 8, 16, 32 8

Check Predecessor Delay (s) 5, 10, 30, 60 5

Size of Extended Finger Table 0, 1, 4, 8, 16 0

In Chord, each node learns about newly joined nodes and updates its successors and

predecessor after a stabilisation delay. For step 1, the stabilisation delay has been varied

between 5 seconds and 120 seconds. Figure 3.1 shows that a low stabilisation delay improves

the success ratio but also increases the bandwidth consumption. Therefore, a value of 20

seconds has been chosen as stabilise delay.

In Chord, finger (routing) tables are updated in fixed intervals (fixfinger delay). The fixfinger

interval was varied between 30 and 300 seconds. Figure 3.2 shows that a lower value improves

the success ratio. A value of 30 seconds has been selected to get the best possible lookup

success ratio at a moderate level of bandwidth usage.

52

Figure 3.1: Chord: Testing on stabilisation delay.

Figure 3.2: Chord: Testing on fixfinger delays.

Results of varying the successor list size and the check predecessor delay are depicted in

Figure 3.3 and 3.4 respectively. A successor list size of 8 and the check predecessor delay

of 5 seconds have been chosen to maintain a reasonable success ratio while minimising the

maintenance traffic.

Figure 3.5 shows the effect of using extended finger tables. Based on these results, the size

of the extended finger table has not been altered; as it was found that any increase leads to

more traffic with no significant improvement in lookup performance.

Overall, the very poor lookup performance of Chord at high churn should be noted. This

will be revisited in the second simulation step when the different overlays will be compared

against each other.

53

Figure 3.3: Chord: Testing on successor list sizes.

Figure 3.4: Chord: Testing on check predecessor delays.

3.4.2 Pastry

The key parameters of Pastry are Leaf set size, Neighbourhood set size, Bits per digit and lookup

redundant nodes, as shown in Table 3.2. Figure 3.6 to 3.10 show the simulation results while

varying these parameters.

In Pastry, each node maintains a Leaf set and a Neighbourhood set. A leaf set contains the

number of leaves or nodes L, with the L/2 numerically closest smaller and L/2 numerically

closest larger nodeIds from the present node’s nodeId. It is similar to Chord’s successor or

predecessor list. Figure 3.6 shows the effect of different numbers of leaf nodes. In the low churn

scenario (1, 000 seconds), there is no significant lookup performance difference. In the high

54

Figure 3.5: Chord: Testing on extended finger table sizes.

Table 3.2: Simulation parameters for Pastry.

P2P Protocol Parameters First step Second step

Pastry Leaf Set Size (nodes) 4, 8, 16, 32 8

Bits per Digit (bits) 1, 2, 4, 6 4

Neighbourhood Set Size (nodes) 0, 2, 4, 8, 16 0

Lookup Redundant Nodes (nodes) 2, 4, 8 4

churn scenario (100 seconds) the highest success ratio has been observed when using 8 leaf

nodes. Hence, the number of leaf nodes has been selected as 8.

The results of varying levels of bits per digit are shown in Figure 3.7. Using a higher

number of bits can improve the success ratio as well as hop count (Figure 3.8) but it increases

the maintenance cost. Considering the results in the high churn scenario, 4 bits per digit have

been selected.

A Neighbourhood set contains nearby nodes based on proximity metrics. In Figure 3.9,

Pastry has been simulated with neighbourhood sets and without neighbourhood sets and no consid-

erable improvements have been observed in the success ratio (and bandwidth consumption).

Therefore, it has been decided not to use any neighbourhood set.

In Figure 3.10, the effects of altering the number of redundant nodes are shown. Higher

values of redundant nodes can improve the success ratio but also cause an increased amount

of maintenance traffic. Therefore, a fixed value of 4 has been chosen to balance between a

good lookup success ratio and maintenance traffic load.

55

Figure 3.6: Pastry: Testing on leaf set.

Figure 3.7: Pastry: Testing on bits per digits(i).

3.4.3 Kademlia

Kademlia has been experimented with its key parameters: bucket size (k), siblings (s), redundant

nodes (r), bits per digit (b), bucket refresh interval and parallel lookups, as shown in Table 3.3. Figure

3.11 to 3.16 illustrate the success ratio and bandwidth consumption for different parameters of

Kademlia.

Each node in Kademlia maintains a routing table that consists of k buckets. Each bucket

also holds a fixed number, k, of references to reach other nodes. After simulating different

56

Figure 3.8: Pastry: Testing on bits per digits(ii).

Figure 3.9: Pastry: Testing on neighbourhood set.

values for k, 8 has been selected as the optimal value according to the success ratio and sent

maintenance bytes (Figure 3.11).

Siblings are those nodes that are responsible for a certain (key, value) pair which are needed

to be stored in a DHT. Comparing different values in Figure 3.12, it has been found that 2

sibling nodes are sufficient to achieve the best performance in high churn scenarios.

To achieve the best performance, the trade-off between a higher success ratio and the

decreased maintenance traffic has been evaluated, and therefore, the value of 8 for redundant

nodes and 1 for bit per digit have been chosen from the simulation results as shown in Figure

3.13 and Figure 3.14 respectively.

57

Figure 3.10: Pastry: Testing on redundant nodes.

Table 3.3: Simulation parameters for Kademlia.

P2P Protocol Parameters First step Second step

Kademlia Bucket Size, k 4, 8, 16, 32, 40, 64, 72, 80 8

Siblings, s (nodes) 2, 4, 8, 16, 32 2

Lookup Redundant Nodes, r

(nodes)

1, 2, 4, 8, 16, 20 8

Bits per Digit, b (bits) 1, 2, 4, 6, 8 1

Bucket Refresh Interval (s) 100, 600, 1000, 3000, 5000 1000

No. of Parallel Lookups 1, 2, 3, 4, 5 3

In Figure 3.15, the bucket refresh interval has been altered. As shown in the figure, an

interval of 1, 000 seconds is sufficient to keep the buckets consistent.

As Kademlia supports parallel lookups, the effect of parallel lookups has been investigated in

Figure 3.16. In high churn environments, parallelism can increase the success ratio significantly.

Therefore, a value of 3 has been selected for lookup parallelism which shows a moderate

increase in bandwidth.

3.4.4 Broose

Table 3.4 lists the parameters of Broose along with the experimented values.

58

Figure 3.11: Kademlia: Testing on bucket size, k.

Figure 3.12: Kademlia: Testing on siblings, s.

Table 3.4: Simulation parameters for Broose.

P2P Protocol Parameters First step Second step

Broose Bucket Size, k 4, 8, 16, 32 8

Bucket Refresh Interval (s) 30, 60, 120, 180, 300, 600 30

Shifting Bits (bits) 2, 3, 4 2

No. of Parallel Lookups 1, 2, 3, 4, 5 3

59

Figure 3.13: Kademlia: Testing on redundant nodes, r.

Figure 3.14: Kademlia: Testing on bits per digits, b.

The bucket size k, and bucket refresh interval have been varied in Figure 3.17 and 3.18

respectively. Fig 3.17 shows that the success ratio is improved with larger buckets; however, it

also increases the maintenance traffic drastically. Therefore, a value of 8 for k is appropriate.

In terms of the bucket refresh interval, a value of 30 seconds has been selected in order to

get the best performance as well as a moderate level of maintenance traffic under high churn

(Figure 3.18). Shifting more than one bit at each routing step clearly improves the success ratio,

however, it also increases the maintenance traffic (Figure 3.19). Thus, a value of 2 bits has

been selected. Increasing parallel lookups does not show any significant lookup performance

improvement (Figure 3.20). Hence, the value of 3 has been selected.

60

Figure 3.15: Kademlia: Testing on bucket refresh interval.

Figure 3.16: Kademlia: Testing on parallel lookups.

3.4.5 EpiChord

Table 3.5 lists the parameters of EpiChord which are: stabilise delay, successor list size and

parallel lookups. Figure 3.21 to 3.24 show the results of success ratio and bandwidth consumption

for EpiChord.

The stabilisation delay and successor list size have been altered in Figure 3.21 and 3.22

respectively. Increasing the stabilisation delay does not affect the performance of EpiChord

regarding the success ratio and bandwidth consumption; therefore, a value of 60 seconds has

been selected. The successor list size of 4 is a fair compromise between the performance of

61

Figure 3.17: Broose: Testing on bucket size, k.

Figure 3.18: Broose: Testing on bucket refresh interval.

Table 3.5: Simulation parameters for EpiChord.

P2P Protocol Parameters First step Second step

EpiChord Stabilise Delay (s) 10, 20, 60, 100 60

Successor List Size (nodes) 2, 4, 8 4

No. of Parallel Lookups 1, 2, 3, 4, 5 3

success ratio and maintenance traffic load. Figure 3.23 shows the effect of parallel lookups

on success ratio and maintenance traffic. However, in EpiChord, parallel lookups do not

62

Figure 3.19: Broose: Testing on shifting bits.

Figure 3.20: Broose: Testing on parallel lookups.

substantially affect the success rate and the maintenance traffic. Rather, the hop count (path

length) to the destination node is reduced 3.24. Also, as the parallelism applies to lookup

messages only, considering the lookup traffic is a better measure of cost. Figure 3.24 shows the

lookup hop count and lookup traffic for varying levels of parallelism. Based on these results it

has been decided to opt for a level of parallelism of 3.

3.5 performance evaluation

In the previous section, the most suitable parameters for Chord, Pastry, Kademlia, Broose and

EpiChord have been identified considering high churn and minimum bandwidth consumption.

63

Figure 3.21: EpiChord: Testing on stabilise delay.

Figure 3.22: EpiChord: Testing on successor list size.

In this section, the performance of these overlays will be compared with each other using the

previously selected parameters under high level of churn according to lookup success rate,

hop count and bandwidth consumption.

3.5.1 Effects of Churn

In this experiment, the performance of the chosen overlays under varying levels of churn have

been evaluated. It has been found that the node life time of a mobile node is varied from

150 seconds (for social networking apps) to 534 seconds (for music apps) [36]. Therefore the

experimented node lifetime has been chosen from 100 seconds to 1, 000 seconds. The results

64

Figure 3.23: EpiChord: Testing on parallel lookups(i).

Figure 3.24: EpiChord: Testing on parallel lookups(ii).

in Figure 3.25 show the lookup success ratio under varying levels of churn from 100 seconds

to 1, 000 seconds. It is evident from the figure that Chord’s performance is heavily affected by

high levels of churn. For a node lifetime of 100 seconds the lookup success ratio collapses to a

mere 2%. While this increases to about 80% as the node lifetime increases to 1, 000 sec, it is

clear that Chord is not a good candidate for a network consisting of mobile nodes with high

churn. One likely reason for Chord’s poor performance is that Chord does not immediately

correct its successor and predecessor pointers of all relevant nodes as new nodes join, but

waits for the periodic stabilisation process to update the pointers. Therefore, under high levels

65

of churn when nodes join and leave the network at a very high rate, routing table entries are

not updated sufficiently frequently.

Figure 3.25: Lookup success ratio of Chord, Pastry, Kademlia, Broose and EpiChord operated on a

10, 000 node networks under various levels of churn.

In Pastry, the lookup success ratio is 70% at 100 seconds of node lifetime, increasing to

around 93% at 1, 000 seconds of node lifetime. While this performance is acceptable, this

comes at the price of the highest maintenance cost (with quite a large margin, Figure 3.26).

Thus, Pastry has to be ruled out due to this cost.

Kademlia exhibits a 97% successful lookup rate in the high churn environment (100 seconds

mean node lifetime). Kademlia sends parallel lookup requests to avoid timeout delays from

failed nodes. Also, Kademlia updates routing table entries from data attached to lookups rather

than requiring separate maintenance requests. These characteristics paired with a modest

bandwidth usage and modest lookup hop count (4 for 10, 000 nodes network) as shown in

Figure 3.26 and 3.27 respectively, make Kademlia well suited for mobile environments.

Broose exhibits around 55% of lookup success ratio at 100 seconds of node lifetime (this

increases to about 95% at 1, 000 seconds of node lifetime). However, when nearly half of

lookups fail in high churn networks, Broose also does not seem well suited for such churn

intensive mobile environments. This is emphasised by the fact that Broose has comparatively

high bandwidth costs in high churn situations (Figure 3.26).

Finally, EpiChord approached a 99% success ratio under lower levels of churn (lifetime =

1, 000 seconds). In high churn, the overlay performed less favourably, with a lookup success

rate of about 63%. This increases to a more usable 97% as the mean lifetime approaches 300

seconds. Like Kademlia, EpiChord uses reactive routing state maintenance, employing lookup

response messages to carry routing table update information. EpiChord also uses parallel

66

lookup messages that can achieve an even better hop count performance at the cost of an

increased number of lookups.

3.5.2 Bandwidth Consumption

Figure 3.26 shows the results on the required bandwidth for Chord, Pastry, Kademlia, Broose

and EpiChord under varying levels of churn. In high churn environments when the node

lifetime is 100 seconds, Chord and EpiChord have the lowest bandwidth cost using 26 bytes/s

and 70 bytes/s respectively. However, as already discussed, Chord’s lookup performance is

very poor under these conditions. Pastry consumes the highest bandwidth, which is 1, 674

bytes/s at this level of high churn. This is due to its expensive joining process and reactive

maintenance for the routing table, leaf set and neighbour list. Broose also requires significant

bandwidth at high churn levels (934 bytes/s per node at the node lifetime of 100 seconds).

Kademlia consumes higher traffic (316 bytes/s at 100 seconds of node lifetime) than Chord

and EpiChord, however, less than Pastry and Broose, even under high churn.

Figure 3.26: Sent maintenance bytes/s of Chord, Pastry, Kademlia, Broose and EpiChord operated on a

10, 000 node networks under various levels of churn.

Unlike all other P2P overlays compared here, Chord shows an increasing amount of

maintenance traffic with an increasing node lifetime. This is due to Chord periodically calling

its stabilisation process and updating its finger tables (routing tables). This approach increases

the bandwidth requirements as nodes stay in the network for longer. The lookup hop count

for all overlays is plotted in Figure 3.27. Kademlia, Pastry and EpiChord show similar hop

counts (~3.5) under varying levels of churn whereas Chord and Broose exhibit a higher lookup

hop count of just over 6 and just under 6 respectively.

67

Figure 3.27: Lookup hop count of Chord, Pastry, Kademlia, Broose and EpiChord operated on a 10, 000

node networks under various levels of churn.

3.5.3 Effect of Different Workloads

Leong et al. [47] defined two types of workloads: Churn-Intensive and Lookup-Intensive. In

churn-intensive workload, each node issues on average 0.01 lookups per second, i.e. the

amount of churn in the network is high relative to the lookup rate.

In the lookup-intensive workload, each node issues many more lookups during its lifetime

and therefore, the amount of churn is relatively low. In this workload, each node issues 2

lookups per second on average while the rate of churn is the same as that in the churn-

intensive.

The simulations that have been provided so far in this chapter featured the churn-intensive

workload. However, it has been found that EpiChord’s performance can be improved by

introducing additional lookups to the network in a lookup-intensive workload [15]. Note that,

Chord, Kademlia, Pastry and Broose do not improve significantly by introducing a lookup-

intensive workload. Thus, only EpiChord will be evaluated to investigate the performance

in a lookup-intensive workload and will be compared with churn-intensive workload in this

section. For this particular experiment, EpiChord has been simulated with 5, 000 nodes to

observe its performance in different workloads under varying levels of churn from a node

lifetime of 100 seconds to 1, 000 seconds. The simulation parameters will be configured with

the best performing parameters selected in the Section 3.4.5 for both workloads.

Figure 3.28 shows the comparison of lookup success ratio for EpiChord in lookup-intensive

workload and churn-intensive workload. EpiChord exhibits almost 88% lookup success ratio

in lookup-intensive workload, which is higher than in churn-intensive workload (54% lookup

68

Figure 3.28: Lookup success ratio for EpiChord in lookup-intensive and churn-intensive workloads.

success ratio) in node lifetime of 100 seconds. This is due to the fact that EpiChord keeps

its routing table mostly up-to-date using the large number of lookups and the associated

routing table update information in the corresponding responses [47]. However, in a low

churn scenario, the success ratio in both workloads are almost similar.

Figure 3.29: Sent maintenance bytes/s for EpiChord in lookup-intensive and churn-intensive workloads.

In the lookup-intensive scenario, each node issues a lookup request at every 0.5 seconds

which is 200 times the rate of the churn-intensive workload. As a result, the lookup traffic

dominates the maintenance traffic and a greater increase can be seen in lookup-intensive

workload than churn-intensive workload in Figure 3.29.

69

Figure 3.30: Lookup hop count for EpiChord in lookup-intensive and churn-intensive workloads.

Figure 3.30 shows the lookup hop count in EpiChord under lookup-intensive and churn-

intensive workloads. In a lookup-intensive workload, EpiChord performs a successful lookup

in fewer hops (on average, 1.9 to 1.7 hops in the varying lifetime from 100 seconds to 1, 000

seconds) with its large routing state and therefore, performs better than churn-intensive

workload (on average, 3.5 to 3.7 hops in the varying lifetime from 100 seconds to 1, 000

seconds).

3.5.4 Discussion

Based on the simulations of five popular structured P2P overlays, the following observations

can be made:

• Chord’s algorithm is relatively simple. However, Chord’s lookup performance collapses

to a mere 2% under high node churn. This is due to the inconsistency of node pointers.

When a new node joins the network, Chord does not update successor and predecessor

pointers of all relevant nodes immediately. It relies heavily on its periodic stabilisation

process. Consequently, under high levels of churn, Chord’s routing table entries become

out of date and the lookup success ratio degrades drastically.

• Pastry requires considerably higher bandwidth under high churn than the other overlays.

This is because Pastry nodes use parts of other nodes’ routing tables to build their own

routing table. Furthermore, Pastry’s complex algorithm for optimising routing tables

requires additional bandwidth. Pastry nodes have to repair their states by gathering

information from other nodes when node failures are detected. This affects the overall

70

performance of success ratio and lookup hop count. Thus, it is not a good candidate for

mobile environments.

• Broose exhibits an average result for lookup success but consumes more bandwidth

than Chord, EpiChord and Kademlia. It also requires a higher lookup hop count than

the other overlays. This is because Broose has a very exhaustive and expensive node join

process. When a node joins the network, the joining node builds up its routing table

using queries to other nodes for their routing table entries. Broose needs a large bucket

for redundancy and cannot reduce the number of routing steps.

• Kademlia shows the best result in terms of lookup success ratio at very high churn

paired with a reasonable use of bandwidth. At the same time, EpiChord shows moderate

bandwidth consumption and a good lookup success performance even under high churn.

EpiChord’s performance can be improved further by introducing additional lookups to

the network i.e. the lookup-intensive workload and even can achieve one- or two-hop

lookup performance. The requirements of mobile networks where the churn rate is

expected to be high and the bandwidth availability low (or expensive) matches well with

Kademlia and EpiChords’ high lookup success ratio, reasonable amount of bandwidth

consumption and low hop count and thus, make these two candidates well suited to be

used in mobile networks. Both Kademlia and EpiChord use opportunistic maintenance

mechanisms to keep their routing tables up-to-date. In opportunistic maintenance, a

node attaches routing table data to a response lookup message. The receiver then updates

its routing table with this information - adding new node entries and removing node

entries which are considered dead [19]. This kind of maintenance saves bandwidth as it

reduces the need for dedicated messages to update routing table entries.

The demand for routing table accuracy increases with increasing node churn. In such

situations and depending on the number of lookup messages sent in the network, the

opportunistic maintenance mechanism alone may not be adequate and nodes may need to

employ the sending of additional lookup messages to receive more routing table updates.

Both Kademlia and EpiChord use lookup parallelism to improve their routing table accuracy

and lookup efficiency.

3.6 summary

This chapter presented a performance evaluation of Chord, Pastry, Kademlia, Broose and

EpiChord in the presence of high churn and investigates their suitability for mobile networks.

Section 3.2 described the key requirements that can be used to compare against the char-

acteristics of considering five DHT overlays to be used in mobile networks. As the mobile

devices will be acting as P2P nodes, they offer lower bandwidth, therefore, a P2P overlay

71

should require minimal bandwidth. Again, a mobile network offers slower transmission rate

than wired network, thereby the lookup delay should be as minimal as possible. Finally, a

suitable DHT should handle high churn and maintain the robustness in the network.

Section 3.3 explained the experimental methodology. For the simulation, the OverSim

simulation framework was used due to its flexibility with respect to underlay characteristics

and possible high scalability. It is a powerful simulation tool built over OMNeT++ as the

simulation engine. This section also identified the performance metrics and explained the

simulation setup.

Section 3.4 evaluated the most suitable parameters for each P2P overlay. Each overlay

has a number of configuration parameters that affect the performance of the overlay for

different scenarios. The parameters were evaluated in high churn environments and the

best performing configuration selected on the basis of maximum lookup success ratio and

minimum bandwidth consumption.

After tuning the best parameters, each overlay was compared with each other to identify the

most suitable overlay under churn. Section 3.5 provided a thorough analysis of performance

evaluation of Chord, Pastry, Kademlia, Broose and EpiChord. The simulation results suggested

that Kademlia is the most appropriate P2P overlay to implement on the mobile network

according to lookup success ratio under high levels of churn. At the same time Kademlia

consumes a moderate level of bandwidth (316 bytes/s) which is also acceptable in mobile

networks, where the typical transfer rate is 10− 100 KB/s. Similarly, EpiChord also achieves

a high success ratio while consuming the least amount of bandwidth (70 bytes/s in high

churn) making it also a strong candidate algorithm for mobile environments. Utilising the

opportunistic maintenance mechanism and lookup parallelism make Kademlia and EpiChord

more efficient than the other overlays.

As stated before, this research focuses on a churn intensive networks such as the mobile

networks in which Network Address Translation (NAT) plays a crucial role. For this reason,

in the next chapter, the performance of different overlays under NAT will be evaluated and

compared with the performance of non-NATed networks. Furthermore, NAT has different

impacts on different routing approaches [10]. Hence, the performance of using different

routing mechanisms will be investigated as well.

72

4
P E R F O R M A N C E E VA L U AT I O N O F S T R U C T U R E D P 2 P O V E R L AY S

U N D E R N AT

The previous chapter analysed the performance of a number of common P2P overlays and determined

the best configuration parameters to achieve optimal performance under churn. This chapter now

evaluates the impact of Network Address Translation (NAT) in the performance of Chord, Kademlia and

EpiChord P2P overlays using Iterative routing. It also compares the impact of both routing methods:

Iterative and Recursive under NATed environments.

4.1 introduction

Network Address Translation (NAT) disrupts the original model of P2P connectivity as it

prevents incoming connections from reaching their destination host. Enabling peers to avoid

NATs requires some networking techniques, referred to as NAT traversal. However, most

analytical models of overlay networks assume the underlying network to be simplistic in

nature and there is no mechanism to simulate NAT in evaluation environments such as

PlanetLab and OverSim (or in any other P2P simulation environments). In this chapter, a

network topology is introduced where a fraction of the nodes are under NATs and a NAT

traversal approach, UDP hole punching, is enabled to make sure that the NATed peers can

communicate with other NATed and non-NATed peers in OverSim.

Once the NATed environment is set, it is necessary to validate the performance of a number

of P2P overlays in the NATed environment, against the performance of the same P2P overlays

in the non-NATed environment. This will help to compare and contrast the simulation

parameters that are required to achieve the same level of performance in both environments

(NATed and non-NATed) and investigate their underlying reasons.

Using iterative routing, Chord, Kademlia and EpiChord have been investigated in the NATed

environment. The simulation has been done in OverSim and evaluated the performance of

these P2P overlays considering the peers under high churn as well.

The rest of this chapter is organised as follows. Section 4.2 describes the basic network

topology that has been used to implement NAT in OverSim and outlines the message flow

of two scenarios: Peers under a common NAT and different NATs. Section 4.3 presents the

performance of Chord, EpiChord and Kademlia under NATs and compares this with the

performance of the same overlay without NATs. As the routing approach has a significant

impact on NATed peers, the performance has also been compared with iterative and recursive

73

routing in Section 4.4. Section 4.5 presents the mechanism to deploy NAT and the NAT

traversal technique, UDP Hole Punching without a dedicated rendezvous server, in OverSim.

A brief summary of this chapter is presented in Section 4.6

4.2 nat traversal using udp hole punching without dedicated rendezvous

servers

As mentioned in Chapter 2, the UDP hole punching technique relies on a rendezvous server

to initiate and maintain the NAT traversal for peers in private networks (behind NAT). For

this, it is required to ensure the continuous uptime of a pre-defined rendezvous server. This is

against the general notion of P2P systems where there is no concept of a server. Therefore,

an alternative method of UDP hole punching for P2P systems is proposed here that does not

utilise a predefined rendezvous server.

Instead, a few randomly chosen public peers are equipped with the required functionalities

so that they can emulate themselves as rendezvous servers. The public peers are assumed to

have considerably higher lifetime than their private counterparts and are easily reachable from

any public or private peer alike. Even so, to safeguard against the sudden unavailability of any

chosen emulating rendezvous server, a resilience strategy needs to be maintained. In short,

the proposed mechanism is as follows. For each private network, a couple of existing public

peers are randomly chosen as its corresponding rendezvous servers. Then, each newly joined

private peer in that private network communicates with one of the chosen (emulating) public

peers to initiate the hole punching procedure. Two peers are chosen to ensure redundancy as

part of the resilience strategy.

The proposed approach, along with the resilience strategy is explained in detail in the

following subsections, considering two scenarios: peers behind the same NAT and peers

behind two different NATs.

4.2.1 Peers behind the Same NAT

The first scenario illustrates the situation where peers in an overlay are behind the same NAT,

however, they don’t know whether the other peers are behind the same NAT. An exemplary

topology of this scenario is illustrated in Figure 4.1. According to this topology, private peers

A and B are the two peers who are behind the same NAT and the public peer P has been

selected to act as the rendezvous server for all peers behind this NAT. There might be other

public peers or even other private peers inside the same NAT. They have been excluded from

the figure and the discussion for brevity. The NAT router is responsible for network address

translation using a table called its NAT table. For emulating the functionalities of a rendezvous

74

server, Peer P utilises a table called a Registration table to store the public (IP) address, public

port, private address, private port and the corresponding key of any private peer.

Figure 4.1: Network topology depicting two private peers under the same NAT.

Suppose Peer A and Peer B would like to communicate with each other. The message flow

to establish the communication between them using the proposed mechanism is illustrated in

Figure 4.2 and discussed below.

1. Peer A sends a registration message consisting of its private address-port pair and

overlay key to Peer P.

2. Peer B sends a registration message consisting of its private address-port pair and

overlay key to Peer P.

3. The registration message from A reaches the NAT router. The NAT router checks if

there is any entry for Peer A in its NAT table, depicting the scenario that A has already

interacted with P.

4. Assuming this is the first interaction between A and P, the NAT router retrieves the

source address (the private address of A) and port number from the registration packet.

It then generates an unused port number for A and creates a new entry in its NAT table

containing the private address and port of A and its own public IP address and the

newly generated port number. Finally, it replaces the source address and port number

of the registration packet with its public address and the newly generated port number

and forwards the packet to P.

75

Figure 4.2: Message flow for establishing communication between private peers under the same NAT

5. Similarly, the registration message from B reaches the NAT router and the NAT router

forwards the packet to P after creating a respective entry in its NAT table.

6. Upon receiving the registration message from A, P extracts the private address, private

port and the key from the message. In addition, it retrieves the public address and port

number from the packet. Then, it checks in its Registration table if there is an entry in the

76

table containing all this information. Assuming no such entry exists, P creates an entry

with this information in the registration table.

7. Then, P replies back with a registration response - containing the private address,

private port, public address and public port retrieved from the registration packet in the

previous step - which is destined for the same public address and port.

8. Similarly, upon receiving the registration message from B, P extracts the required

information, creates an entry in its registration table and replies back with the registration

response containing the private address, private port, public address and public port

retrieved from the registration packet. The response is sent back to the NAT router.

9. The registration response for A reaches the NAT router which initiates a reverse network

translation process by extracting the destination address and port of the packet. Then, it

retrieves the corresponding private address and port from its NAT table by using the

extracted public address and port. Finally, it forwards the response packet to A.

10. Similarly, upon receiving the registration response for B, P initiates the reverse network

translation and finally, forwards the response to B.

11. Next, A and B would like to communicate with each other. Both of them send query

packets (depicted as PeerQuery in Figure 4.2) containing the key of the other peer.

12. The NAT router forwards both query packets to P using the same approach as described

before.

13. P replies back to A and B with query responses containing the private address, private

port, public address and public port of the queried peer which ultimately reach the NAT

router.

14. The NAT router, like before, forwards the respective packets to A and B.

15. Upon receiving the query response packets, A and B learn the private address-port and

the public address-port pairs of the other peer. Since both of them reside in the same

NAT, they can either use the private address-port pair or the public address-port pair

of the other peer to communicate with each other subsequently via the NAT router,

indicating an established communication between A and B.

4.2.2 Peers behind Different NATs

This scenario depicts the situation when two peers residing in different NATs would like

to communicate with each other. An exemplary topology of this scenario is illustrated in

Figure 4.3. According to this topology, private peers A and C are the two peers that would

77

like to communicate with each other. They belong to two different NATs, Private Network 1

and Private Network 2 respectively, and are under NAT routers M and N respectively. The

public peer P1 has been selected to act as the rendezvous server for all peers under NAT

router M, whereas the public peer P2 has been selected to act as the rendezvous server for all

peers under NAT router N. In addition, both M and N maintain another table called Incoming;

enlisting which peers (having a particular address and port) are allowed to contact a peer

behind the respective NAT.

Figure 4.3: Network topology depicting two private peers residing in different NATs.

Suppose peer A and peer C need to communicate with each other. The message flow to

establish the communication between them using the proposed mechanism is illustrated in

Figure 4.4. The message flow is similar to the one in Section 4.2.1 and is outlined below. For

brevity, it is assumed that Peer A has registered with Peer P1 whereas Peer C has registered

with Peer P2 using the mechanism described previously and both peers have received the

registration responses back from P1 and P2 respectively. The rest of the message flow is

discussed below.

1. A sends a query request for C to P1 via NAT router M. Similarly, C sends a query

request for A to P2 via NAT router N.

78

Figure 4.4: Message flow for establishing communication between private peers in different NATs

2. Since P1 does not have any information regarding C, it forwards the query request to P2.

P2 returns a query response containing the private address, private port, public address

and public port of C back to P1 which is then returned back to A. From this response, A

learns the public address and public port of C.

3. Similarly, P2 retrieves the query response from P1 containing the private address, private

port, public address and public port of A which is then returned back to C. Ultimately,

C learns the public address and public port of A.

4. A sends a PING packet to C using the public address and port of C via M. When M

receives this packet, it creates an entry for A with the destination address and port of

(C) this packet in its Incoming table. This essentially punches a hole for C in M so that C

can interact with A. The packet is then forwarded by M and finally reaches N.

79

5. N checks in its Incoming table to determine if there is an entry for A with respect to C.

Assuming there is no such entry, the packet is dropped.

6. Next, C sends a PING packet to A using the public address and port of A via N. When

N receives this packet, it creates an entry for A with the destination address and port of

(A) this packet in its Incoming table. This essentially punches a hole for A in N so that A

can interact with C. The packet is then forwarded by N and finally reaches M.

7. M checks in its Incoming table to determine if there is an entry for C with respect to A.

As an entry is found indicating that the communication from C is allowed by A, the

PING packet is forwarded to A.

8. A again sends a PING packet to C via M. The packet finally reaches N. Since an entry is

found indicating that the communication from A is allowed by C, the PING packet is

forwarded to C.

9. Now the hole punching procedures for both A and C are complete and both peers can

communicate with each other subsequently via the respective NAT routers, indicating

an established communication between A and C.

4.2.3 Resilience Strategy

With the absence of a dedicated rendezvous server, the proposed approach emulates the func-

tionalities of a rendezvous server using existing public peers. Since the emulated rendezvous

server holds the registration information for the respective private peers, this information

will be lost if the emulated server suddenly leaves the network. If this happens, all the

corresponding private peers will be required to re-register again with another chosen emu-

lated rendezvous server. As a resilience strategy to guard against this possibility, two public

peers are randomly chosen as rendezvous servers for each private network. All peers in a

private network may utilise any of the respective rendezvous servers for the message flow.

The rendezvous servers communicate with each other at predefined intervals to exchange

their corresponding registration tables to ensure consistency and redundancy. When one

rendezvous server leaves the network, another public peer is randomly chosen to replace its

place and the existing rendezvous server communicates with the new rendezvous server to

exchange the registration table.

Utilising more than one emulated rendezvous server has additional advantages. The

communication burden of a single emulated server for a private network containing hundreds

of peers can be quite exhaustive. This burden is halved and shared when two rendezvous

servers are selected. It can be argued that this burden can further be reduced by selecting

more than two public peers as rendezvous servers which may also reduce the probability of

all rendezvous servers leaving the network simultaneously. However, it must be considered

80

that selecting a large number of rendezvous servers will substantially increase the network

maintenance traffic.

Also, it must be noted that this resilience strategy will fall apart if both rendezvous servers

leave the network almost simultaneously. An additional mechanism will be needed to ensure

that this does not happen. One such mechanism in the simulated environment of Oversim

will be discussed in Section 4.5.2.

4.3 performance analysis in nated and non-nated networks

This section validates the performance of the chosen P2P overlays: EpiChord and Kademlia,

suitable for mobile networks in NATed environments against the performance of the same

P2P overlays in non-NATed environments. Chord has also been evaluated in this section as it

supports both iterative and recursive routing and different routing approaches have different

impacts over NATs [10].

4.3.1 Network Setup

• NATed Environment: The simulation has been set up under two private, i.e. NATed

networks where the total number of nodes are varied between 1, 000 and 5, 000. Among

the total number of nodes, 20% are public nodes (with public IP addresses) and the

remaining 80% are private nodes equally divided between two private networks.

• Non-NATed Environment: The simulation has been set up under a public network where

the number of nodes range from 1, 000 to 5, 000 nodes, all with public IP addresses.

4.3.2 Simulation Setup

• Churn: Two levels of churn have been experimented with. When the node lifetime is set

as 100 seconds, it is considered to be high churn, whereas for a node lifetime of 1, 000

seconds, it is considered to be medium churn.

• Lookup Interval: Each node issues lookups for random keys at intervals exponentially

distributed with a mean of 60 seconds.

• Transport Protocol: UDP has been used as the transport protocol in the simulation.

• Routing: All the overlays have been evaluated using iterative routing under churn as in

Chapter 3. In this section, the overlays will be simulated again using Iterative routing.

However, different routing techniques have different impacts on NATs. Section 4.4 will

compare the performance of the overlays using both routing algorithms: Iterative and

Recursive, in the NATed environment.

81

• Repetition: Similar to the previous experimentation, each configuration has been re-

peated 5 times, and results have been averaged. In the plots, the 95% confidence intervals

have been calculated across the repetitions, but they are sometimes too small to be visible.

4.3.3 Chord

A number of key parameters of Chord have been evaluated to achieve the best possible

performance under churn in Chapter 3. The optimised parameters along with the values are

listed in Table 4.1 and this configuration will be used throughout this chapter.

Table 4.1: Simulation parameters for Chord.

Parameters Value

Stabilise Delay (s) 20

Fixfinger Delay (s) 30

Successor List Size (nodes) 8

Check Predecessor Delay (s) 5

Size of Extended Finger Table 0

Figure 4.5: Chord: Lookup success ratio under NATed and non-NATed environments.

Figure 4.5 to 4.7 present the results of success ratio, bandwidth consumption and hop count

for Chord under NATed and non-NATed environments.

Comparing the lookup success ratio under NATed and non-NATed environments, Figure

4.5 shows that the success rate reduces with network size in both cases. Also the success rate

82

for both churn scenarios matches considerably with each other in both environments. For a

medium level of churn (node lifetime of 1, 000 seconds); Chord performs quite well, whereas

its performance degrades drastically in a high churn level (node lifetime of 100 seconds). This

is due to the routing table not being updated efficiently.

Figure 4.6: Chord: Lookup hop count under NATed and non-NATed environments.

Chord nodes require O(logN) hops for a lookup query, where N is the number of nodes

[74]. Figure 4.6 presents the lookup hop count of Chord over the network size where the result

quite closely matches the theoretical measurement for the medium level of churn. But under

high churn, the lookup hop count has been found to be higher than what is found in medium

churn. Again the reason is that Chord could not update the successors and predecessors in its

routing table as it has to wait for the stabilisation process, and if the nodes join and leave at a

very high rate, lots of stale entries remain in the table. But the results plotted in the figure

shows that the mean lookup hop count is also a close match in both NATed and non-NATed

environments as well as in both churn scenarios.

Figure 4.7 shows the effect of bandwidth consumption of the Chord overlay in NATed

and non-NATed environments. The sent maintenance bytes per second per node has been

considered as bandwidth consumption (as mentioned in Chapter 3). Clearly in the NATed

environment, Chord utilises a slightly higher amount of maintenance bytes than in the

non-NATed environment. This is because of the following reasons:

• The UDP hole punching technique has been used to connect peers behind NATs which

uses extra bytes to send and receive requests and responses to register the private peers

with public peers (emulated rendezvous servers).

83

Figure 4.7: Chord: Sent maintenance bytes/s under NATed and non-NATed environments.

• To exchange the entries of the registration table between emulated rendezvous servers

and for sending queries regarding other nodes.

• To punch new connections (or holes) in different NAT routers.

In high churn scenarios, i.e. when the lifetime of a node is 100 seconds, the number of sent

maintenance bytes are less than the medium churn scenario (when the lifetime of a node

is 1, 000 seconds). This is because in high churn scenarios, there are a very few successful

requests and therefore, there are fewer messages in the network. When the node lifetime

increases, the Chord nodes become stable. In such cases, the nodes issue an increasing

number of stabilisation call and update the fixfinger table which attribute to the increase of

maintenance bytes. When the network size grows, the amount of traffic also increases linearly

and NATed nodes consume a comparatively higher amount of bandwidth than the public

nodes.

These results show that similar performance can be achieved in both NATed and non-NATed

environments. However, Chord is not a good candidate to be used in churn intensive NATed

networks such as in mobile networks because of its poor lookup performance in high churn.

4.3.4 EpiChord

EpiChord has been selected as one of the best overlays to be used in churn intensive mobile

networks, as shown in Chapter 3. This section will evaluate the performance under the NATed

environment.

The most suitable parameters that were selected for churn intensive mobile networks under

churn in Chapter 3 are listed in Table 4.2 and will be used throughout this chapter.

84

Table 4.2: Simulation parameters for EpiChord.

Parameters Value

Stabilise Delay (s) 60

Successor List Size (nodes) 4

No. of Parallel Lookups 3

Figure 4.8 to 4.10 present the results of success ratio, hop count and bandwidth consumption

respectively for EpiChord under NATed and non-NATed environments.

Figure 4.8: EpiChord: Lookup success ratio under NATed and non-NATed environments.

In Figure 4.8, it is clear that in both environments, EpiChord shows a very similar success

ratio. Once the NATed peers register with the public peer (emulated rendezvous server) and

punch holes with respect to each other, they can send lookup messages exactly in the same

way as if they were public peers. In medium levels of churn, EpiChord exhibits an almost

99% success ratio in the non-NATed environment and a 96% success ratio in the NATed

environment. By using reactive routing state maintenance, EpiChord can update its routing

table frequently. EpiChord also uses parallel lookup messages that guarantees EpiChord to

find a lookup successfully. In the high churn scenario, EpiChord generates a 74% to 64%

success ratio in non-NATed networks, and a 71% to 62% success ratio in NATed networks

over network sizes from 1, 000 to 5, 000 nodes. Compared to Chord, EpiChord shows much

more efficiency with regard to lookup success ratio under high churn.

85

Figure 4.9: EpiChord: Lookup hop count under NATed and non-NATed environments.

Similarly, Figure 4.9 exhibits a closely matched lookup hop count in both NATed and

non-NATed environments. This is an expected behaviour as the hop count does not depend

on the underlying configuration of the network. Instead, this depends on the overlay structure

which remains the same in both environments. It is also interesting to see that the lookup hop

count does not differ much in medium and high churn scenarios, however, the hop count

increases with the growing number of network size. In this experiment, EpiChord has been

evaluated using a Churn-Intensive workload, i.e. each node issues lookups at an interval of 60

seconds and generates O(logN) hop performance, where N is the number of nodes. Although

EpiChord can generate O(1) hop performance in lookup-intensive workload, as described in

Section 3.5.3.

Next, the effect of bandwidth consumption of EpiChord in NATed and non-NATed envir-

onments is shown in Figure 4.10. Unlike the other two performance metrics, there is a clear

difference in this performance metric from NATed to non-NATed networks. This behaviour

in EpiChord is caused by additional messages needed for any private peer registering with

the emulated rendezvous server and to exchange the entries of the registration table between

the other emulated rendezvous servers. As the network grows, the number of messages also

increases in NATed environments and thus, there is an increase in the plot under the NATed

environment. However, unlike Chord, EpiChord consumes more bandwidth in high churn

scenarios than the medium churn scenario. When the rate of node join/leave increases, the

sent maintenance bytes/s/node increases to keep the routing table fresh and current, whereas

in medium levels of churn, as a node stays for longer in the network, the routing table becomes

updated quickly and is large enough, therefore, the number of consumed maintenance bytes

decreases.

86

Figure 4.10: EpiChord: Sent maintenance bytes/s under NATed and non-NATed environments.

The experiment shows that similar performance can be achieved in both NATed and non-

NATed environments. Although the overlay consumes extra bandwidth, the lookup success

ratio has a minimal impact in the NATed environment.

4.3.5 Kademlia

In this section, Kademlia has been simulated to analyse the performance under NATed and

non-NATed environments. Table 4.3 lists the parameters that have been found to be the

most suitable to be used in churn intensive scenarios such as in mobile networks and these

parameters will be used for all the experimentations in this chapter.

Table 4.3: Simulation parameters for Kademlia.

Parameters Value

Bucket Size, k 8

Siblings, s (nodes) 2

Bits per Digit, b (bits) 1

Lookup Redundant Nodes, r (nodes) 8

Bucket Refresh Interval (s) 1, 000

No. of Parallel Lookups 3

87

Figure 4.11 to 4.13 present the results of success ratio, bandwidth consumption and hop

count respectively for Kademlia in NATed environments.

Figure 4.11: Kademlia: Lookup success ratio under NATed and non-NATed environments.

The lookup success ratio results of Kademlia have been plotted in Figure 4.11. In a high

churn environment with growing network size, Kademlia exhibits around an 83% to 77%

success ratio in non-NATed environments, however there is a slight decrease (around an 80%

to 76% success ratio) in NATed environments. In a medium churn environment, Kademlia

produces a stable success ratio (almost 98%) in both NATed and non-Nated networks. This is

due to the general routing efficiency of the topology used here and how routing information

is updated. Kademlia sends parallel lookup queries and exchanges the routing table entries

during lookups instead of sending separate requests for maintenance. These mechanisms

make Kademlia more efficient.

Figure 4.12 shows the lookup hop count results. In high churn scenarios, when the node

lifetime is 100 seconds, the lookup hop count ranges from 2.8 to 3.8 and 2.9 to 3.9 over network

sizes ranging from 1, 000 to 5, 000 in public networks and NATed networks respectively. In

medium churn levels, such as where nodes have a lifetime of 1, 000 seconds, the lookup

hop count ranges from 2.4 to 3.3 and 2.8 to 3.5 in public networks and NATed networks

respectively over network sizes ranging from 1, 000 to 5, 000. There is no substantial change of

lookup hop count under the two churn scenarios over network size. Therefore, it is evident

that the lookup hop counts in both network environments as well as in both churn scenarios

are a close match.

Figure 4.13 shows the measured bandwidth consumptions. While Kademlia has been

experimented in public networks, the sent maintenance bytes varied (from ∼ 287 bytes/s

to ∼ 336 bytes/s in high churn and ∼ 85 bytes/s to ∼ 122 bytes/s in medium churn) over

88

Figure 4.12: Kademlia: Lookup hop count under NATed and non-NATed environments.

Figure 4.13: Kademlia: Sent maintenance bytes/s under NATed and non-NATed environments.

network size ranging from 1, 000 to 5, 000 nodes. However, the sent maintenance bytes increase

substantially over network sizes in NATed networks (from ∼ 330 bytes/s to ∼ 613 bytes/s in

high churn and ∼ 113 bytes/s to ∼ 259 bytes/s in medium churn). This is due to the same

reason, as explained in Chord and EpiChord, where the private peers use extra bytes to

traverse NATs. Again, Kademlia consumes less bandwidth in the medium churn scenario

than the high churn scenario. As in medium churn, the nodes settle down and do not need to

send more maintenance traffic in the network.

89

4.3.6 Discussion

Based on the simulation results of Chord, Kademlia and EpiChord behind NATs and within

public networks, the following observations can be made:

• Chord is the most common and widely used structured P2P protocol, however, its lookup

performance degrades to almost 2% under high churn scenario. Therefore, Chord is

not a reliable overlay to be used in mobile networks where churn and NAT are two

fundamental issues, even though Chord has been simulated to validate the results in

NATed environments.

• From the previous chapter, Kademlia and EpiChord have been chosen as the best

overlays to be used in mobile networks; therefore, it was necessary to investigate both

these overlays under NATed environments. According to the lookup success ratio and

the lookup hop count, both overlays produce similar results behind NATs and within

public networks. The main difference has been found in bandwidth consumption. Both

overlays, EpiChord and Kademlia, consume additional bandwidth to maintain the

overlay in NATed environments. This is due to the following reasons: i) To use the UDP

hole punching technique to connect peers behind NATs, the private peers use extra

bytes to send and receive requests and responses to register themselves with public

peers (emulated rendezvous servers), ii) To exchange the entries of the registration table

between emulated rendezvous servers and for sending queries regarding other nodes

and iii) To punch new connections or holes in different NAT routers. With increasing

network sizes, it increases as well. Also Kademlia consumes a lot higher bandwidth

than EpiChord. For example, in NATed environments, Kademlia consumes ∼ 330 bytes

in high churn and ∼ 113 bytes/s in medium churn with a network size of 1, 000 nodes

(Figure 4.13); whereas EpiChord consumes ∼ 80 bytes/s in high churn and ∼ 20 bytes/s

in medium churn with the same network size (Figure 4.10).

• It should be noted that EpiChord’s performance can be improved further using a Lookup-

Intensive workload as shown in Section 3.5.3 in NATed environments. However, iterative

routing requires additional i− 1 NAT holes to be punched, where i is the total number

of querying nodes in the network and using this approach in EpiChord over a NATed

environment opens a potential security breach in the network.

4.4 performance comparison with iterative and recursive routing under

nat

In Section 2.5.2 of Chapter 2, it has already been discussed that routing technique has an

impact over NAT. But until now, all the experiments have used iterative routing. As iterative

90

routing works better in high churn environments [76], the overlays have been simulated using

iterative routing. In this section, the performance of Chord and Kademlia will be evaluated

using both routing approaches: iterative and recursive routing in NATed environments.

EpiChord does not support recursive routing; therefore, EpiChord has not been used in these

experiments.

The NATed environment will be simulated as described in Section 4.3.1. The simulation

setup will also be the same as described in Section 4.3.2. The only difference will be here with

the routing mechanism. In this section both iterative and recursive routing will be simulated.

4.4.1 Chord

Chord has been analysed using iterative and full-recursive routing. The simulation parameters

are the same as listed in Table 4.1 in Section 4.3.3. The comparison of the results are shown in

Figures 4.14 and 4.15. To observe the effect of churn, the simulation also considers two levels

of churn by varying the node lifetime mean between 100 seconds for high churn and 1, 000

seconds for medium churn.

Figure 4.14: Chord: Lookup success ratio in iterative and recursive routing under NATed environments.

The lookup success ratio of two routing schemes of Chord has been shown in Figure 4.14.

From the figure, it is clear that the success ratio is higher in iterative routing in a medium

churn scenario (when the lifetime is 1, 000 seconds), whereas the recursive routing shows a

lower success ratio. In iterative routing, the lookup success ratio is almost 86% to 82% with the

increasing network sizes from 1, 000 nodes to 5, 000 nodes compared to the recursive routing

where the lookup success ratio varied from 65% to 35%. In a high churn environment (when

the lifetime is 100 seconds), the performance of success ratio in both routing approaches

degrades drastically. This is an expected behaviour as described in Section 4.3.3.

91

Figure 4.15: Chord: Sent maintenance bytes/s in iterative and recursive routing under NATed environ-

ment.

Figure 4.15 shows the effect of routing schemes on the bandwidth consumption with respect

to two levels of churn. In this case, recursive routing brings benefit to the overlay as it requires

less bandwidth than iterative routing. Recursive Chord requires 38 bytes/s to 58 bytes/s

with network sizes from 1, 000 nodes to 5, 000 nodes in a high churn environment, whereas

iterative Chord requires 59 bytes/s to 157 bytes/s with network sizes from 1, 000 nodes to

5, 000 nodes. In a medium churn scenario, recursive Chord requires 170 bytes/s to 242 bytes/s

with network sizes from 1, 000 nodes to 5, 000 nodes, whereas iterative Chord requires 261

bytes/s to 520 bytes/s with network sizes from 1, 000 nodes to 5, 000 nodes. This is because

recursive routing uses fewer messages for lookups compared to iterative routing [10]. Again,

in a NATed environment, an UDP hole punching technique is used to establish a path between

the NATed peers. With a recursive algorithm, a peer establishes a connection with only its

neighbouring peers and has no need to establish any new connections as the responses

are routed back through the same connections, whereas for an iterative algorithm, many

more new connections need to be established as the initiating peer sends the query to its

intermediate peer and the intermediate peer directly sends the response back to the querying

peer. The initiating peer then sends a new request to another intermediate peer and this

process continues until the target is found. It has been shown that iterative routing requires

the establishment of i− 1 new NAT connections (or holes), where i is the total number of

querying nodes in the network [10]. Therefore, using iterative routing in a NATed environment

opens a potential security breach in the network.

92

The extra required bandwidth (Figure 4.15) in iterative routing is not that significant in

comparison to recursive routing when the network size ranges from 1, 000 to 5, 000 nodes.

However, the difference will be higher for a network consisting of a million nodes.

4.4.2 Kademlia

Kademlia has been simulated using iterative routing and recursive routing to investigate the

effect of the routing approaches over NATs. The parameters for Kademlia using iterative and

recursive routing are listed in Table 4.4. It should be noted that Kademlia does not use parallel

RPCs in recursive routing.

Table 4.4: Simulation parameters for iterative and recursive routing in Kademlia.

Parameters Iterative Routing Recursive Routing

Bucket Size, k 8 8

Siblings, s (nodes) 2 2

Bits per Digit, b (bits) 1 1

Lookup Redundant Nodes, r

(nodes)

8 8

Bucket Refresh Interval (s) 1, 000 1, 000

No. of Parallel Lookups 3 1

Figure 4.16 shows the lookup success ratio performance in iterative Kademlia and recursive

Kademlia in a NATed environment. Kademlia with iterative routing has already shown its

robustness under high churn environments. However, recursive Kademlia is not very efficient

in a high churn environment. The plot shows that Kademlia with recursive routing has a

43% to 29% success ratio over 1, 000 to 5, 000 nodes in high churn. But in medium churn, it

can achieve a satisfactory level of a 87% to 80% success ratio over 1, 000 to 5, 000 nodes. This

difference is because of the nature of the routing mechanism in both approaches. In recursive

routing, the intermediate nodes on the routing path directly forward the query to the node in

the next hop, without sending any acknowledgement to the originator and the query can be

routed as quickly as possible. If the lookup returns no response, the originator has to wait

until a time out occurs as there is no knowledge of the actual cause. Hence, the originator has

no control over the lookup process. On the contrary, iterative routing enables the originator to

control the lookup process. In this routing, the originator sends a query to an intermediary

node which replies directly to the originator with a closer location. The originator then sends

a new request to the closer recommended node and the lookup process continues until the

93

Figure 4.16: Kademlia: Lookup success ratio in iterative and recursive routing under NATed environ-

ment.

destination node is reached. Due to its manageable nature, iterative routing is more efficient

for maintaining a successful lookup than recursive routing.

Figure 4.17: Kademlia: Sent maintenance bytes/s in iterative and recursive routing under NATed envir-

onment.

The bandwidth consumption is shown in Figure 4.17. Despite being in a NATed environment

and comparing two different churn scenarios, recursive Kademlia exhibits a lower bandwidth

consumption (∼ 203 bytes/s to ∼ 339 bytes/s in high churn and ∼ 85 bytes/s to ∼ 175 bytes/s in

94

medium churn over network size ranging from 1, 000 to 5, 000 nodes) than iterative Kademlia

(∼ 330 bytes/s to ∼ 613 bytes/s in high churn and approximately ∼ 113 bytes/s to ∼ 259

bytes/s in medium churn over network size ranging from 1, 000 to 5, 000 nodes). Iterative

Kademlia uses parallel RPCs (Remote Procedure Calls) which results in faster lookup but

requires higher bandwidth than recursive Kademlia.

Again, in a NATed network, recursive routing does not require any new NAT hole to be

punched, whereas iterative routing requires i− 1 new NAT holes to be punched, where i is

the total number of querying nodes in the network, which includes the cost of these extra

hole-punched connections in the cost of the routing.

4.4.3 Discussion

In this section, the performance of routing schemes has been evaluated as recursive and

iterative routings have impacts over NATs. Evidently, in a network where NAT is a common

feature, recursive routing is advantageous compared to iterative routing. However, iterative

routing is more robust even in very high churn scenarios.

Chord and Kademlia have been simulated to investigate how the performance is affected

using both routing approaches under NATs. In Chord, while using recursive routing, the

success ratio is worse (approximately 65% to 35%) than in iterative routing (approximately

86% to 82%) in a medium churn scenario. But clearly it requires less bandwidth than iterative

routing.

Kademlia, with iterative routing, is a stable overlay in a high churn environment and well

suited to be used in mobile networks. In NATed and high churn environments, iterative

Kademlia shows a reasonable success ratio (approximately 80% to 76%), and in a medium

churn scenario environment, it exhibits almost a 98% to 97% success ratio, but it came with a

higher cost of extra i− 1 holes to be punched. On the contrary, recursive Kademlia came with

an advantage that it does not require any extra new NAT holes to be punched and requires

less bandwidth than iterative Kademlia. But it reveals a poor success ratio in a high churn

environment (approximately 43% to 29% success ratio over 1, 000 to 5, 000 nodes).

In summary, a trade-off between iterative and recursive routing needs to be maintained

in a churn intensive NATed network. If the network exhibits high churn, iterative routing is

preferred, whereas in a NATed environment, recursive routing is useful. This observation

motivates the need to investigate the potentiality of a hybrid routing mechanism to be used

in a churn intensive NATed network such as a mobile network, which will be explored in

Chapter 5.

95

4.5 nat traversal implementation in oversim

This section outlines how the NAT functionalities using the proposed approach has been

implemented in OverSim. Since the NAT functionality is implemented in the network layer,

the configuration of the underlying network in OverSim needs to be modified. OverSim

provides three different underlays: Simple, SingleHost and INET underlay (as discussed in

Section 2.7.1). The underlying networks in Simple and SingleHost underlays are generated

automatically using a fixed configuration file which offers a fixed topology and does not allow

modifications of the underlying networks and hence, are unsuitable for implementing NAT

functionalities. Only the INET underlay is suitable for implementing NAT functionalities.

The INET underlay is based on the INET framework which offers the flexibility to configure

the underlying network of any topology using the NED (Network Descriptor) language of

OMNeT++. Furthermore, the well structured and extensively documented API enable easier

development of newer modules offering additional capabilities. The underlay architecture is

shown in Figure 4.18.

Figure 4.18: Underlay architecture of OverSim showing where NAT functionalities are implemented in

INET underlay.

One such API introduced in the newer version of the INET framework is called the “IHook”

API. It can be inserted within the link layer and network layer protocols inside any module

and provides a hooking facility to perform additional tasks before a packet is transferred

between these layers. This feature has been utilised to design a module that simulates the

functionality of a NAT Router and performs network address translation for any (outgoing as

well as incoming) network packet.

96

4.5.1 Implementation Challenges

• Mismatch versions: OverSim is based on an outdated version of INET (Version 1.99.2).

The older version differs significantly from the newer version of INET (Version 2.2.0

onwards) in the way different modules interact with each other. Additionally, the older

version lacks the extra functionalities (e.g. the IHook API) added in the newer version.

The first challenge of the implementation is to integrate OverSim with the newer version

of INET while keeping the functionalities of OverSim intact.

• Novel NAT router module: Since INET lacks the functionalities of NAT, a new module

needs to be developed that can emulate the functionalities of a NAT router utilising the

IHook API.

• Network topology with NAT routers: Next, it is required to design a topology to create

a seamless connection of different private networks connected with different public

networks using the newly developed NAT router module and existing router modules.

• Novel network configurator: OverSim uses a network configurator module that determ-

ines how and where in the network a new node will be added and how different packets

between all nodes will be routed. It is required to design and develop a novel network

configurator that will determine where (public or private networks) a new node will be

added and how the packets between these heterogeneous networks will be routed.

• Overlay modifications: All overlay modules in OverSim are developed to function with

nodes in public networks. The behaviour of all overlay modules needs to be changed so

that they can handle requests from nodes residing in both public and private networks.

4.5.2 Integration with OverSim

Initially, OverSim has been integrated with an updated INET version. This introduced incom-

patibility in OverSim as many functionalities in OverSim were based on the outdated INET

version which have been totally changed in the newer version. To resolve this incompatibility,

the code-base of the OverSim has been modified by overwriting the erroneous functionalities

with the updated code. This was a time consuming process in which it has been ensured that

OverSim functions as intended.

To emulate the functionalities of a NAT router, a NAT router module has been developed

by extending the existing router module with the additional capability of the IHook API. This

enables the NAT router to perform network address translation for any packet originating

from the private nodes attached to the respective NAT router and to perform reverse network

address translation for any packet originating from any public node and is destined for any

private node.

97

The network topology for the experiments is largely based on the topology illustrated in

Figure 4.19. The number of private networks, private nodes and public nodes are controlled

by parameters in the configuration file. A new network configurator has been developed

that reads in these parameters and dynamically adds and removes private and public nodes

in a random fashion, utilising the existing churn model. In addition, the global network

configurator in OverSim is responsible for randomly selecting rendezvous servers for each

private network and for providing interfaces to assign the corresponding rendezvous server

for each newly joined private node. The network configurator is also responsible for enforcing

the requirement that two rendezvous servers for the same private network cannot leave the

network at the same time.

Figure 4.19: The network topology of a P2P system to implement UDP hole punching technique without

a rendezvous server.

Next, all overlays in OverSim have been modified so that it can handle requests from

public as well as private nodes. Additionally, the previous lookup method only relied on the

inter-relation between the key and IP address of a node. It has been amended so that the

inter-relation is based on the key and the IP address and port pair. This is required since all

private nodes of a particular private network will share the same public IP address of the NAT

router and hence, will be indistinguishable if only considered based on their IP addresses. All

other functionalities of the overlay remain unchanged.

Finally, the code-base of Oversim has been amended to include the message flow discussed

in Section 4.2.

98

The generic message flow within OverSim is as follows. As soon as a private node is

added into a private network and initialised for joining the Overlay, it first goes through the

registration phase. For this, it retrieves its respective rendezvous server from the network

configurator and completes the registration message as discussed in Section 4.2. Once the

registration process is complete, it joins the overlay following the protocol of the respective

P2P overlay. Once joined, it needs to interact with its overlay neighbour(s). Similarly, the

neighbours also need to communicate with it. This initiates a two-way communication protocol

which is used to punch holes for the respective private peers using the mechanism discussed

in Section 4.2. Once the holes are punched, the communication between the private peers are

established and then the rest of the protocol for the overlay proceeds as intended.

The code will be shared with the OverSim community [1] in future, where it will be

coordinated with the moderators to integrate it with the original OverSim code-base and

release it along with the future version of OverSim.

4.6 summary

This chapter provided a performance evaluation of Chord, Kademlia and EpiChord with

respect to NATed networks. The performance was validated by comparing the results with

the public networks.

To simulate the private networks, NAT functionalities had been implemented in OverSim.

To traverse the NATs, a NAT traversal approach, UDP hole punching without a rendezvous

server, also was implemented. Section 4.2 described the UDP hole punching technique that

had been used for the simulation considering two scenarios: peers behind a common NAT

and peers behind different NATs.

Section 4.3 analysed the performance of Chord, EpiChord and Kademlia with two different

churn levels under NATed and non-NATed environments. In NATed networks, the experi-

mented overlays show similar performance in lookup success ratio and lookup hop count

compared with the public networks. The only difference is in the bandwidth consumption. It

is evident that all the three overlays require a higher bandwidth in NAT enabled networks

than public networks.

Section 4.4 compared the performance of different routing algorithms over NATs. Only

Chord and Kademlia had been investigated as EpiChord does not support a recursive al-

gorithm. Both Chord and Kademlia using iterative routing exhibit better performance ac-

cording to the success ratio in high churn environments. However, iterative routing brings a

higher cost in bandwidth consumption. On the other hand, using recursive routing, Chord

and Kademlia reduce the number of new connections that must be made through the NATs to

enable P2P communications and offer advantages for traversing NATs.

99

Section 4.5 described how the NAT functionalities had been implemented in OverSim.

Section 4.5.1 explained the implementation challenges whereas Section 4.5.2 illustrated how

the updated INET framework had been integrated in OverSim to enable NAT functionalities.

The next chapter proposes an adaptive routing scheme combining recursive and iterative

lookups considering a churn intensive NATed environment.

100

5
C H U R N AWA R E R O U T I N G P R O T O C O L (C H A R P) I N N AT E D

N E T W O R K S

The previous chapter evaluated the performance of Chord, EpiChord and Kademlia in the presence of

NATs. It also compared the performance of routing schemes under NATed environments. This chapter

presents an adaptive routing protocol that switches between iterative and recursive routing techniques

according to the current level of churn of a node in order to achieve an improved performance in NATed

environments. In addition, the chapter also presents the results of experiments conducted utilising the

proposed approach in order to show its applicability.

5.1 introduction

Existing P2P overlays use only a predefined routing protocol which is not changed dynamically.

When a routing mechanism is decided at the design level, the lookup and maintenance

operation is optimised to perform well in a particular scenario. However, the lookup operation

may not be ideal under uncommon scenarios, such as churn intensive NATed scenarios. There

may be a lookup mechanism that is highly effective in a particular scenario and not as effective

in others. An adaptive algorithmic routing solution can detect such cases and smoothly switch

between different routings to suit the current scenario.

The main motivation for an adaptive routing protocol is the experiment results, as presented

in Chapter 4, which highlighted the fact that different routing protocols perform better

(compared to each other) for different churn levels in NATed environments. Iterative routing

is better for use in high churn environments, however, recursive routing is advantageous

in NATed environments. Again, recursive routing reduces the number of total messages

transmitted to the system and therefore, consumes less bandwidth than iterative routing.

To traverse NAT and establish a P2P connection between peers, iterative routing needs to

establish i− 1 new connections (or holes) at NAT routers, where i is the total number of

querying nodes in the network. However, in recursive routing, a node establishes a hole

with only neighbouring nodes and has no need to establish new holes on the way during

the lookup process as responses are routed back through the same connections, established

previously.

Based on these observations, an adaptive routing protocol can be the best solution to utilise

both recursive and iterative routing with specific consideration to the high churn and low

101

bandwidth availability in mobile networks. In this chapter, such an adaptive routing protocol

called Churn Aware Routing Protocol, in short ChARP, is presented.

The main idea of the protocol is to switch between iterative and recursive routing techniques

according to the current level of churn of a node. As a result, when the node is under a

high churn scenario it will use the iterative routing, a preferred routing for churn intensive

scenarios; whereas in low churn scenarios, it will switch its routing mechanism to recursive

automatically. This chapter presents a novel churn aware routing scheme for DHT based

P2P overlays. In the next section, the churn aware routing protocol that utilises this dynamic

behaviour is proposed. Furthermore, the proposal is implemented in OverSim and then

evaluated to investigate its applicability. This chapter also presents the results of experiments

conducted using the proposed approach along with their analysis.

Section 5.2 describes the proposed adaptive routing protocol. Section 5.3 presents the

performance evaluation of the proposed scheme and discusses its advantages over using only

a single routing algorithm. Finally, Section 5.4 provides a brief summary of the chapter.

5.2 churn aware routing protocol (charp)

5.2.1 Overview and Design

In the proposed routing protocol, it is assumed that the overlay consists of two types of

nodes: NATed nodes and non-NATed nodes. As the focus of this research is on NATed churn

intensive networks such as mobile networks, it is assumed that the majority of the nodes

will be NATed mobile peers. The non-NATed nodes will have the global IP addresses and

they can act as gateways (emulated rendezvous servers) to establish the direct P2P connection

between the NATed nodes using a UDP hole punching NAT traversal technology as discussed

in Chapter 4.

The proposed scheme is quite simple in nature. Its main highlight is a threshold (indicated

by τ) in the lifetime of a NATed peer which marks the time at which the respective peer

makes a transition from one routing scheme to another. All public (non-NATed) peers will

only utilise a pre-defined iterative routing protocol as this routing has already been proven to

perform better in high churn scenarios. It does not matter how long they stay in a network, all

public peers will only use iterative routing and therefore, no switching of routing mechanisms

will occur in these peers. On the other hand, all NATed peers will initially utilise iterative

routing. At regular intervals, the NATed peer will check if the lifetime of the peer reaches

the threshold τ. Once the threshold is reached, the respective peer will switch its routing

mechanism to recursive routing.

The proposed routing scheme for a NATed environment is illustrated using a flowchart

in Figure 5.1. The NATed peer is initiated with iterative routing (indicated by the Routing =

102

Figure 5.1: Flowchart of the proposed Churn Aware Routing Protocol (ChARP).

Iterative statement in Figure 5.1). The lifetime of a node starts at 0 seconds. An interval variable

x and the threshold variable τ are initialised with predefined values. After every x seconds,

the node checks if the lifetime of this node is greater than or equal to the threshold value. If

no, the lifetime of the node is incremented by x and waits for another x seconds. If yes, the

node changes its Routing mode iterative to recursive routing. This procedure continues until

the lifetime of a node reaches the threshold value. Once a peer switches its routing scheme to

recursive, it utilises that until it exits the P2P network.

In the next section, the performance of the proposed adaptive routing technique is evaluated

and compared with the other two independent routing techniques.

5.3 performance analysis of the churn aware routing protocol (charp)

To investigate the applicability of ChARP, it has been implemented in OverSim, equipped

with the same capabilities as discussed in Chapter 3 and 4. Different experiments have then

been conducted using the chosen overlays. Throughout the evaluations in previous chapters,

Kademlia and EpiChord have been shown to be the best performing P2P overlays that can

be used in churn intensive mobile networks. In Chapter 3, using iterative routing, Kademlia

103

and EpiChord have shown better performance compared to Chord, Broose and Pastry under

high churn. In Chapter 4, Kademlia and EpiChord also have been validated under NAT and

it has been shown that the performance of these overlays is comparable in both NATed and

non-NATed environments. That is why Kademlia and EpiChord were initially chosen as the

candidate overlays for the proposed approach. Unfortunately EpiChord does not support

recursive routing, and thus, the proposed routing scheme has been implemented only for

Kademlia in OverSim. Therefore, it should be noted that the proposed routing protocol can be

simulated in any P2P overlay, which supports both iterative and recursive routing.

5.3.1 Experiment Setup

The following setup has been used for the simulation experiment:

• NATed Environment: The simulation environment has been set up under two private

NATed networks. The whole network consists of 5, 000 nodes. Among the total number

of nodes, 20% are public nodes (with public IP addresses) and the remaining 80% are

private nodes equally divided in two private networks.

• P2P Overlay: ChARP has been implemented in Kademlia. The performance of Kademlia

with iterative and recursive routing will also be compared with the proposed protocol.

• Churn: The level of churn is simulated by various node lifetime values ranging from 100

seconds to 1, 500 seconds. A shorter node lifetime means a higher level of churn and

vice versa.

• Churn Model: The simulations employ OverSim’s Lifetime Churn model with Weibull

distribution.

• Lookup Interval: Each node issues lookups for random keys at intervals exponentially

distributed with a mean of 60 seconds.

• Transport Protocol: UDP has been used as a transport protocol in the simulation.

• Routing: Churn aware routing, iterative routing and recursive routing.

• Repetition: Each configuration has been repeated 5 times and 95% confidence intervals

have been plotted.

5.3.2 Evaluation Criteria

The following two main metrics have been used to evaluate the performance from the

simulation results:

104

1. Lookup Success Ratio: The total fraction of lookups for which the source node success-

fully receives the resource. This metric reveals the protocol’s ability to deliver packets

and to resolve the lookups. It also verifies its resilience under churn.

2. Mean Maintenance Traffic Load: The mean number of maintenance bytes sent per

second by each node. This is considered as a parameter for bandwidth consumption.

5.3.3 Configuration Parameters

The configuration parameters for different routing in Kademlia are listed in Table 5.1. It should

be noted that Kademlia does not send parallel lookups while using recursive routing.

Table 5.1: Simulation Parameters for different Routing Protocols in Kademlia.

Parameters Iterative

Routing

Recursive

Routing

ChARP

Bucket Size, k 8 8 8

Siblings, s (nodes) 2 2 2

Bits per Digit, b (bits) 1 1 1

Lookup Redundant Nodes, r

(nodes)

8 8 8

Bucket Refresh Interval (s) 1, 000 1, 000 1, 000

No. of Parallel Lookups 3 1 3 (while iterative);

1 (while recursive)

5.3.4 Performance Evaluation

ChARP has been implemented for Kademlia in OverSim to investigate the lookup performance.

According to the protocol algorithm, all non-NATed peers have used only iterative routing,

whereas the NATed peers have initially utilised iterative routing in Kademlia. When the

lifetime of a NATed peer reaches the threshold value τ, it switches to recursive routing. The

threshold value for τ has been selected by conducting experiments using different node lifetime

values as threshold values. From the results of these simulated experiments, a threshold value

of 500 seconds seems to provide the optimal performance, and hence, has been considered

for the analysis here. Using the threshold value, the lookup performance has been evaluated

under a continuous level of churn in NATed environments. At the same time, the performance

105

of iterative and recursive routing has been compared and analysed with that of ChARP in

Kademlia.

5.3.4.1 Effect of Churn

To maintain low latency lookups and a higher lookup success ratio under churn, a peer must

keep its routing state up-to-date. This section investigates the effect of ChARP on how a node

copes with churn.

Figure 5.2 shows the lookup success ratio of all three routing schemes: iterative, recursive

and ChARP for Kademlia under churn. In ChARP, when a node joins the Kademlia overlay, it

starts with iterative routing and its lifetime starts from 0 seconds. After a certain time interval,

it checks if the node lifetime increases (i.e. the level of churn minimises) to the threshold value

τ (for Kademlia, τ = 500, as discussed before). If it reaches the τ value, the node changes its

routing method from iterative to recursive. From the simulation results plotted in the figure, it

is found that iterative routing exhibits a better success ratio (approximately 80% to 98%) than

ChARP (approximately 80% to 89%), whereas recursive routing shows the worst performance

(approximately 36% to 75%) over the different level of node churn where the lifetime varies

from 100 to 1, 500 seconds. ChARP generates a similar success ratio as iterative routing until

the node lifetime of 500 seconds. As ChARP enables a node to switch its routing mechanism

from iterative to recursive at 500 seconds of lifetime, it is expected that its success ratio will

decrease compared to the iterative routing. The interesting fact is that its performance has not

decreased right away to the level of the recursive routing. This is because each node in the

network remains in different stage of its lifetime and according to their individual lifetimes

the routing mechanism also varies. As a result, the average combined overlay node lookup

performance measures a better success ratio than recursive, however, lower than iterative.

Figure 5.2: Lookup Success Ratio of Kademlia using Iterative, Recursive and ChARP.

106

5.3.4.2 Effect of Bandwidth Consumption

The bandwidth consumption of Kademlia using iterative, recursive and ChARP has been

plotted in Figure 5.3. Recursive Kademlia consumes less bandwidth (approximately 150

bytes/s to 71 bytes/s) than iterative (approximately 280 bytes/s to 98 bytes/s) and ChARP

(approximately 255 bytes/s to 74 bytes/s) over high churn to low churn. Theoretically, ChARP

should consume the bandwidth at the rate of iterative routing until the threshold τ value

reaches at 500 seconds of node lifetime, and from 500 seconds onward, it should follow the

similar rate as in recursive routing. But in the simulated experiment, it does not exhibit the

expected result as the different node lifetimes are generated by using a probability distribution

function (OverSim uses Weibull distribution in its churn model) and therefore, a certain

portion of nodes use iterative whereas the rest of the nodes use recursive routing throughout

the simulation time. As a result, the bandwidth consumption of the ChARP curve stays in

the middle of the plot. Eventually, after a longer period of node lifetime, the ChARP curve

coincides with the recursive routing curve (e.g. node lifetime of 1, 500 seconds).

Clearly the proposed routing exhibits better results than using only a single iterative or

recursive routing approach. It trades off between the two metrics, and has a considerably

higher success ratio in high churn (as in iterative) and at the same time requires lower

bandwidth in low churn (as in recursive).

Figure 5.3: Sent Maintenance bytes/s of Kademlia using Iterative, Recursive and ChARP.

5.4 summary

This chapter has proposed and implemented a novel adaptive Churn Aware Routing Protocol

(ChARP) for a P2P overlay to be used in churn intensive NATed mobile networks. Section 5.2

107

has presented the overview and design of the protocol. The proposed routing protocol in a

P2P system has been defined in such a way that - it:

• utilises both routing techniques, iterative and recursive, on the basis of churn of a

particular peer, instead of using one single routing method.

• gets the benefit of using two routing techniques together. Iterative routing is better in

high churn scenarios, whereas recursive routing consumes less bandwidth. Therefore,

using the proposed routing method, a P2P overlay can achieve an optimised result of

both routing techniques.

As Kademlia supports both iterative and recursive routings, the proposed routing method

has been implemented for Kademlia in OverSim. The performance of ChARP in Kademlia has

been evaluated and the performance of the lookup success ratio and bandwidth consumption

has been compared with iterative and recursive routings in Kademlia. For Kademlia, the

threshold value to switch the routing protocol from iterative to recursive has been selected at

500 seconds. To achieve the desired trade-offs between lookup success ratio and bandwidth

cost due to maintenance traffic,the threshold value can be selected differently in different P2P

overlays. However, estimating tau is easy in simulation but more difficult in a real system.

By analysing the performance evaluation in Section 5.3, it has been shown that the proposed

routing scheme is a good solution for a churn intensive NATed network such as a mobile

network. Even though the proposed method has been implemented and analysed only in

Kademlia, it is also suitable for any other P2P overlays that support iterative and recursive

routing.

At the current state of the proposed scheme, each node switches the routing mechanism

according to the current level of churn of a node. But it would be beneficial if the nodes could

sense the churn rate of the whole network and therefore, can select the appropriate routing

scheme depending on the situation. However, it could be quite challenging to enable a P2P

system to sense the churn state of the whole network in real application scenarios.

108

Part III

C O N C L U S I O N S

6
C O N C L U S I O N S

This chapter concludes the thesis. Firstly, the key contributions of this work have been highlighted.

Following this, the limitations have been identified. The chapter also gives an outlook on future work

opened up by the research performed in this thesis.

6.1 introduction

DHT-based structured P2P overlay networks offer an efficient routing architecture that is

adaptive, self-organising, fault tolerant, scalable and massively distributed. Such an overlay

network provides a suitable platform for developing distributed applications such as inform-

ation retrieval, multi-player gaming, internet telephony, media distribution and distributed

computing. It would be desirable to also offer such P2P applications on devices connected to

mobile networks. Nevertheless there are concerns regarding the performance and efficiency of

these overlays in mobile environments.

Therefore, the aim of this thesis has been to investigate the performance of a number of

structured P2P overlays under conditions commonly experienced in mobile data networks. A

number of multi-hop and one-hop P2P overlays have been evaluated under extreme conditions

found in mobile networks such as high node churn, low bandwidth availability and NAT

restrictions. Based on the experimentation results, a novel and improved routing protocol has

been proposed and implemented in a structured P2P overlay. In addition, an overview of the

content of this thesis as a whole is provided at the end of this chapter.

6.2 contributions

This section lists the main contributions and the key finding of the thesis.

1. Determining the most suitable configuration of a number of structured P2P overlays

for churn intensive mobile networks. A P2P overlay has a number of different configur-

ation parameters such as stabilisation delay, routing table size and levels of parallelism,

that affect the performance of the overlay. The first contribution of this thesis is to

identify the most suitable parameter set for a number of structured P2P overlays in a

particular scenario. The parameters of four multi-hop structured P2P overlays: Chord,

Pastry, Kademlia and Broose, and one single-hop structured P2P overlay: EpiChord have

been evaluated in the presence of high churn in the OverSim P2P framework and the

110

best performing configuration has been selected to be used in churn intensive mobile

networks on the basis of maximum lookup success ratio and minimum bandwidth

consumption.

2. Performance analysis of a number of structured P2P overlays under churn. Utilising

the chosen set of parameters, the most suitable overlays have been finalised for use in

mobile networks. For this, a comparative analysis has been performed with each P2P

overlay, considering the restrictions found in mobile networks such as high churn and

the relatively low bandwidth availability. The simulation results suggest that Kademlia

and EpiChord are the two most appropriate P2P overlays to be implemented with mobile

networks according to lookup success ratio under high levels of churn.

3. Implementation of a NAT traversal mechanism in OverSim. To simulate NAT func-

tionalities, private networks have been integrated with public networks in OverSim. To

traverse NAT, the UDP hole punching technique without a dedicated rendezvous server

has been implemented. Instead, different public peers have been selected to emulate

rendezvous servers. Using this setup, different P2P overlays have been simulated and

validated under two scenarios: peers behind a common NAT and peers behind different

NATs.

4. Performance evaluation and validation of a number of structured P2P overlays under

NATed and non-NATed networks. The performance of Chord, Kademlia and EpiChord

has been evaluated under churn intensive NATed networks. The performance has

also been validated by comparing the results with the public non-NATed networks.

The validation shows that the results are comparable in both NATed and non-NATed

environments.

5. Performance analysis of iterative and recursive routing methods in NATed environ-

ments. The presence of NATs in a network influences the routing techniques used in

P2P overlays. Recursive routing is more resilient to IP connectivity restrictions posed by

NATs, but not very robust in high churn environments. On the contrary, iterative routing

is more suitable to high churn networks, but difficult to use in NATed environments.

Therefore, the performance impact of iterative and recursive routings on Chord and

Kademlia has been analysed in the presence of different levels of churn in NATed

environments. Both Chord and Kademlia using iterative routing exhibit better perform-

ance according to the success ratio in high churn environments. However, iterative

routing requires a higher bandwidth consumption. On the other hand, using recursive

routing, Chord and Kademlia reduce the number of new connections that must be made

through the NATs to enable P2P communications and hence, the recursive routing is

advantageous for NAT traversal.

111

6. A novel Churn Aware Routing Protocol. Based on the insights gained from the perform-

ance study of existing P2P overlays under churn and NAT restrictions, a novel Churn

Aware Routing Protocol (ChARP) has been proposed and implemented for Kademlia

in OverSim. The main idea of the protocol is to switch between iterative and recursive

routing techniques according to the current level of churn of a node. Experimental

results established using the proposed approach exhibit an improved performance

in comparison to any single (iterative or recursive) routing approach, considering a

trade-off between lookup success ratio and bandwidth consumption.

6.3 limitations

• Simulation-based study. This thesis has provided an extensive simulation using a well-

known P2P simulator OverSim by simulating a network containing thousands of nodes.

The results of all experiments have been verified against other researchers’ results

(when available). However, it must be noted that it is a simulation exercise and a real

implementation of this approach would be useful.

• Reliance on public peers. ChARP needs to rely on public peers for emulating the

functionalities of rendezvous servers. The higher is the number of such emulated servers,

theoretically, the better it is for distribution of loads. Currently such nodes are randomly

chosen. It would be useful to select such nodes based on their probable lifetime so that

the nodes which have better probability to have a long lifetime should be chosen as

emulated servers.

• Incompatibility with symmetric NAT. The current NAT traversal approach, UDP hole

punching, using ChARP is incompatible with symmetric NAT.

6.4 future directions

There are a number of possible future directions for research inspired by this thesis. A few

such possible future directions are highlighted next.

1) Effect of increasing the number of emulated servers: Currently the UDP hole punching

technique in OverSim has been implemented by ensuring that there will be always two

emulated servers for each private network throughout the simulation. If a private

network consists of a large number of nodes, it will be unrealistic to burden the chosen

emulated servers with the additional communication overhead required for the UDP

hole punching technique. Introducing more emulated servers will reduce the probability

of all rendezvous servers leaving the network simultaneously and will also minimise

the burden on the emulated servers. However, this may introduce unprecedented side

112

effects on the performance of the P2P overlay. Investigating how the number of emulated

servers can be increased and how it will affect the performance of the corresponding

P2P overlay is a possible future research direction.

2) Increasing the number of NATs: To simulate a real world application scenario, the

number of NATs needs to be increased. For this, the preferred method will be to

generate the network topology dynamically by reading the network parameters from

a configuration file that specifies the desired number of private networks using NATs.

This is a challenging task that will require changing the way a network is configured

dynamically in OverSim. Furthermore, the effect of increasing private networks as well

as NATs on the performance of a P2P overlay must be investigated.

3) Network-wide churn awareness: The proposed dynamic routing method, ChARP, has

been implemented by enabling each private node to switch its routing mechanism

after the node lifetime reaches a threshold. A better approach would be to achieve a

network-wide consensus on the state of the current level of churn and then activate a

network-wide switching of the routing mechanism in each peer. It will be interesting to

investigate how such a network-wide awareness of churn can be achieved, how a signal

for switching the routing mechanism can be propagated in all existing peers and what

will be the effect on the system performance in such a setup.

4) Energy efficiency measurement: There has been a tremendous advancement in mobile

phones. However, modern technology is still far away from providing a sustainable

energy efficient mobile phone, even smartphones suffer from extremely limited battery

power. The scope of this thesis did not include energy constraint in terms of peer’s

battery life. Mobile peers’ collaboration regarding energy saving is potential future

research work.

5) Impact of varying the ratio of public nodes and private nodes: In the current imple-

mentation of NATed environments, the number of public nodes is only 20% of the total

number of nodes. Another possible future research direction would be to investigate the

impact of varying the ratio of public and private nodes and analysing its effect on the

performance of the P2P overlay.

6) Integrating symmetric NAT. Another possible future work would be to investigate how

a symmetric NAT can be integrated within the implemented NAT traversal approach.

6.5 summary

Chapter 1 “Introduction” provided the motivation and benefits of deploying DHT-based P2P

overlays on mobile networks. It also discussed the importance of investigating the effect of

113

different limitations imposed by mobile networks on existing popular structured P2P overlays.

Accordingly, the key objectives of this thesis were identified.

Chapter 2 “Background and Related Work” provided a brief background on DHT-based

structured P2P overlays: Chord, Kademlia, Pastry, Broose and EpiChord. It also listed a

number of challenges to the adoption of P2P in mobile and wireless networks. Among the

challenges mentioned, this thesis focused on high churn rate, data consumption and NAT

restriction. In addition, it discussed a number of available techniques for NAT traversal.

Moreover, this chapter presented a number of novel approaches to implement P2P overlays

in wireless cellular networks along with their pros and cons. It was found that there is not

a single approach available that can solve the problems of high churn, energy consumption

and NAT restrictions. This chapter also gave a brief review of a number of available P2P

simulators and justified why OverSim was selected for the experimentations in this thesis.

Chapter 3 “Performance Evaluation of Structured P2P Overlays under Churn” evaluated the

performance of Chord, Kademlia, Pastry, Broose and EpiChord, and determined the best

configuration parameters to achieve optimal performance under churn using the OverSim

P2P framework. After selecting the best parameters, each overlay was compared with each

other to identify the most suitable overlay to be used in churn intensive mobile networks.

The simulation results suggest that Kademlia and EpiChord are the two most appropriate

P2P overlays to be implemented on the mobile network according to the lookup success ratio

under high levels of churn.

Chapter 4 “Performance Evaluation of Structured P2P Overlays under NAT” outlined how the

NAT functionalities had been implemented in OverSim. To traverse the NAT, a NAT traversal

approach, UDP hole punching without a rendezvous server was incorporated. Next, the

performance of Chord, EpiChord and Kademlia was evaluated under NATed networks and

then validated with their performance with non-NATed networks. In addition, this chapter

evaluated the impact of iterative and recursive routing for Chord and Kademlia under NATs .

Chapter 5 “Churn Aware Routing Protocol in NATed Networks” presented an adaptive Churn

Aware Routing Protocol (ChARP) that switches between iterative and recursive routing

techniques according to the current level of churn of a node, in order to achieve an improved

performance over a fixed (iterative or recursive) routing method in NATed environments. In

addition, the chapter presented the results of conducted experiments utilising the proposed

approach in order to validate its applicability.

114

Part IV

B A C K M AT T E R

R E F E R E N C E S

[1] OverSim: The Overlay Simulation Framework. URL http://oversim.org/.

[2] I. Baumgart and B. Heep. Fast but economical: A simulative comparison of structured

peer-to-peer systems. In Proceedings of the 8th Euro-NF Conference on Next Generation

Internet (NGI 2012). IEEE, June 2012.

[3] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A Flexible Overlay

Network Simulation Framework. In Proceedings of 10th IEEE Global Internet Symposium (GI

’07) in conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, pages 79–84, May 2007.

[4] Bobby Bhattacharjee, Seungjoon Lee, Ruggero Morselli, Rob Sherwood, Dave Levin, and

Suman Banerjee. NICE. URL http://www.cs.umd.edu/projects/nice/.

[5] Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, and Adrian Perrig. NATBLASTER:

Establishing TCP connections between hosts behind NATs. In ACM SIGCOMM Asia

Workshop, volume 5, 2005.

[6] Bittorrent. BitTorrent. Accessed on 23 October, 2015. URL http://www.bittorrent.com/.

[7] Martin Blunn. A peer-to-peer network framework utilising the public mobile telephone

network. M.Phil Thesis, Dept. of Computing Science and Mathematics, University of Stirling,

Scotland, 2011.

[8] Mohamed Boucadair, Reinaldo Penno, and Dan Wing. Universal Plug and Play (UPnP)

Internet Gateway Device-Port Control Protocol Interworking Function (IGD-PCP IWF).

2013.

[9] Alan Brown and Mario Kolberg. Tools for Peer-to-Peer Network Simulation. draftirtf-

p2prf-core-simulators-00. txt, 2006.

[10] David A Bryan, Marcia Zangrilli, and Bruce B Lowekamp. Challenges of DHT design for

a public communications system. College of William & Mary Computer Science Department

Technical Report WMCS200603, 2006.

[11] Miguel Castro, Peter Druschel, Y Charlie Hu, and Antony Rowstron. Exploiting network

proximity in peer-to-peer overlay networks. Technical report, Citeseer, 2002.

[12] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony IT Rowstron. SCRIBE:

A large-scale and decentralized application-level multicast infrastructure. Selected Areas

in Communications, IEEE Journal on, 20(8):1489–1499, 2002.

ii

http://oversim.org/
http://www.cs.umd.edu/projects/nice/
http://www.bittorrent.com/

[13] C-F Michael Chan and S-H Gary Chan. Distributed Hash Tables: Design and Applications.

In Handbook of Peer-to-Peer Networking, pages 257–280. Springer, 2010.

[14] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making

Gnutella-like P2P systems scalable. In Proceedings of the 2003 conference on Applications,

technologies, architectures, and protocols for computer communications, pages 407–418. ACM,

2003.

[15] Farida Chowdhury and Mario Kolberg. Performance Evaluation of EpiChord under High

Churn. In Proceedings of the 8th ACM workshop on Performance monitoring and measurement

of heterogeneous wireless and wired networks, pages 29–36. ACM, 2013.

[16] Bram Cohen. Bittorrent Protocol Specification. Accessed on 1 March, 2012, February

2008. URL http://bittorrent.org/beps/bep_0003.html.

[17] James Cowie, A Ogielski, and D Nicol. The SSFNet Network Simulator. Software on-line:

http://www. ssfnet. org/homePage. html, 2002.

[18] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica. Towards a

common API for structured peer-to-peer overlays. In Peer-to-Peer Systems II, pages 33–44.

Springer, 2003.

[19] Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu. Overview of Structured Peer-

to-Peer Overlay Algorithms. In Xuemin Shen, Heather Yu, John Buford, and Mursalin

Akon, editors, Handbook of Peer-to-Peer Networking, pages 223–256. Springer US, 2010.

ISBN 978-0-387-09751-0.

[20] Peter Druschel and Antony Rowstron. PAST: A large-scale, persistent peer-to-peer storage

utility. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on,

pages 75–80. IEEE, 2001.

[21] Kjeld Egevang and Paul Francis. The IP Network Address Translator (NAT). Technical

report, 1994.

[22] eMule Project. Accessed on 23 October, 2015. URL http://www.emule-project.net/

home/perl/general.cgi?l=1.

[23] George C Engelmayr, Mingyu Cheng, Christopher J Bettinger, Jeffrey T Borenstein, Robert

Langer, and Lisa E Freed. Accordion-like honeycombs for tissue engineering of cardiac

anisotropy. Nature materials, 7(12):1003–1010, 2008.

[24] Ericsson. Ericsson Mobility Report, 2015. Accessed on 10 October 2015. URL http:

//www.ericsson.com/mobility-report.

iii

http://bittorrent.org/beps/bep_0003.html
http://www.emule-project.net/home/perl/general.cgi?l=1
http://www.emule-project.net/home/perl/general.cgi?l=1
http://www.ericsson.com/mobility-report
http://www.ericsson.com/mobility-report

[25] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer Communication Across Network

Address Translators. In USENIX Annual Technical Conference, General Track, pages 179–192,

2005.

[26] A-T Gai and Laurent Viennot. Broose: a practical distributed hashtable based on the

de-bruijn topology. In Peer-to-Peer Computing, 2004. Proceedings. Proceedings. Fourth Inter-

national Conference on, pages 167–174. IEEE, 2004.

[27] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American

Mathematical Monthly, 69(1):9–15, 1962.

[28] Pedro García, Carles Pairot, Rubén Mondéjar, Jordi Pujol, Helio Tejedor, and Robert Rallo.

Planetsim: A new overlay network simulation framework. Springer, 2005.

[29] Chris GauthierDickey, Virginia Lo, and Daniel Zappala. Using n-trees for scalable event

ordering in peer-to-peer games. In Proceedings of the international workshop on Network and

operating systems support for digital audio and video, pages 87–92. ACM, 2005.

[30] Thomer Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling. P2Psim, A

Simulator for Peer-to-Peer Protocols, 2003.

[31] Saikat Guha, Yutaka Takeda, and Paul Francis. NUTSS: A SIP-based approach to UDP

and TCP network connectivity. In Proceedings of the ACM SIGCOMM workshop on Future

directions in network architecture, pages 43–48. ACM, 2004.

[32] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for peer-to-peer

overlays. In NSDI, volume 4, pages 9–9, 2004.

[33] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert Van Renesse. Kelips:

Building an efficient and stable P2P DHT through increased memory and background

overhead. In Peer-to-Peer Systems II, pages 160–169. Springer, 2003.

[34] Selim Gurun, Priya Nagpurkar, and Ben Y. Zhao. Energy consumption and conservation

in mobile peer-to-peer systems. In Proceedings of the 1st international workshop on Decentral-

ized resource sharing in mobile computing and networking, MobiShare ’06, pages 18–23, New

York, NY, USA, 2006. ACM. ISBN 1-59593-558-4. doi: 10.1145/1161252.1161258. URL

http://doi.acm.org/10.1145/1161252.1161258.

[35] Jani Hautakorpi and Gonzalo Camarillo. Evaluation of DHTs from the viewpoint of

interpersonal communications. In Proceedings of the 6th international conference on Mobile

and Ubiquitous Multimedia, pages 74–83. ACM, 2007.

[36] Dave Hoch. Time in App Increases by 21% Across All Apps. Ac-

cessed on 21 November 2014. URL http://info.localytics.com/blog/

time-in-app-increases-by-21-across-all-apps.

iv

http://doi.acm.org/10.1145/1161252.1161258
http://info.localytics.com/blog/time-in-app-increases-by-21-across-all-apps
http://info.localytics.com/blog/time-in-app-increases-by-21-across-all-apps

[37] Quirin Hofstätter, Stefan Zoels, Maximilian Michel, Zoran Despotovic, and Wolfgang

Kellerer. Chordella - a hierarchical peer-to-peer overlay implementation for heterogen-

eous, mobile environments. Peer-to-Peer Computing, IEEE International Conference on, 0:

75–76, 2008. doi: http://doi.ieeecomputersociety.org/10.1109/P2P.2008.42.

[38] Teerawat Issariyakul and Ekram Hossain. Introduction to network simulator NS2. Springer,

2011.

[39] M Frans Kaashoek and David R Karger. Koorde: A simple degree-optimal distributed

hash table. In Peer-to-peer systems II, pages 98–107. Springer, 2003.

[40] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel

Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the World Wide Web. In Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, pages 654–663. ACM, 1997.

[41] I. Kelényi and J.K. Nurminen. Energy Aspects of Peer Cooperation Measurements with

a Mobile DHT System. In Communications Workshops, 2008. ICC Workshops ’08. IEEE

International Conference on, pages 164 –168, may 2008. doi: 10.1109/ICCW.2008.36.

[42] Imre Kelényi. Mobile Kademlia for Symbian OS. Budapest University of Technology,

Dept. of Automation and Applied Informatics, Applied Mobile Research Group. URL

http://www2.aut.bme.hu/Portal/MobileDHT.aspx?lang=en.

[43] Imre Kelényi and Jukka K. Nurminen. Optimizing Energy Consumption of Mobile

Nodes in Heterogeneous Kademlia-Based Distributed Hash Tables. In Proceedings of the

2008 The Second International Conference on Next Generation Mobile Applications, Services, and

Technologies, NGMAST ’08, pages 70–75, Washington, DC, USA, 2008. IEEE Computer

Society. ISBN 978-0-7695-3333-9. doi: 10.1109/NGMAST.2008.59. URL http://dx.doi.

org/10.1109/NGMAST.2008.59.

[44] Imre Kelényi, Jukka Nurminen, Ákos Ludányi, and Tamas Lukovszki. Modeling resource

constrained bittorrent proxies for energy efficient mobile content sharing. Peer-to-Peer

Networking and Applications, 5:163–177, 2012. ISSN 1936-6442. URL http://dx.doi.org/

10.1007/s12083-011-0107-5. 10.1007/s12083-011-0107-5.

[45] Mario Kolberg, Florence Kolberg, Alan Brown, and John Buford. A Markov model for

the Epichord peer-to-peer overlay in an XCAST enabled network. In Communications,

2007. ICC’07. IEEE International Conference on, pages 1935–1942. IEEE, 2007.

[46] Gerald Kunzmann. Recursive or iterative routing? Hybrid! In KiVS Kurzbeiträge und

Workshop, pages 189–192, 2005.

v

http://www2.aut.bme.hu/Portal/MobileDHT.aspx?lang=en
http://dx.doi.org/10.1109/NGMAST.2008.59
http://dx.doi.org/10.1109/NGMAST.2008.59
http://dx.doi.org/10.1007/s12083-011-0107-5
http://dx.doi.org/10.1007/s12083-011-0107-5

[47] Ben Leong, Barbara Liskov, and Erik D. Demaine. EpiChord: Parallelizing the Chord

Lookup Algorithm with Reactive Routing State Management. Technical Report MIT-LCS-

TR-963, MIT, Cambridge, MA, August 2004.

[48] Jinyang Li, Jeremy Stribling, Robert Morris, M Frans Kaashoek, and Thomer M Gil. A

performance vs. cost framework for evaluating DHT design tradeoffs under churn. In

INFOCOM 2005: 24th Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings IEEE, volume 1, pages 225–236. IEEE, 2005.

[49] Jian Liang, Rakesh Kumar, and Keith W Ross. The FastTrack overlay: A measurement

study. Computer Networks, 50(6):842–858, 2006.

[50] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traversal using relays around

NAT (TURN): relay extensions to session traversal utilities for NAT (STUN). Internet

Request for Comments, 2010.

[51] MaidSafe. The MaidSafe Platform. URL http://www.maidsafe.net/

distributed-network-features.html.

[52] Gurmeet Singh Manku, Mayank Bawa, Prabhakar Raghavan, et al. Symphony: Distributed

Hashing in a Small World. In USENIX Symposium on Internet Technologies and Systems,

page 10, 2003.

[53] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric. In Revised Papers from the First International Workshop on

Peer-to-Peer Systems, IPTPS ’01, pages 53–65, London, UK, 2002. Springer-Verlag. ISBN

3-540-44179-4.

[54] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In P2P 2009.

IEEE 9th International Conference on Peer-to-Peer Computing, 2009, pages 99–100. IEEE, 2009.

[55] Ruggero Morselli, Bobby Bhattacharjee, Michael Marsh, Aravind Srinivasan, et al. Efficient

lookup on unstructured topologies. Selected Areas in Communications, IEEE Journal on, 25

(1):62–72, 2007.

[56] Stephen Naicken, Anirban Basu, Barnaby Livingston, and Sethalat Rodhetbhai. A survey

of peer-to-peer network simulators. In Proceedings of The Seventh Annual Postgraduate

Symposium, Liverpool, UK, volume 2, 2006.

[57] NS-3. NS-3 network simulator. Accessed on 10 October, 2015. URL https://www.nsnam.

org/.

[58] J.K. Nurminen and J. Noyranen. Energy-Consumption in Mobile Peer-to-Peer - Quantit-

ative Results from File Sharing. In Consumer Communications and Networking Conference,

2008. CCNC 2008. 5th IEEE, pages 729 –733, jan. 2008. doi: 10.1109/ccnc08.2007.167.

vi

http://www.maidsafe.net/distributed-network-features.html
http://www.maidsafe.net/distributed-network-features.html
https://www.nsnam.org/
https://www.nsnam.org/

[59] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Feasibility evaluation

of a communication-oriented P2P system in mobile environments. In Proceedings of

the 6th International Conference on Mobile Technology, Application and Systems, Mobility

’09, pages 43:1–43:8, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-536-9. doi:

10.1145/1710035.1710078. URL http://doi.acm.org/10.1145/1710035.1710078.

[60] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Performance evalu-

ation of a Kademlia-based communication-oriented P2P system under churn. Computer

Networks, pages 689–705, 2010.

[61] Krzysztof Pawlikowski, H-DJ Jeong, and J-SR Lee. On credibility of simulation studies of

telecommunication networks. Communications Magazine, IEEE, 40(1):132–139, 2002.

[62] Himabindu Pucha, Saumitra M Das, and Y Charlie Hu. How to implement DHTs in

mobile ad hoc networks. In MobiCom 2004: Proceedings of the 10th ACM International

Conference on Mobile Computing and Network, 2004.

[63] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A

Scalable Content-addressable Network. In Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’01, pages

161–172, New York, NY, USA, 2001. ACM. ISBN 1-58113-411-8. doi: 10.1145/383059.

383072. URL http://doi.acm.org/10.1145/383059.383072.

[64] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a

DHT. In In Proceedings of the USENIX Annual Technical Conference, 2004.

[65] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer-to-Peer

Computing, 2001. Proceedings. First International Conference on, pages 99–100. IEEE, 2001.

[66] Jonathan Rosenberg, Joel Weinberger, Christian Huitema, and Rohan Mahy. STUN-simple

traversal of User Datagram Protocol (UDP) through Network Address Translators (NATs).

Technical report, RFC 3489, IETF, Mar, 2003.

[67] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In Middleware 2001, pages 329–350. Springer,

2001.

[68] Antony Rowstron and Peter Druschel. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. In ACM SIGOPS Operating Systems

Review, volume 35, pages 188–201. ACM, 2001.

[69] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. SCRIBE:

The design of a large-scale event notification infrastructure. In Networked group communic-

ation, pages 30–43. Springer, 2001.

vii

http://doi.acm.org/10.1145/1710035.1710078
http://doi.acm.org/10.1145/383059.383072

[70] Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. Overlay weaver: An overlay

construction toolkit. Computer Communications, pages 402–412, 2008.

[71] Spyros Sioutas, George Papaloukopoulos, Evangelos Sakkopoulos, Kostas Tsichlas, and

Yannis Manolopoulos. A novel distributed P2P Simulator Architecture: D-P2P-Sim. In

Proceedings of the 18th ACM conference on Information and knowledge management, pages

2069–2070. ACM, 2009.

[72] Pyda Srisuresh, George Tsirtsis, Praveen Akkiraju, and Andy Heffernan. DNS extensions

to Network Address Translators (DNS_ALG). 1999.

[73] Dominik Stingl, Christian Gross, Julius Ruckert, Leonhard Nobach, Aleksandra Kovacevic,

and Ralf Steinmetz. Peerfactsim. kom: A simulation framework for peer-to-peer systems.

In High Performance Computing and Simulation (HPCS), 2011 International Conference on,

pages 577–584. IEEE, 2011.

[74] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings

of the 2001 conference on Applications, technologies, architectures, and protocols for computer

communications, SIGCOMM ’01, pages 149–160, New York, NY, USA, 2001. ACM. ISBN

1-58113-411-8. doi: 10.1145/383059.383071.

[75] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In

Proceedings of the 6th ACM SIGCOMM conference on Internet measurement, pages 189–202.

ACM, 2006.

[76] Di Wu, Ye Tian, and Kam-Wing Ng. Analytical Study on Improving DHT Lookup

Performance under Churn. In Proceedings of the Sixth IEEE International Conference on Peer-

to-Peer Computing, P2P ’06, pages 249–258, Washington, DC, USA, 2006. IEEE Computer

Society. ISBN 0-7695-2679-9. doi: 10.1109/P2P.2006.4. URL http://dx.doi.org/10.1109/

P2P.2006.4.

[77] Pinggai Yang, Jun Li, Jun Zhang, Hai Jiang, Yi Sun, and Eryk Dutkiewicz. SMBR: A novel

NAT traversal mechanism for structured Peer-to-Peer communications. In Computers and

Communications (ISCC), 2010 IEEE Symposium on, pages 535–539. IEEE, 2010.

[78] C. Huiyou Z. Tengyue, L. Liao. The Mobile Node ID Kademlia for Multimedia Stream

Transmission in Wireless Network. In 4th International Conference on Wireless Communica-

tions, Networking and Mobile Computing, pages 1–4, 2008.

[79] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and John D

Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment. Selected

Areas in Communications, IEEE Journal on, 22(1):41–53, 2004.

viii

http://dx.doi.org/10.1109/P2P.2006.4
http://dx.doi.org/10.1109/P2P.2006.4

[80] Stefan Zöls, Rüdiger Schollmeier, Wolfgang Kellerer, and Anthony Tarlano. The Hybrid

Chord Protocol: A Peer-to-Peer Lookup Service for Context-Aware Mobile Applications.

In Pascal Lorenz and Petre Dini, editors, ICN (2), volume 3421 of Lecture Notes in Computer

Science, pages 781–792. Springer, 2005. ISBN 3-540-25338-6. URL http://dblp.uni-trier.

de/db/conf/icn/icn2005-2.html#ZolsSKT05.

[81] Stefan Zöls, Zoran Despotovic, and Wolfgang Kellerer. Cost-Based Analysis of Hier-

archical DHT Design. In Alberto Montresor, Adam Wierzbicki, and Nahid Shahmehri,

editors, Sixth IEEE International Conference on Peer-to-Peer Computing (P2P 2006), 2-4 Octo-

ber 2006, Cambridge, United Kingdom, pages 233–239. IEEE Computer Society, 2006. ISBN

0-7695-2679-9. doi: http://doi.ieeecomputersociety.org/10.1109/P2P.2006.13.

[82] Stefan Zöls, Simon Schubert, Wolfgang Kellerer, and Zoran Despotovic. Hybrid DHT

Design for Mobile Environments. In Agents and Peer-to-Peer Computing, pages 19–30.

Springer, 2006.

[83] Stefan Zöls, Zoran Despotovic, and Wolfgang Kellerer. Load balancing in a hierarch-

ical DHT-based P2P system. In Proceedings of the 3rd International Conference on Col-

laborative Computing: Networking, Applications and Worksharing, White Plains, New York,

USA, November 12-15, 2007, pages 353–361. IEEE, 2007. ISBN 1-4244-1317-6. doi:

http://dx.doi.org/10.1109/COLCOM.2007.4553855.

[84] Stefan Zöls, Quirin Hofstätter, Zoran Despotovic, and Wolfgang Kellerer. Achieving and

Maintaining Cost-Optimal Operation of a Hierarchical DHT System. In ICC, pages 1–6,

2009.

[85] Mohammad Zulhasnine, Changcheng Huang, and Anand Srinivasan. Towards an ef-

fective integration of cellular users to the structured Peer-to-Peer network. Peer-to-Peer

Networking and Applications, 5:178–192, 2012. ISSN 1936-6442.

ix

http://dblp.uni-trier.de/db/conf/icn/icn2005-2.html#ZolsSKT05
http://dblp.uni-trier.de/db/conf/icn/icn2005-2.html#ZolsSKT05

	Declaration
	Abstract
	Acknowledgments
	Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms

	Introduction
	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Research Objectives
	1.4 Contributions
	1.5 Thesis Structure

	2 Background and Related Work
	2.1 Introduction
	2.2 P2P Overlay Networks
	2.2.1 Unstructured P2P Overlay
	2.2.2 Structured P2P Overlay

	2.3 Distributed Hash Table (DHT) based Structured P2P Overlays
	2.3.1 Chord
	2.3.2 Pastry
	2.3.3 Kademlia
	2.3.4 Broose
	2.3.5 EpiChord

	2.4 Challenges of Deploying P2P in Mobile Networks
	2.4.1 Churn Issues
	2.4.2 Data Consumption

	2.5 NAT and NAT Traversal
	2.5.1 NAT Traversal Techniques
	2.5.2 Impact of Routing Scheme over NAT
	2.5.3 Analysis of Structured P2P Overlays with NAT

	2.6 Existing P2P Solutions in Mobile Networks
	2.6.1 Hybrid Chord Protocol (HCP)
	2.6.2 Mobile Node ID Kademlia Architecture
	2.6.3 Chordella
	2.6.4 Cellular Chord (C-Chord)
	2.6.5 Bushfire
	2.6.6 Discussion

	2.7 Review of P2P Simulators
	2.7.1 OverSim

	2.8 Summary

	Contributions
	3 Performance Evaluation of Structured P2P Overlays under Churn
	3.1 Introduction
	3.2 Key Requirements
	3.3 Experimental Methodology
	3.3.1 Simulation Platform
	3.3.2 Performance Metrics
	3.3.3 Simulation Setup

	3.4 Most Suited Parameter Selection
	3.4.1 Chord
	3.4.2 Pastry
	3.4.3 Kademlia
	3.4.4 Broose
	3.4.5 EpiChord

	3.5 Performance Evaluation
	3.5.1 Effects of Churn
	3.5.2 Bandwidth Consumption
	3.5.3 Effect of Different Workloads
	3.5.4 Discussion

	3.6 Summary

	4 Performance Evaluation of Structured P2P Overlays under NAT
	4.1 Introduction
	4.2 NAT Traversal using UDP Hole Punching without Dedicated Rendezvous Servers
	4.2.1 Peers behind the Same NAT
	4.2.2 Peers behind Different NATs
	4.2.3 Resilience Strategy

	4.3 Performance Analysis in NATed and Non-NATed Networks
	4.3.1 Network Setup
	4.3.2 Simulation Setup
	4.3.3 Chord
	4.3.4 EpiChord
	4.3.5 Kademlia
	4.3.6 Discussion

	4.4 Performance Comparison with Iterative and Recursive Routing under NAT
	4.4.1 Chord
	4.4.2 Kademlia
	4.4.3 Discussion

	4.5 NAT Traversal Implementation in OverSim
	4.5.1 Implementation Challenges
	4.5.2 Integration with OverSim

	4.6 Summary

	5 Churn Aware Routing Protocol (ChARP) in NATed Networks
	5.1 Introduction
	5.2 Churn Aware Routing Protocol (ChARP)
	5.2.1 Overview and Design

	5.3 Performance Analysis of the Churn Aware Routing Protocol (ChARP)
	5.3.1 Experiment Setup
	5.3.2 Evaluation Criteria
	5.3.3 Configuration Parameters
	5.3.4 Performance Evaluation

	5.4 Summary

	Conclusions
	6 Conclusions
	6.1 Introduction
	6.2 Contributions
	6.3 Limitations
	6.4 Future Directions
	6.5 Summary

	Back Matter
	References

