
This is the author-created version. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22183-0_20

http://link.springer.com/chapter/10.1007/978-3-319-22183-0_20


Object-Oriented Genetic Improvement for
Improved Energy Consumption in Google Guava

Nathan Burles1, Edward Bowles1, Alexander E. I. Brownlee2,
Zoltan A. Kocsis2, Jerry Swan1, and Nadarajen Veerapen2

1 University of York, York, YO10 5DD, United Kingdom
2 University of Stirling, Stirling, FK9 4LA, United Kingdom

Abstract. In this work we use metaheuristic search to improve Google’s
Guava library, finding a semantically equivalent version of com.google.
common.collect.ImmutableMultimap with reduced energy consumption.
Semantics-preserving transformations are found in the source code, us-
ing the principle of subtype polymorphism. We introduce a new tool,
Opacitor, to deterministically measure the energy consumption, and
find that a statistically significant reduction to Guava’s energy consump-
tion is possible. We corroborate these results using Jalen, and evaluate
the performance of the metaheuristic search compared to an exhaustive
search—finding that the same result is achieved while requiring almost
200 times fewer fitness evaluations. Finally, we compare the metaheuris-
tic search to an independent exhaustive search at each variation point,
finding that the metaheuristic has superior performance.

Keywords: Genetic Improvement, Object-Oriented Programming, Sub-
class substitution, Liskov Substitution Principle, Energy Profiling

1 Introduction
Across all scales of computing, from mobile devices to server farms, there is
widespread interest in minimizing energy requirements. For a given program, it
is likely that there are many functionally-equivalent programs exhibiting a vari-
ety of different non-functional properties. Previous work by Sahin et al. [13] has
measured the effect of 6 popular refactorings on 9 real Java programs, concluding
that the effect of these refactorings on energy usage are highly end-application
dependent and that commonly-applied predictive metrics are of little practi-
cal use. This is therefore a strong motivator for the application of techniques
from Search Based Software Engineering (SBSE). In this article, we use meta-
heuristic search to find semantically equivalent programs with reduced energy
consumption. Semantics preserving transformations are achieved via the behav-
ioral equivalence that is central to object-orientation.
Related Work. Although there are a number of works in Genetic Programming
(GP) and Grammatical Evolution (GE) that claim to be ‘Object Oriented’ [1,
2, 8, 12, 15], we are not aware of any concerned with the central pillar of Object
Orientation, viz. the Liskov Substitution Principle (LSP) [7] as exemplified by
subtype polymorphism. In this respect, the closest work we are aware of is that
of the SEEDS framework of Manotas et al. [9], in which alternative subtypes
of container classes are substituted into bytecode in order to minimize power



consumption. The search mechanism that is employed in SEEDS is that of a
separate exhaustive search at each object allocation location: our approach differs
by using a genetic approach to assign subclasses to constructor invocations. It
is certainly therefore the first work deserving of the title of ‘Object-Oriented
Genetic Improvement’. Related work in a non-SBSE context is the interesting use
of strong-typing corresponding to different operating modes (e.g. ‘battery level
high’) [4], allowing the programmer to delineate differing responses to operating
conditions (e.g. opting to render a low resolution image when energy is low).

2 Implementation

In outline, the improvement process is as follows:
1. Parse the source file designated for improvement, yielding an Abstract Syn-

tax Tree (AST). Identify variation points, i.e. source nodes in the AST cor-
responding to the creation of Guava container objects.

2. Obtain the complete set of possible target substitutions T (i.e. all the con-
tainer classes within the Guava, Apache Collections1, and the Java 8 util
package). For each source node Si in the AST, find the subset of possible
target substitutions t(Si) ⊆ T which are actually valid.

3. Given a sequence of the k source nodes [S1, . . . , Sk] from the AST, the search
space is then given by all combinations from [t(S1), . . . , t(Sk)]. The solution
representation is thus an assignment i 7→ s ∈ t(Si), 1 ≤ i ≤ k, represented as
an element r ∈ Zk, with constraints 0 ≤ ri <

∣∣t(Si)
∣∣.

4. Given such an assignment, the AST node for each variation point can be
replaced with its target substitution and the correspondingly mutated source
file can be written out to disk.

5. The program containing the mutated source is then compiled and evaluated
by a measure related to its energy consumption. By this means, combinatorial
search is performed in the space of these representations using the Genetic
Algorithm metaheuristic [6], in order to find the sequence of substitutions
which minimize energy consumption.

Variation Points. The open-source Java framework Google Guava implements
a variety of concrete subclasses of java.util.Collection. There are well-known
tradeoffs in performance characteristics between different collection subclasses:
for example, finding a specific element in a linked list is O(n) but in a hash-set it
is O(1). We selected com.google.common.collect.ImmutableMultimap as a testcase
for improvement, since it features a number of instantiations of Collection sub-
classes. Source file parsing (and subsequent re-generation, described below) was
done with a popular open-source library com.github.javaparser.JavaParser2.
Within this file, three types of syntax fragments were identified for use as vari-
ation points: calls to constructors (e.g. new LinkedHashMap<>()); calls to Guava
factory classes (e.g. Maps.newHashMap()); and calls to Guava static creator meth-
ods (e.g. ImmutableList.of()). These were filtered to include only fragments
1 Guava v18.0, Apache Collections v4.0
2 During development we discovered and fixed a bug in the hashCode implementation
of the Node class in the com.github.javaparser.JavaParser library.



creating a collection object, i.e., one implementing java.util.Collection, java
.util.Map or com.google.common.collect.Multimap. In total, 5 variation points
were found, with between 5 and 45 possible substitutions each.
Mutating the Source Code. For each variation point, one of three approaches
to determining the interface of the created object was used: the method’s re-
turn type for return statements; the declared type for variable declarations. For
other expressions, the least-general interface implemented by the class was used:
one of Map,Set,List,Multimap,Multiset or Collection. The potential substitu-
tions for a variation point are classes implementing the appropriate interface
in Guava, Apache Collections, java.util, and java.util.concurrent. Excluded
were abstract and inner classes, and those expecting a particular type (e.g. Tree
collections require elements implementing Comparable). A modified version of
JavaParser’s SourcePrinter performed the required code substitution at each
variation point in ImmutableMultimap’s source. A careless programmer might de-
pend on functionality not guaranteed by the LSP, e.g. relying on a collection
being sorted, despite this not being part of the superclass type specification that
is actually visible at the point at which such reliance is made. This is a logical
error on behalf of the programmer, and strictly speaking necessitates that they
rewrite the code. Although we do not cater for such programming errors in our
experiments, the best that can be done in such cases is to include any existing
unit tests as a constraint on the search.
Measuring Energy Consumption. During the evolutionary process the fit-
ness function was the energy consumption measured using a new tool, Opacitor,
designed to make measurements deterministic. Opacitor traces the execution
of Java code, using a modified version of OpenJDK, generating a histogram
containing the number of times each Java opcode was executed—allowing very
similar programs to be distinguishable. A model of the energy costs of each
Java opcode, created by Hao et al. [5], is then used to calculate the total num-
ber of Joules used. As the Just-In-Time compilation (JIT) feature of the Java
Virtual Machine (JVM) is non-deterministic, it is disabled during evolution. Sim-
ilarly, Garbage Collection (GC) is non-deterministic and so the JVM is allocated
enough memory to avoid GC. During the final testing, after evolution has com-
pleted, these features are re-enabled to ensure that the results remain valid on
an unmodified JVM. It should be noted that a significant benefit of Opacitor,
compared to other approaches which require timing or physical energy measure-
ment, is that it is unaffected by anything else executing on the experimental
system. This means that it can be parallelised, or executed simultaneously with
other programs, without difficulty. In previous work [14] we successfully used
Jalen [11] to calculate the energy required, and compare two algorithms; during
the final testing we have used this technique as a corroboration that Opacitor
is effective and generates reliable measurements.

3 Experiments
The first experiment performed was the use of a metaheuristic to search for a
solution with reduced energy consumption. We elected to use a Genetic Algo-
rithm (GA) [6] to search the space of solutions, since this is known to be a useful
approach for a variety of assignment problems [3]. The solution representation



used is a vector of integers r ∈ Zk. The representation itself is constrained with
the required constraints 0 ≤ ri <

∣∣t(Si)
∣∣.

The GA was configured with a population of 500, running for 100 genera-
tions. New populations were generated using an elitism rate of 5%, single-point
crossover with a rate of 75%, and one-point mutation with a rate of 50% with
candidates selected using tournament selection with arity 2. These parameters
were selected, after preliminary investigations, in order to provide sufficient ge-
netic diversity to the evolution without requiring an excessive number of fitness
evaluations as each evaluation takes in the order of 10 seconds on a 3.25GHz
CPU. During experimentation we ran the GA five times, with a different seed to
the random number generator, in order to test the robustness of the evolution.

A second experiment ran an exhaustive search on the entire search space of
674,325 possible solutions, using 32 3.25GHz cores to allow it to finish within 2.5
days, in order to determine how close the GA came to finding an ideal solution.

The final experiment ran an exhaustive search independently on each varia-
tion point, following the example of Manotas et al. [9] but on source code instead
of bytecode, before combining each of the substitutions at the end.

4 Results
Statistical testing was carried out using the Wilcoxon / Mann Whitney U Sta-
tistical Tests and Vargha-Delaney Effect size tests (as implemented in the As-
traiea framework [10]). The results were obtained with 100 samples in each
dataset. The result of each of the runs of the GA was the same set of substitu-
tions, and so this set was used thereafter.

When considering a full exhaustive search of the entire problem space of
674,325 possible combinations of substitutions, performed to gauge the effec-
tiveness of the GA, the best set of substitutions were the same as those found
by the GA. The use of a GA therefore provided a speed-up of almost 200 while
still successfully finding the best possible result.

The combined results of the original library, our improved version, and the
version using only independent exhaustive search are shown together in Table 1.
During the evolution, with JIT disabled and GC avoided, the best solution found
used 216.49 J. This compares with 298.58 J required by the original, and 266.43 J

Table 1. Energy (J) required to exercise the various methods provided by the
ImmutableMultimap class 10,000 times (mean of 100 runs, and standard deviation σ),
as well as the p-values (p) and effect size measures (e) comparing our result to the
original or the result of an independent exhaustive search at each variation point.

Measurement
technique

GA Original Independent Exhaustive

J J p e J p e

Opacitor 216.49 298.58 – – 266.43 – –
Opacitor with
JIT and GC

11.15 14.75 <.001 0.93 13.45 <.001 0.85
σ2.06 σ1.13 σ1.15

Jalen
11.81 15.25 <.001 0.94 13.46 <.001 0.82
σ2.18 σ1.00 σ0.66



required by the solution found using an exhaustive search independently on each
variation point. As the measurements in this case are deterministic, and thus
generate only one observation for each version, no statistical tests are necessary.

The GA required approximately 3,500 fitness evaluations to find its best
solution (the number of evaluations varied slightly between different evolutionary
runs), while the exhaustive search at each variation point required only 105
evaluations. Although using the GA was therefore significantly slower than the
approach used in similar work [9], the final result is also significantly better.

More interestingly, similarly impressive results were also obtained when non-
determinism was reintroduced post-evolution—with JIT enabled and the JVM’s
memory allocation unmodified (allowing for GC when necessary). In this case the
GA’s solution required 11.15 J, compared with 14.75 J for the original and 13.45 J
for the independent exhaustive search. As the energy measurement is no longer
deterministic, the p-values and effect size measures vary accordingly. Vargha and
Delaney suggest that a value of 0.71 indicates a large difference between data
sets, and so the results demonstrate that the GA’s solution provides a significant
improvement over both the original and the independent exhaustive search.

To help corroborate that the model-based energy measurement provides re-
alistic results, we used Jalen (with JIT and GC) to compare the three versions
of ImmutableMultimap. The results support the assertion that Opacitor provides
realistic and reliable energy measurements, as well as the hypothesis that per-
forming the evolution using the deterministic measure would map correctly to
results generated in a non-deterministic, realistic environment.

5 Conclusion
We have introduced ‘Object-Oriented Genetic Improvement’, a technique by
which non-functional properties such as time or energy consumption may be
optimised by substituting suitable alternative subclasses to constructor invoca-
tions. By virtue of subclass adherence to the ‘Liskov Substitution Principle’ [7],
we can make semantics-preserving changes to source code in order to take ad-
vantage of the vastly different performance characteristics displayed by different
collection implementations. We applied this technique to the com.google.common
.collect.ImmutableMultimap class, part of Google’s Guava library, using a new
tool, Opacitor, to evaluate the energy consumption of candidate solutions.

Our results showed that significant improvements could be made, with the
best solution providing a saving of approximately 24%. The results generated
by Opacitor were corroborated using Jalen, which uses time and CPU util-
isation as a proxy for energy consumption. Thus, the results show that the
substitutions improve both the energy consumption and the execution time of
the class. We further compared the results of our technique to those obtained
using an approach used in related work [9]—a separate exhaustive search at
each variation point—and found that although the number of fitness evalua-
tions increased using a GA, the performance of the final result was significantly
improved. This shows that the variation points within code are not always inde-
pendent. This is intuitively the case for ImmutableMultimap—two of the identified
variation points instantiate the BuilderMultimap private class which exists within
ImmutableMultimap, while other variation points exist within the BuilderMultimap



sub-class. An independent exhaustive search at each variation point may there-
fore decide to substitute BuilderMultimap for a more efficient alternative, even
though more efficient subclass substitutions can be made within the private class.

Acknowledgement. Work funded by UK EPSRC grant EP/J017515/1. Data
available at https://github.com/nburles/burles2015object.

References

1. Abbott, R.J.: Object-oriented genetic programming, an initial implementation. In:
Proceedings of the 6th International Conference on Computational Intelligence and
Natural Computing. North Carolina USA (2003)

2. Bruce, W.S.: Automatic generation of object-oriented programs using genetic pro-
gramming. In: Proceedings of the 1st Annual Conference on Genetic Programming.
pp. 267–272. MIT Press, Cambridge, MA, USA (1996)

3. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (Jan 1997)

4. Cohen, M., Zhu, H.S., Senem, E.E., Liu, Y.D.: Energy types. In: Proceedings of
the ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications. pp. 831–850. OOPSLA ’12, ACM, NY, USA (2012)

5. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: 35th International Conference on Software
Engineering. pp. 92–101. IEEE (2013)

6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA (1992)

7. Liskov, B.: ‘Data Abstraction and Hierarchy’ (keynote address). SIGPLAN Not.
23(5), 17–34 (Jan 1987)

8. Lucas, S.M.: Exploiting reflection in object oriented genetic programming. In: Ge-
netic Programming, pp. 369–378. Springer (2004)

9. Manotas, I., Pollock, L., Clause, J.: Seeds: A software engineer’s energy-
optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering. pp. 503–514. ACM, NY, USA (2014)

10. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceed-
ings of the 2014 conference companion on Genetic and evolutionary computation
companion. pp. 1427–1430. ACM (2014)

11. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of
software energy hotspots. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. pp. 160–169. IEEE (2012)

12. Oppacher, Y., Oppacher, F., Deugo, D.: Evolving java objects using a grammar-
based approach. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation. pp. 1891–1892. ACM, NY, USA (2009)

13. Sahin, C., Pollock, L., Clause, J.: How do code refactorings affect energy usage?
In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. pp. 36:1–36:10. ACM, NY, USA (2014)

14. Swan, J., Burles, N.: Templar–a framework for template-method hyper-heuristics.
In: Genetic Programming, pp. 205–216. Springer (2015)

15. White, T., Fan, J., Oppacher, F.: Basic object oriented genetic programming. In:
Mehrotra, K., Mohan, C., Oh, J., Varshney, P., Ali, M. (eds.) Modern Approaches
in Applied Intelligence, pp. 59–68. LNCS 6703, Springer (2011)


