Immune response costs are associated with changes in resource acquisition and not resource reallocation

Sumayia Bashir-Tanoli* and Matthew C. Tinsley

Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.

* Corresponding author: sumayia.bashir@stir.ac.uk

Running headline:
The causes of immune defence costs

Word count including figure legends and references: 6977
Summary

1. Evolutionary ecologists frequently argue that parasite defence is costly because resources must be reallocated from other life-history traits to fuel the immune response. However, this hypothesis is rarely explicitly tested. An alternative possibility is that immune responses impair an organism’s ability to acquire the resources it needs to support metabolism. Here we disentangle these opposing hypotheses for why the activation costs of parasite resistance arise.

2. We studied fecundity costs associated with immune stimulation in *Drosophila melanogaster*. Then, by measuring correlated changes in metabolic rate, food consumption and body weight, we assessed whether responses were consistent with immunity costs originating from altered resource allocation or from impaired resource acquisition.

3. Microbial injection resulted in a 45% fecundity decrease; it also triggered a mean decline in metabolic rate of 6% and a mean reduction in food intake of 31%, body weight was unaffected. Metabolic rate down-regulation was greater in males than in females, whereas declines in food ingestion were of similar magnitude in both sexes. These physiological shifts did not depend on whether microbial challenges were alive or dead, thus they resulted from immune system activation not pathogenesis.

4. These costs of immune activation are significant for individuals that successfully resist infection and might also occur in other situations when immune responses are upregulated without infection.

5. Whilst we found significant activation costs of resistance, our data provide no compelling evidence for the popularly argued hypothesis that immune deployment is costly because of reallocation of energetic resources to the immune system. Instead, reduction in resource acquisition due to ‘infection-induced anorexia’ may be the principal driver of metabolic changes and fecundity costs resulting from immune response activation.
Key-Words

Appetite, Drosophila melanogaster, energetic trade-off, fecundity, immunity, infection-induced anorexia, life-history, metabolic rate, parasite resistance.

Introduction

Immune responses are generally considered to be costly: a fact that is central to many fundamental concepts in evolutionary ecology, such as sexual selection (Hamilton & Zuk 1982), the maintenance of genetic variation for parasite resistance (Flor 1956) and host-parasite coevolution (Haldane 1949). These costs of immunity can be divided into two broad categories. First, the costs of forming and maintaining constitutive immune mechanisms, such as barrier defences and immune cell populations (Fellowes, Kraaijeveld & Godfray 1998; Kraaijeveld, Limentani & Godfray 2001). Second, the costs of activating inducible immune responses upon infection, such as immune molecule synthesis and fever development (Schulenburg et al. 2009; Martin, Hawley & Ardia 2011). Here we focus on the activation costs of immunity.

Life-history concepts suggest that immune activation costs are principally energetic or nutritional, involving reallocation of resources to parasite defence at the expense of other fitness-related traits (Moret & Schmid-Hempel 2000; Schulenburg et al. 2009). However, evolutionary trade-offs may be governed both by variation in resource allocation between different traits and also by variation in resource acquisition ability (van Noordwijk & de Jong 1986). The relative magnitudes of variation in resource allocation and resource acquisition can profoundly shape population responses to selection and the nature of associations between life-history traits (Reznick, Nunney & Tessier 2000). Here we use this evolutionary framework to investigate the causes of immune activation costs, testing the relative
importance of resource budget reallocation and alterations in resource acquisition ability in
driving the costs of immune system deployment. This distinction is important because
resource reallocation can adaptively withdraw resources from particular traits to minimise
overall fitness loss, whereas the consequences of impaired resource acquisition are
potentially more widespread.

Costs of immunity are primarily realised as a decline in the quality or quantity of an
individual’s offspring. In Drosophila melanogaster, immune-challenged females suffer
reduced fecundity; study of flies with genetically manipulated immune responses
demonstrates that this cost arises specifically from immune system activation (Zerofsky et al.
2005). Similarly, in Anopheles gambiae immune stimulation with lipopolysaccharide (LPS)
significantly reduces fecundity (Ahmed et al. 2002). As well as fecundity effects, immune
challenge by LPS injection reduced survival of bumblebee workers under starvation
conditions (Moret & Schmid-Hempel 2000). However, it is not clear why activating the
immune system to attack parasites should invoke these fitness costs.

Total resource expenditure can be assessed by measuring metabolic rate. Some
studies suggest that energetic resources are indeed reallocated, perhaps from stored
reserves, to support immune system activity. Antibody production following immune
challenge in collared doves increased basal metabolic rate by 8.5% 7 days after injection
(Eraud et al. 2005). Similarly, in invertebrates, cabbage white butterfly pupae increased
metabolic thermogenesis by 8% in response to the immunogenic stimulus of a nylon filament
implant (Freitak et al. 2003). Nevertheless, in the collared dove study the authors concluded
this metabolic cost was small and of similar magnitude to other normal homeostatic
processes (Eraud et al. 2005). Furthermore, mice did not experience elevated metabolic rate
when injected with immune elicitors, either in standard conditions, or under hypoxia
designed to cause metabolic stress (Baze, Hunter & Hayes 2011). Thus, immunity-induced
increases in metabolism are not universal; whether increased resource expenditure in the
immune system is the major factor which causes declines in other fitness traits remains to be
determined.
Mounting an immune response may also alter resource acquisition, changing the ability of organisms to support fecundity. Some studies have suggested that organisms increase food consumption when infected by pathogens to fuel the immune response (Moret & Schmid-Hempel 2000). However, the opposite, reduced food intake, is a common behaviour in animals upon immune challenge; a phenomenon termed infection-induced anorexia (Exton 1997). It is counterintuitive that animals as diverse as humans, mice and flies should adaptively decrease their food intake when infected. Nevertheless, the suggestion that this is a maladaptive symptom of illness has been challenged by work in *Drosophila*, which indicated that survival of flies following infection by some (but not all) pathogens is enhanced by this anorexic response (Ayres & Schneider 2009).

Although immune costs are frequently argued to be resource-mediated (DiAngelo et al. 2009), non-energetic costs can have significant fitness effects. Immune defence molecules produced to attack parasites can also cause collateral damage to host tissues, including inflammatory responses. In invertebrates, the cellular encapsulation response can attack host tissues causing pseudo-tumours (Govind 1996; Minakhina & Steward 2006), the synthesis of melanin for immunity can cause dispersed tissue damage (Sadd & Siva-Jothy 2006) and immune responses against enteric microbes frequently cause extensive damage to the gut lining (Buchon et al. 2009).

Here we investigate costs of immune upregulation in *D. melanogaster*. Studying this model ectothermic invertebrate enabled us to investigate metabolic changes specifically associated with immune system deployment whilst avoiding the potentially confounding thermal impact of fever, which is commonly associated with pathogen infection in endotherms. The *D. melanogaster* immune system mounts a complex attack on invading microbes comprising coordinated cellular and humoral responses. Two key signalling cascades principally drive this attack: the Toll and the immune deficiency (IMD) pathways. The Toll pathway is activated preferentially by fungi and Gram positive bacteria, whilst the IMD pathway is stimulated primarily by Gram negative bacteria (Lemaitre & Hoffmann 2007). Each pathway triggers transcription of an appropriate subset of the fly’s antimicrobial genes
to defend against the type of microbe encountered (Hoffmann 2003). The enzyme phenoloxidase (PO) catalyses melanin production, which possesses cytotoxic properties as well as assisting wound healing and clotting (Eleftherianos & Revenis 2011). In adult Drosophila, cellular immune responses involve phagocytosis and parasite encapsulation by plasmatocyte cells circulating within the haemolymph (Williams 2007).

In this study we use a fungus (Beauveria bassiana) and a bacterium (Escherichia coli) to trigger either Toll-dependent or IMD-dependent immune responses. First we assess the magnitude of fecundity costs associated with these immune defences. Then we study how the resource budget of flies alters during immune system deployment by quantifying correlated changes in metabolic rate, food intake and body mass. We use these measures to dissect the importance of altered resource allocation and resource acquisition in mediating fecundity declines. We predicted that if immune activation costs are principally due to resource reallocation, then either there would be no change in overall metabolic rate (if resources are withdrawn from non-essential traits and perfectly reallocated to immunity), or alternatively metabolic rate might go up if resources are reallocated from stored reserves to be spent on immune function. However, if compromised energy acquisition underpins immune costs, immune activation should be accompanied by reduced feeding rate and potentially a decline in other metabolic-related traits.

Materials and Methods

FLY STOCKS AND REARING

The wildtype genotype Samarkand (from Bloomington Stock Centre) was used throughout. Flies were bred in bottles; all rearing and experimentation was on Lewis food medium (Lewis 1960) at 25 °C, 70% RH on a 12 h L/D cycle. For all the experiments flies were allowed to mate following eclosion, then 3 day old flies were sorted into vials without additional live
yeast, in single-sex groups of 10 using light CO$_2$ anaesthesia the day before immune challenge. Each vial of flies was only used in one of the following experiments.

IMMUNE CHALLENGES

The impacts of microbial injection on fly fecundity, metabolic rate, food ingestion and body weight were studied. Microbes were prepared as both live and dead suspensions to permit separation of the physiological effects of immune activation from those of microbial replication. *B. bassiana* spores were grown on potato dextrose agar (PDA) from an existing strain using standard procedures (Tinsley, Blanford & Jiggins 2006); live and dead conidiospores were suspended in oil (87.5% Shellsol T, 12.5% Ondina EL). *E. coli* were cultured overnight in Luria Broth (LB) at 37 °C with continuous shaking, both live and dead *E. coli* were suspended in sterile LB. Heat-killed suspensions of *B. bassiana* and *E. coli* were prepared by boiling at 100 °C for 15 min. The absence of growth was confirmed for heat-killed suspensions by plating 100 µl on PDA and LB agar respectively; the viability of live suspensions was similarly verified. Live fungal spores (2.0 x 106 spores ml$^{-1}$), heat-killed fungal spores (2.0 x 107 spores ml$^{-1}$) and 2.0 x 106 cells ml$^{-1}$ of live and heat-killed bacteria were used to trigger immune responses in flies by injection into the thorax using a fine tungsten wire needle. The terminal 0.3 mm of the needle was bent slightly to provide a marker ensuring consistent penetration. Flies received CO$_2$ anaesthesia for injections, but then not during any subsequent assays. Four day old flies received one of six treatments: gas control (GC, flies anaesthetised with CO$_2$ but not injected), injection control (IC, flies injected with a needle dipped in blank oil), dead fungal (DF, dead *B. bassiana* injection), live fungal (LF, live *B. bassiana* injection), dead bacterial (DB, dead *E. coli* injection) and live bacterial injection (LB, live *E. coli* injection). Microbial suspensions were vortexed frequently to prevent microbes settling and needles were sterilised with ethanol and flaming.

EFFECT OF IMMUNE CHALLENGE ON FECUNDITY
Immediately following the four immune challenge and two control treatments, groups of 10 female flies were allowed to oviposit in vials containing standard fly food containing blue food colouring (0.1% v/v) to aid egg counting. Flies were tipped into fresh vials after two 24 h periods, providing fecundity estimates for three consecutive days after immune treatment. Flies that escaped or died during vial transfers were recorded and fecundity measures adjusted accordingly. After oviposition vials were frozen and eggs counted later under a stereo microscope. In total 300 flies were studied: five independent groups of 10 flies for each of treatment.

MEASURING METABOLIC RATE

This study was conducted using 410 independent 10-fly groups in seven blocks; each block contained multiple replicates of five or six of the different immune treatments. The effect of immune activation on fly metabolic rate was assessed by respirometry, measuring CO$_2$ production with an infrared gas analyser (IRGA: EGM-4, PP Systems). Day one measurements were made on 5 day old male and female flies 16-18 h after immune treatment; further measurements were made at 24 h intervals. Flies were housed in a plastic chamber connected in a circuit to an IRGA with tubing (total system volume 40.5 cm3). Air circulated within this sealed system and CO$_2$ accumulation was measured. In each assay the metabolic rate of a group of 10 flies was measured at 25 °C over 5 min, recording CO$_2$ every 1.6 seconds; data from the first 2 min whilst flies settled were discarded. Measurements on each 10-fly group were repeated on three or four consecutive days. CO$_2$ efflux per minute was calculated by linear regression, then converted to nmole CO$_2$ min$^{-1}$ fly$^{-1}$ using knowledge of the apparatus volume.

EFFECT OF IMMUNE CHALLENGE ON FOOD INTAKE

Food consumption assays followed protocols of previous authors by measuring pigment intake from food (Libert et al. 2007; Ayres & Schneider 2009). Immediately after administering one of the six treatments, 70 groups of 10 flies were transferred to food
medium comprising 0.5% v/v bromophenol blue (Sigma), 5% w/v sugar, 5% w/v yeast, 2% w/v agar, and water. After 24 h the head of each fly was removed using a scalpel (to exclude red eye pigments), then bodies were homogenised on ice in five-fly groups in 500 µl ice-cold TE buffer. Homogenate samples were centrifuged at 13362 x g at 4 °C for 10 min; the supernatant was then similarly re-centrifuged. The amount of blue pigment in 100 µl supernatant was measured in 96-well plates using a Versa Max microplate reader (Molecular Devices) to record absorbance at 520 nm. The flies in each original vial were split between two five-fly replicates; these replicates were measured in different 96-well plates. To convert absorbance values into food mass eaten per fly a calibration relationship was determined by measuring the absorbance of serial dilutions of a known food mass (n = 6 samples). The linear regression equation for this mass-absorbance plot (y=0.0008x-0.0048) had an \(R^2 \) value of 0.9998.

EFFECT OF IMMUNE CHALLENGE ON FLY BODY MASS

Flies were divided into 120 single-sex 10-fly groups when 3 days old and weighed whilst anaesthetised on a PI 225D balance (Denver Instruments) reading to 0.01 mg. The next day each group received one of three injection treatments: injection control, dead fungal spores or dead bacteria. On the three subsequent days each group was reweighed; flies that died or escaped were recorded and each weight was converted to a per-fly mass. Flies were maintained on Lewis medium throughout.

STATISTICAL ANALYSIS

All analyses were conducted in R version 2.15.1 (R Development Core Team 2013); linear mixed effects models were executed using lmer from the lme4 package (Bates, Meachler & Bolker 2013). Our principal aim was to assess the impact of the six immune challenge treatments on fly life-history traits. Data from the six treatments were progressively pooled by a systematic process to produce minimally complex models that adequately explained trait variation. We concluded that the treatment differences were important if the more complex
model had improved explanatory power (see below). The impact of breaching the cuticle was tested by pooling data from the gas control and injection control treatments. We tested whether trait variation was due to pathogenesis or immune activity by pooling data from live and dead microbial treatments, and we tested if microbial identity influenced immune costs by pooling bacterial and fungal treatments. Finally, tests for a general effect of immune stimulation compared control groups to data pooled from across all microbial injected flies.

For analyses involving repeated measures on vials of flies over successive days the term ‘vial’ was included as a random effect, whilst temporal changes were assessed using the fixed effect of ‘day’ and its two-way interaction with treatment. With the exception of fecundity studies, models also included fly ‘gender’ and a ‘gender by treatment’ interaction. When analysing metabolic rate data, models contained an additional random effect of ‘block’, accounting for variation between the seven blocks over which the investigation was conducted. We also tested the impact of time of day and the air CO₂ concentration when each metabolic rate measurement was made. Finally, for investigations of variation in food ingestion after immune challenge, ‘vial’ was used as a random effect to associate the two five-fly batches from each vial. The number of flies in assay vials for fecundity, metabolic rate and body weight experiments varied slightly due to escapes; in each case we tested whether fly number influenced the trait measured.

All models employed Gaussian errors. Models were serially simplified by eliminating terms for which inclusion did not enhance model explanatory power by 2 AIC units. Likelihood-ratio tests comparing models with and without the term of interest were used to calculate P-values. Results are presented as means ± standard errors.
Results

FECUNDITY COSTS OF IMMUNE ACTIVATION IN D. MELANOGASTER

Fecundity was recorded from 30 groups of 10 flies, observed daily for three days after receiving immune treatments. Immune stimulation by microbes was associated with a major reduction in fecundity (Fig. 1; control vs immune challenged flies, $\chi^2_1 = 72.42, P = 2.2 \times 10^{-16}$). Mean fecundity of flies receiving a microbial injection of any type was 2.16 eggs fly$^{-1}$ day$^{-1}$ (± 0.109), approximately half that of flies receiving control treatments, which laid 4.16 eggs fly$^{-1}$ day$^{-1}$ (± 0.150). The egg output of control injected IC flies (4.22 eggs fly$^{-1}$ day$^{-1}$ ± 0.153) was not different from the control anaesthetised GC flies (4.12 eggs fly$^{-1}$ day$^{-1}$ ± 0.146), demonstrating the injection process itself had no significant effect on fecundity ($\chi^2_1 = 0.41, P = 0.521$). The flies receiving microbial immune challenges all responded similarly, with no individually significant differences between treatments ($\chi^2_3 = 3.44, P = 0.329$). Indeed there was no significant fecundity difference between flies injected with live and dead microbes ($\chi^2_1 = 3.08, P = 0.079$), nor between flies injected with bacteria and fungi ($\chi^2_1 = 0.26, P = 0.613$). Fecundity did not change notably across the days of the experiment (day, $\chi^2_1 = 1.71, P = 0.190$) and the fecundity reduction associated with immune stimulation remained significant three days after microbial injection ($\chi^2_1 = 17.71, P = 2.2 \times 10^{-5}$). The exact number of flies in each vial varied slightly (mean = 9.56, SE = 0.133), however this variation did not influence the per-fly fecundity ($\chi^2_1 = 0.27, P = 0.60$).

IMMUNE ACTIVATION DECREASED THE METABOLIC RATE OF D. MELANOGASTER

To investigate the effects of immune upregulation on metabolic rate 4100 flies in single-sex groups of 10 were subjected to metabolic rate measurements after immune challenge or control treatment. The metabolic rate of immune activated flies was 6% lower than control flies (Fig. 2): a highly significant decline ($\chi^2_1 = 25.42, P < 4.0 \times 10^{-7}$). The four microbial treatments reduced metabolic rate by similar amounts ($\chi^2_3 = 1.16, P = 0.763$). There was no difference either between live and dead microbial injections ($\chi^2_2 = 0.67, P = 0.717$), or...
between fungal and bacterial injections ($\chi^2_2 = 0.80, P = 0.671$). As with fecundity experiments, metabolic rate declines were associated with microbe exposure, not the injection process: metabolic rate of control injected IC flies (1.83 nmol min$^{-1}$ fly$^{-1}$ ± 0.045) was almost the same as anesthetised GC flies (1.85 nmol min$^{-1}$ fly$^{-1}$ ± 0.041) and the difference was not significant ($\chi^2_1 = 1.60, P = 0.206$). The metabolic rate reduction associated with immune activation persisted during our experiment: following initial reduction there was no consistent metabolic rate change across the three days post-treatment ($\chi^2_1 = 0.63, P = 0.427$).

The CO$_2$ levels in the laboratory fluctuated naturally during the study; higher CO$_2$ concentrations at the start of an assay were associated with slightly lower metabolic rates ($\chi^2_1 = 8.40, P = 0.003$): an increase of 1 ppm CO$_2$ was associated with a metabolic rate decrease of 0.004 nmol min$^{-1}$ fly$^{-1}$ (95% CI 0.003-0.007). Time of day at which measurements were taken did not affect fly metabolic rate ($\chi^2_1 = 0.01, P = 0.918$). A very small number of flies escaped from vials during transfers, therefore the mean flies per vial was 9.99; (SE = 0.002), this variation had no effect on the per-fly metabolic rate ($\chi^2_1 = 0.51, P = 0.477$). The metabolic rate of male flies was significantly less than females (Fig. 3; $\chi^2_1 = 25.42, P = 2.2 \times 10^{-16}$). Furthermore, a significant gender by immune activation interaction demonstrated that immunity-induced metabolic declines were 50% greater in males than females (Fig. 3; $\chi^2_1 = 8.55, P = 0.003$). For females, control metabolic rate was 2.14 nmol min$^{-1}$ fly$^{-1}$ (± 0.050), which declined by an average of 0.10 nmol min$^{-1}$ fly$^{-1}$ following immune activation; whereas in males control metabolic rate was 1.71 nmol min$^{-1}$ fly$^{-1}$ (± 0.050) and immune treatments caused a 0.16 nmol min$^{-1}$ fly$^{-1}$ decline.

IMMUNE ACTIVATION REDUCED THE FOOD INTAKE OF D. MELANOGASTER

We measured food intake by assessing pigment uptake into the gut from coloured food. There were 70 independent feeding assays, each on a single-sex group of 10 flies; each group was then split in half for 140 pigment assays on five-fly samples. Microbe injected flies ate 72.4 μg fly$^{-1}$ day$^{-1}$ (± 2.65), 30.9% less than control flies, which ate 104.7 μg fly$^{-1}$ day$^{-1}$.
There were no significant differences in feeding rate between bacterial and fungal treatments ($\chi^2_1 = 1.41, P = 0.235$), live and dead microbial injections ($\chi^2_1 = 0.58, P = 0.445$), nor between the IC and GC control groups ($\chi^2_1 = 0.11, P = 0.74$). Whilst male flies ate significantly less than females ($\chi^2_1 = 34.98, P = 3.3 \times 10^{-9}$), the extent of the feeding decline was of similar magnitude in both sexes (Fig. 5; $\chi^2_1 = 0.02, P = 0.888$): males and females suffered 32.9 and 31.5 μg fly$^{-1}$ day$^{-1}$ reductions respectively.

IMMUNE ACTIVATION DID NOT AFFECT BODY MASS IN D. MELANOGASTER

Experiments testing the impact of immune activation on fly body weight assessed mass for 10-fly groups of males ($n = 64$) and females ($n = 62$). In this case we only compared injection control, dead bacteria and dead fungal spore treatments. Flies were weighed the day before immune challenge and for three days afterwards. Female flies gained 7.6% weight during the experiment, whereas male flies lost 3.9% weight (Fig. 6; sex by day interaction ($\chi^2_1 = 327.97, P < 2.2 \times 10^{-16}$). However, considering just the post-injection data, the immune treatments had no effect on absolute weight, nor on the temporal pattern of weight change for either sex (treatment effect, males $\chi^2_2 = 1.57, P = 0.456$, females: $\chi^2_2 = 0.50, P = 0.778$; day by treatment interaction, males: $\chi^2_2 = 0.74, P = 0.691$, females: $\chi^2_2 = 0.32, P = 0.854$).

There was slight variation in the exact number of flies in each vial (mean = 9.95, SE = 0.014) but this did not affect the per-fly body weight ($\chi^2_1 = 0.29, P = 0.589$).

Discussion

In this study we investigated the validity of the hypothesis that the costs of defending against parasites arise because resources normally invested in other physiological processes must be diverted to fuel the demands of the immune response. We demonstrated clear immune system costs in female flies, which suffered a sustained 45% reduction in fecundity across
the three days following immune challenge. However, our findings challenge the common notion that this fecundity decline results from reallocation of resources to immunity.

We studied the three corners of the energy budget triangle: the rate at which energy is used (metabolic rate), the rate at which energy is acquired (feeding) and the dynamics of resource accumulation (body weight). We predicted that if mounting an immune response requires mobilisation of additional stored resources then fly metabolic rate would increase during immune system activity. Instead, metabolic rate fell by an average of 6% and remained low up to four days after immune challenge. If resource expenditure were perfectly reallocated from fecundity to immunity then this need not require an overall increase in metabolic rate. However, at the same time, resource acquisition fell dramatically: flies entered an anorexic state after immune challenge, with feeding rate falling by an average of 31%. Against this backdrop of depressed physiological activity we detected no effect of immune stimulation on body weight, providing no evidence that metabolism during immune activation depletes stored reserves. Nevertheless, flies are 70% water (Burr & Hunter 1969) and may gain water and loose fat during lethal pathogenic infections (Arnold, Johnson & White 2013). We cannot rule out that similar alterations could have occurred due to immune activation by dead microbes in our experiments, potentially confusing detailed interpretation of total body weight trends.

The most parsimonious explanation of our findings is that reduced food ingestion in response to immune challenge restricts resource availability, resulting in depressed metabolic rate and limited fecundity. Therefore, fecundity costs associated with immune stimulation are probably not because the immune response requires increased energy expenditure, but because anorexia induced by the immune system reduces acquisition of resources that are normally required for egg production. This interpretation is supported by comparison of physiological changes in males and females. The reduction in metabolic rate was significantly greater in males than females, whereas feeding reductions were similar in both sexes. We hypothesise that females mobilised energetic resources by resorbing eggs from the ovarioles, as has been shown in both Drosophila and mosquitoes suffering
infections (Ahmed & Hurd 2006; Thomson, Schneemann & Johnson 2012). Egg resorption may provide females with additional energetic reserves, not available to males, which support metabolism when food acquisition is restricted during immune responses. We note that this is a form of resource reallocation, but emphasise our conclusion that immune activation costs originate from reduced food intake; if egg resorption occurs in this manner, it only partially ameliorates some of these costs.

Our experiments only measured food intake for 1 day post-immune challenge, whereas other traits were measured for three days. This was because the assay involved sacrificing flies to measure food ingestion. This limits our understanding of how feeding behaviour is affected by immune challenge beyond 24 hours. However, immune response-dependent trends in fecundity, metabolic rate, and food intake established rapidly during the first day post-challenge, and at least for fecundity and metabolic rate did not reverse by day three.

If infection-induced anorexia is a key driver of the fecundity costs associated with immune upregulation, this questions why the anorexic response exists. This phenomenon is phylogenetically conserved, which perhaps points to a fundamental function and a variety of adaptive benefits has been proposed (Exton 1997). Experiments in insects suggest anorexia can enhance survival during pathogen attack (Ayres & Schneider 2009) and may function to mediate conflicts between processing food and immune activity (Adamo et al. 2010).

One mechanistic factor shaping these immune-induced metabolic shifts is that some immune system molecular pathways have pleiotropic roles in other physiological processes. For example, in crickets, the lipid transport molecule apolipopophorin III is involved in immune function, as well as in fuelling energetic demands of locomotion. This generates a trade-off between lipid transport and immune defence causing immunosuppression following exercise (Adamo et al. 2008). Also, the Toll pathway’s immune activation role may conflict with nutrient storage and growth as Toll activity can depress insulin signalling (DiAngelo et al. 2009). Therefore, a variety of proximate mechanisms may be responsible for metabolic rate suppression in D. melanogaster following immune activation.
There were no differences in the responses of flies to live or dead microbes. Therefore, surprisingly, the fecundity, feeding and metabolic rate reductions apparently all resulted solely from activity of the immune response (or other downstream systems) and not from infection pathology. Whilst *B. bassiana* is highly pathogenic to flies (Tinsley *et al* 2006), *E. coli* inoculation does not normally cause mortality (Lemaitre & Hoffmann 2007); immune responses caused by other pathogens or increased infection doses may cause different effects. Our studies revealed no impact of immune stimulation on body weight; however, here we only tested the effect of dead microbes, it remains possible that responses to live microbial infection might be different. Recent studies have used *D. melanogaster* as a model to understand the physiological changes which take place in the lead up to death by lethal bacterial and viral infections (Chambers, Song & Schneider 2012; Arnold *et al*. 2013). Chambers *et al*. (2012) reported that flies dying of *Listeria monocytogenes* suffered depleted energy stores and underwent major changes in the transcription and activity of key metabolic pathways. Arnold *et al*. (2013) concluded that pathology caused by *Drosophila C* virus resulted in metabolic rate reduction. However, both these studies compared flies infected with live microbes to unmanipulated flies. Our data challenge these conclusions, as we have found that immune system activity alone can drive similar metabolic shifts of considerable magnitude. Furthermore, our data show very similar costs and metabolic responses to fungal and bacterial inoculation. Thus, it seems likely that these major physiological changes are not specifically triggered by either the Toll or IMD immune signalling pathways, but represent a generic response to immune activation.

The fitness reduction associated with immune system activation is potentially substantial. Our data show that, not only does fecundity fall by 45% following immune challenge, but also this fecundity depression persists for three days. Indeed Zerofsky *et al*. (2005) showed fecundity was reduced for up to six days after immune activation. Thus, depressed fecundity persists for a substantial fraction of a fly’s life after acute immune upregulation. Whilst some aspects of the fly immune response can be long-lived, IMD pathway transcriptional upregulation following Gram negative bacterial challenge generally
only persists for ~24 hours (Lemaitre & Hoffmann 2007). Thus, the persistent nature of these fecundity costs might possibly provide additional evidence against the hypothesis that resource reallocation to immune molecule synthesis drives fecundity reduction. We note our measures of fecundity are low for D. melanogaster, probably because our food vials were not supplemented with live yeast. Fitness is determined by the quality as well as the quantity of offspring; further studies might address the trans-generational impacts of immune activation on general fitness traits.

For an organism that is infected by a potentially lethal microbe, these immune activation costs may be worth paying; the inducible nature of these defences protects the organism from these fitness consequences except when they are necessary. When epidemics sweep through a population resistant individuals may survive, whilst susceptible individuals die. Our data suggest that the survivors may still suffer considerable fitness reduction as a consequence of resisting infection by deploying immune responses. Selection should shape the magnitude of immune defence costs; high costs of resisting pathogen infection may select for the alternative strategy of tolerance to the presence of microbes (Little et al. 2010). Sizeable immunity costs may have profound consequences when the immune system is activated in anticipation of infection. Some organisms adaptively upregulate immune defence when environmental cues enable prediction of elevated pathogen risk: for example density dependent prophylaxis in desert locusts (Wilson et al. 2002). Immune responses are also activated in the absence of pathogen infection during courtship and in response to mating (McGraw et al. 2004; Immonen & Ritchie 2012). Thus, immune system upregulation may be a major cost of copulation that could generate selective forces governing the evolution of polyandry and female willingness to mate.

The sizeable nature of this immune response-induced fecundity cost has an important applied dimension. Entomopathogenic fungi, such as B. bassiana which we used here, are currently being trialled for control of the mosquito vectors of human pathogens, such as the malaria parasite Plasmodium. Unlike the problems associated with the rapid evolution of resistance to chemical insecticides in vector populations, these biopesticides
have been proposed to be ‘evolution proof’ (Read, Lynch & Thomas 2009). This is because fungal biopesticides kill mosquitoes slowly. Thus although mosquitoes die before they can transmit human infections, they still have substantial opportunities to lay eggs post-exposure, reducing the fitness loss caused by pesticide control compared to conventional chemical insecticides. However, our data demonstrate that immune system activation by fungi results in a substantial fitness reduction. Similar findings have been reported for Anopheles mosquitoes (Mouatcho, Koekemoer & Coetzee 2011). We therefore urge caution that even if fungal biopesticides result in slow vector mortality, substantial fecundity loss following exposure could still generate strong selection pressure for the evolution of novel mechanisms to reduce mortality from biopesticides. Nevertheless, we acknowledge that our experiments administered microbes by injection and that immune responses following infection by natural routes could differ.

We hope that this study stimulates further critical evaluation of the role resource-reallocation plays in generating the costs of life-history trait investment. It is appealing to assume that fitness costs result from switches in resource allocation decisions. However, for the activation costs of resisting parasite infection, immune system deployment causes major impairment of resource acquisition, of sufficient magnitude to explain fecundity costs.

Acknowledgements

This research was funded by a PhD studentship from the Pakistan Higher Education Commission and Stirling University. We are grateful to Luc Bussière and Stuart Auld for critical comments and to Phil Wookey and Nadege Minois for advice on experimental techniques.

Data Archiving
Data will be uploaded to Dryad prior to publication.

Legends

Fig. 1. Microbial injections decreased the fecundity of *D. melanogaster*. Eggs were counted from 30 groups of 10 flies for three consecutive days after immune treatments. Treatments were gas control (GC), injection control (IC), dead bacteria (*E. coli*; DB), live bacteria (LB), dead fungus (*B. bassiana*; DF) and live fungus (LF). Points represent daily means for each treatment and error bars show mean standard errors. Different letters (a/b) denote significantly different groups of treatments.

Fig. 2. Metabolic rate of *D. melanogaster* decreased after immune stimulation by microbial injection. Letters (a/b) indicate that the control treatments (GC and IC) differed significantly from the flies receiving bacterial (DB, LB) and fungal (DF, LF) immune challenges. Data points show means ± standard errors from 410 independent replicate groups of 10 flies assayed daily for between two and four days after treatment.

Fig. 3. Immune stimulation caused a greater metabolic rate decline in male flies than in females. Bars show mean metabolic rate of immune activated (DB, LB, DF, LF) and control (GC, IC) flies with their standard errors.

Fig. 4. Microbial injection reduced food ingestion in *D. melanogaster*. Data points represent means (± standard errors) from 140 measurements of food consumption on five-fly pools. The letters (a/b) show that all immune challenged flies (DB, LB, DF, LF) responded similarly, but were significantly different from control treatments (GC, IC).
Fig. 5. The extent of feeding reduction caused by immune challenge was the same for males and females. Bars represent the mean food ingestion for immune activated (DB, LB, DF, LF) and control treatments (GC, IC) with their standard errors.

Fig. 6. Immune activation had no detectable effect on the rate at which fly weight changed. Flies were weighed the day before immune treatment (Day -1) and for three days afterwards (Day 1, 2 & 3). Female flies gained weight, whilst male flies lost weight during this period. However, immune challenge with dead bacteria (DB) or dead fungi (DF) did not influence this temporal pattern compared to controls. 120 independent 10-fly groups were repeatedly weighed; points show means ± 2 x the mean standard error.

References

