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Abstract

Let G be a finite graph with H as a star complement for an eigen-
value other than 0 or −1. Let κ(G), δ(G) denote respectively the
vertex-connectivity and minimum degree of G. We prove that κ(G)
is controlled by δ(G) and κ(H). In particular, for each k ∈ IN there
exists a smallest non-negative integer f(k) such that κ(G) ≥ k when-
ever κ(H) ≥ k and δ(G) ≥ f(k). We show that f(1) = 0, f(2) = 2,
f(3) = 3, f(4) = 5 and f(5) = 7.
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1 Introduction

Let G be a finite simple graph of order n with µ as an eigenvalue of mul-
tiplicity k. (Thus the corresponding eigenspace E(µ) of a (0, 1)-adjacency
matrix A of G has dimension k.) A star set for µ in G is a subset X of
the vertex-set V (G) such that |X| = k and the induced subgraph G − X
does not have µ as an eigenvalue. In this situation, G −X is called a star
complement for µ in G. We use the notation of [7], where the fundamental
properties of star sets and star complements are established in Chapter 5.

It is well known that if µ 6= −1 or 0 and n > 4 then |X| ≤
(n−k

2

)
[1];

in particular, there are only finitely many graphs with a prescribed star
complement H for some eigenvalue other than 0 or −1. Certain graphs can
be characterized by a star complement: for surveys, see [9] and [11]. More
generally, it is of interest to investigate properties of H that are reflected
in G: connectedness is one such property, as noted in [8, Section 2]. Here
we discuss k-connectedness for k > 1. In Section 2 we show that for each
k ∈ IN there exists a non-negative integer F (k) with the following property:
if µ 6∈ {−1, 0}, H is k-connected and G has least degree δ(G) ≥ F (k) then G
is k-connected. It is straightforward to show that if f(k) is the smallest non-
negative integer with this property, then f(1) = 0 and f(2) = 2. In Sections
3 and 4 we show that f(3) = 3, f(4) = 5, f(5) = 7 and 8 ≤ f(6) ≤ 20.

We take V (G) = {1, . . . , n}, and write u ∼ v to mean that vertices u and
v are adjacent. For S ⊆ V (G), we write GS for the subgraph induced by S,
and ∆S(u) for the S-neighbourhood {v ∈ S : v ∼ u}. For the subgraph H
of G we write ∆H(u) for ∆V (H)(u). Let P be the matrix of the orthogonal
projection of IRn onto E(µ) with respect to the standard orthonormal basis
{e1, e2, . . . , en} of IRn.

We shall require the following properties of star sets and star comple-
ments; the first follows from [7, Proposition 5.1.1].

Lemma 1.1 The subset S of V (G) lies in a star set for µ if and only if the
vectors Pei (i ∈ S) are linearly independent.

Since P is a polynomial in A [7, Equation 1.5] we have µPei = APei =
PAei (i = 1, . . . , n), whence:

Lemma 1.2 µPei =
∑

j∼i Pej (i = 1, . . . , n).

As a consequence of Lemmas 1.1 and 1.2 we have:

Lemma 1.3 [7, Proposition 5.1.4] Let X be a star set for µ in G, and let
H = G −X. If µ 6∈ {−1, 0}, then V (H) is a location-dominating set in G,
that is, the H-neighbourhoods ∆H(u) (u ∈ X) are non-empty and distinct.

By interlacing [7, Corollary 1.3.12] we have:

Lemma 1.4 If S is a star set for µ in G and if U is a proper subset of S
then S \ U is a star set for µ in G− U .

The next result strengthens [1, Theorem 2.3], which says that if G has H
as a star complement of order t, for an eigenvalue µ 6∈ {−1, 0}, then either
(a) G has order at most

(t+1
2

)
, or (b) µ = 1 and G = K2 or 2K2.

1



Proposition 1.5 Let G be a graph with X as a star set for µ, and let
H = G−X. Let s = | ∪i∈X ∆H(i)|.
(i) If |X| > s then GX has µ as an eigenvalue of multiplicity at least |X|−s.
(ii) If µ 6∈ {−1, 0} then |X| ≤

(s+1
2

)
.

Proof. Since s ≤
(s+1

2

)
, the second assertion is immediate when |X| ≤ s.

Accordingly we assume throughout the proof that |X| > s. We show first
that µ is an eigenvalue of GX . Let S = ∪i∈X∆H(i) and X = {1, 2, . . . , k}.
By Lemma 1.2, the vectors µPei − Σ{Pej : j ∈ ∆X(i)} (i ∈ X) lie in the
subspace 〈Peh : h ∈ S〉, and so there exist α1, α2, . . . αk, not all zero, such
that

k∑
i=1

αi(µPei − Σ{Pej : j ∈ ∆X(i)}) = 0.

Since the vectors Pei (i ∈ X) are linearly independent, it follows that
(µI −AX)a = 0, where a = (α1, α2, . . . αk)> and AX is the adjacency ma-
trix of GX .

Let Y be a star set for µ in GX and consider the graph G − Y . If
|X| − |Y | > s then the above argument shows that µ is an eigenvalue of
GX\Y . This is a contradiction because GX\Y is a star complement for µ in
GX . Hence |Y | ≥ |X| − s, and we have proved the first assertion.

Since GX has a star complement GX\Y of order at most s, we have

|X| ≤
(s+1

2

)
whenever µ 6∈ {−1, 0}. (Note that by Lemma 1.3, we have

GX 6= K2, while s = 3 when GX = 2K2.) 2

2 Controlling connectivity

Let G be a graph with a k-connected star complement H for an eigenvalue
other than −1 or 0. In effect the following result establishes a quadratic
upper bound for δ(G) in the case that G is not k-connected. The vertex-
connectivity of G is denoted by κ(G), and we refer to a separating set of
size κ(G) as a minimum separating set.

Theorem 2.1 Let G be a graph with H as a star complement for an eigen-
value other than −1 or 0. If κ(H) ≥ k ≥ 1 and δ(G) ≥ 1

2(k− 1)(k+ 2) then
κ(G) ≥ k.

Proof. The proof is by induction on k; the result holds for k = 1 since
V (H) is a dominating set in G. Assume that k > 1 and that the result holds
for k−1. Suppose by way of contradiction that κ(G) < k; then κ(G) = k−1
by the induction hypothesis.

Let S be a cutset in G of size k − 1. If S contains a vertex v outside H
then (by Lemma 1.4) G− v has H as a star complement, while δ(G− v) ≥
1
2(k− 1)(k+ 2)− 1 > 1

2(k− 2)(k+ 1). By the induction hypothesis, we have
κ(G − v) ≥ k − 1. This is a contradiction because G − v has S \ {v} as a
separating set of size k − 2.

Thus S ⊆ V (H). Since H−S is connected, H−S lies in some component
C of G−S. Let R = V (G−S) \V (C). Note that if j ∈ R then ∆H(j) ⊆ S,
and so |∆R(j)| ≥ 1

2(k − 1)(k + 2) − (k − 1) = 1
2k(k − 1). Hence |R| >

(k
2

)
.

2



However, | ∪j∈R ∆H(j)| ≤ k − 1, and so by Proposition 1.5(ii) we have

|R| ≤
(k
2

)
, a contradiction. 2

Corollary 2.2 Let G be a graph with H as a star complement for an
eigenvalue other than −1 or 0. Then κ(G) is controlled by κ(H) and δ(G).

Proof. Let κ = κ(H), δ = δ(G), and F (k) = 1
2(k − 1)(k + 2) (k ∈ IN).

Define g(κ, δ) as the largest k ≤ κ such that F (k) ≤ δ. Then κ(G) ≥ g(κ, δ)
by the Theorem. Since also κ(G) ≤ δ, the result follows. 2

In view of Theorem 2.1, we may define f(k) (k ∈ IN) as the least non-
negative integer such that κ(G) ≥ k whenever κ(H) ≥ k and δ(G) ≥ f(k).
Thus f(k) ≤ F (k) for all (k ∈ IN). The following example shows that
f(k) ≥ k for all k > 1.

Example 2.3 For k ≥ 2, let Gk be the graph obtained from a (k+1)-clique
Hk by adding a vertex of degree k− 1, and let µ be the largest eigenvalue of
Gk. Since Gk is connected, we have µ > k and so Hk is a star complement
for µ. Now κ(Gk) = k − 1 = δ(Gk), while κ(Hk) = k. Hence f(k) ≥ k. 2

Since F (2) = 2, we have f(2) = 2, an observation which follows also
from [8, Proposition 2.1(ii)]. We investigate f(k) (k = 3, 4, 5, 6) in the next
two sections; there we shall require the following result, which is proved by
refining an argument in the proof of Theorem 2.1.

Proposition 2.4 Let G be a graph with H as a star complement for an
eigenvalue other than −1 or 0. If κ(H) ≥ k > 1, δ(G) > f(k − 1) and
κ(G) < k then every minimum separating set for G lies in V (H).

Proof. Let S be a minimum separating set for G, and suppose by way
of contradiction that S contains a vertex v outside H. Then H is a star
complement for µ in G − v. Since κ(H) ≥ k − 1 and δ(G − v) ≥ f(k − 1),
we have κ(G− v) ≥ k− 1. This is a contradiction because G− v has S \ {v}
as a separating set of size at most k − 2. 2

3 The cases κ(H) = 3, 4

In this section we determine f(3) and f(4). We make use of the following
observation.

Lemma 3.1 Let G be a graph with X as a star set for an eigenvalue other
than −1 or 0, and let H = G−X. Then X does not contain vertices 1, 2, 3
such that ∆H(1) is the disjoint union of ∆H(2) and ∆H(3).

Proof. Suppose by way of contradiction that ∆H(1) = ∆H(2) ∪̇ ∆H(3).
By Lemma 1.4, we may take X = {1, 2, 3}. Let |V (G)| = n and let P be
the orthogonal projection of IRn onto E(µ), so that

Σ{Pei : i ∈ ∆H(1)} = Σ{Pej : j ∈ ∆H(2)}+ Σ{Pek : k ∈ ∆H(3)}.

By Lemma 1.2, we have

µPe1 − Σ{Pei : i ∈ ∆X(1)} = Σ{Pei : i ∈ ∆H(1)} =

µPe2 − Σ{Pej : j ∈ ∆X(2)}+ µPe3 − Σ{Pek : k ∈ ∆X(3)}. (1)
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We examine the various possibilities for GX . To within a transposition
of the vertices 2 and 3, there are six cases to consider, namely those in which
the edge-set of GX is one of {12, 13, 23}, {12, 23}, {12, 13}, {12}, {23}, ∅.
Equation (1) becomes respectively:

µPe1 − Pe2 − Pe3 = µPe2 − Pe1 − Pe3 + µPe3 − Pe1 − Pe2,

µPe1 − Pe2 = µPe2 − Pe1 − Pe3 + µPe3 − Pe2,
µPe1 − Pe2 − Pe3 = µPe2 − Pe1 + µPe3 − Pe1,

µPe1 − Pe2 = µPe2 − Pe1 + µPe3,

µPe1 = µPe2 − Pe3 + µPe3 − Pe2,
µPe1 = µPe2 + µPe3.

By Lemma 1.1, the vectors Pe1, Pe2, Pe3 are linearly independent, and
this leads to a contradiction in all cases. 2

Proposition 3.2 Let G be a graph with H as a star complement for an
eigenvalue other than −1 or 0. If H is 3-connected and δ(G) ≥ 3 then G is
3-connected.

Proof. Suppose by way of contradiction that κ(G) < 3. Since f(2) = 2,
we have κ(G) = 2. Let H = G − X and let S be a minimum separating
set in G, say S = {v, w}. Then S ⊆ V (H) by Proposition 2.4. As in the
proof of Theroem 2.1, let R be the set of vertices in X that lie outside the
component of G−S containing H−S. Then ∆H(u) ⊆ S for all u ∈ R. Since
δ(G) ≥ 3, while the neighbourhoods ∆H(u) (u ∈ R) are non-empty and
distinct, R consists of 3 pairwise adjacent vertices whose H-neighbourhoods
are {v}, {w} and {v, w}. Now Lemma 3.1 provides a contradiction. 2

It follows that f(3) = 3. We begin our investigation of f(4) with an
example which demonstrates that f(4) > 4. (This example was found ex-
perimentally using the computer package GRAPH [4].)

Example 3.3 (Here non-integer eigenvalues are given to 4 decimal places.)
Let H be the graph obtained from an 8-clique by deleting an edge, and let
u, v, w be pairwise adjacent vertices in H. Let G be the graph obtained
from H by adding three pairwise adjacent vertices with H-neighbourhoods
{u, v}, {u,w}, {v, w}. The spectrum of G is 7.1017, 2.3416, 0(3),−1(2),
−1.4433,−2(3), and the spectrum of H is 6.7720, 0,−1(5),−1.7720. Thus G
has H as a star complement for −2. Now κ(H) = 6 and δ(G) = 4, while
κ(G) = 3. It follows that f(4) ≥ 5. 2

Proposition 3.4 Let G be a graph with H as a star complement for an
eigenvalue other than −1 or 0. If H is 4-connected and δ(G) ≥ 5 then G is
4-connected.

Proof. Suppose by way of contradiction that κ(G) < 4. Since f(3) = 3,
we have κ(G) = 3. Let H = G − X and let S be a minimum separating
set in G, say S = {u, v, w}. Then S ⊆ V (H) by Proposition 2.4. Defining
R as before, we have |R| ≤ 7 by Lemma 1.3. On the other hand, |R| ≥ 4
because δ(G) ≥ 5. Moreover, if |R| = 4 then R induces a clique and the
H-neighbourhoods of the vertices in R are the four subsets of size 2 or 3.
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In this case, let R = {1, 2, 3, 4}, with ∆H(1) = {u, v, w}, ∆H(2) = {v, w},
∆H(3) = {u,w} and ∆H(4) = {u, v}. By Lemma 1.4, we may take X = R.
Defining P as before, we have from Lemma 1.2:

2(µPe1 − Σ{Pei : i ∈ ∆X(1)}) = 2Σ{Pei : i ∈ S} =

4∑
j=2

(µPej − Σ{Pek : k ∈ ∆X(j)}).

It follows that (2µ+3)Pe1 = µ(Pe2+Pe3+Pe4), and hence that Pe1, Pe2,
Pe3, Pe4 are linearly dependent, contradicting Lemma 1.1.

We deduce that |R| ∈ {5, 6, 7}. Now the neighbourhoods ∆H(i) (i ∈ R)
must include two disjoint subsets whose union is a third such neighbourhood,
and Lemma 3.1 provides a final contradiction. 2

We deduce that f(4) = 5.

4 The cases κ(H) = 5, 6

We begin with two examples which show that f(5) ≥ 7 and f(6) ≥ 8. Here
we make use of the following result from [10, Section 3] (see also [6, Example
5.1.14] and [7, Example 5.2.16]).

Proposition 4.1 Let G be a finite graph with a proper induced subgraph
G−X = H ∼= K8 such that
(i) |∆H(u)| = 3 for all u ∈ X,
(ii) for distinct vertices u, v of X, |∆H(u) ∩∆H(v)| = 2 when u ∼ v, and
|∆H(u) ∩∆H(v)| = 1 when u 6∼ v.

Then H is a star complement in G for the eigenvalue −2.

Example 4.2 Let G be the graph obtained from an 8-clique by adding four
pairwise adjacent vertices whose H-neighbourhoods are the four 3-subsets
of a 4-set in V (H). By Proposition 4.1, G has H as a star complement for
−2. Now κ(H) = 7, δ(G) = 6 and κ(G) = 4. Hence f(5) > 6. 2

Example 4.3 Here G is constructed from an 8-clique H by first adding
a set X of ten vertices whose H-neighbourhoods are the ten 3-subsets of
a 5-set in V (H); secondly, we add an edge between vertices u and v of X
whenever |∆H(u) ∩∆H(v)| = 2. (It follows that X induces the line graph
L(K5).) By Proposition 4.1, G has H as a star complement for −2. We
have κ(H) = 7, δ(G) = 7 = δ(H) and κ(G) = 5. Hence f(6) > 7. 2

Since F (5) = 14 and F (6) = 20, we deduce that 7 ≤ f(5) ≤ 14 and
8 ≤ f(6) ≤ 20. We conclude by showing that f(5) = 7.

Proposition 4.4 Let G be a graph with H as a star complement for an
eigenvalue other than −1 or 0. If H is 5-connected and δ(G) ≥ 7 then G is
5-connected.

Proof. Suppose by way of contradiction that κ(G) < 5. Since f(4) = 5,
we have κ(G) = 4. Let H = G−X and let S be a minimum separating set
in G. Then S ⊆ V (H) by Proposition 2.4. Defining R as before, we have
|R| ≥ 5 because δ(G) ≥ 7. Moreover, if |R| = 5 then R induces a clique and
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the H-neighbourhoods of the vertices in R are the five subsets of size 3 or 4.
If R = {1, 2, 3, 4, 5}, with ∆H(1) = S then (arguing as before) we find that
(3µ+ 4)Pe1 = µ(Pe2 + Pe3 + Pe4 + Pe5), contradicting Lemma 1.1.

Next suppose that |R| = 6. Applying Proposition 1.5(i) with s ≤ 4 we
see that µ is a multiple eigenvalue of GR. Now each vertex of GR has degree
at least 3, with at most one vertex of degree equal to 3, and so each vertex
of the complement GR has degree at most 2, with at most one vertex of
degree equal to 2. Thus GR is one of the graphs numbered 1,2,3,4,8,9 in
[5]. Only the last of these has a multiple eigenvalue other than −1 or 0, and
it follows that GR is the skeleton of an octahedron (with µ = −2). Hence
|∆H(j)| ≥ 3 for all j ∈ R. This contradicts Lemma 1.3 because S has only
five distinct subsets of size at least 3.

Finally, suppose that |R| ≥ 7. Let Q be a 7-subset of R and consider the
subgraph G′ of G induced by V (H) ∪̇ Q. By Proposition 1.5(i), GQ (= G′Q)
has µ as an eigenvalue of multiplicity at least 3. Hence GQ = 3K2 ∪̇K1, with
µ = 1. (This follows from an inspection of the spectra of (i) the connected
graphs of order 7 [2, pp.176-232] and (ii) the connected graphs of order at
most 6 [3, 5]. Note that in case (i), if µ is not an integer then µ has an
algebraic conjugate µ∗ 6= µ with the same multiplicity. In this situation,
µ+ µ∗ is an integer and the largest eigenvalue λ1 of G is −3(µ+ µ∗); since
GQ is not complete, necessarily λ1 = 3.)

Let Q = {1, 2, 3, 4, 5, 6, 7}, with 1 ∼ 2, 3 ∼ 4, 5 ∼ 6, and let W =
〈Peh : h ∈ S〉, where now P represents the orthogonal projection onto E(µ)
associated with G′. The subspace W has dimension 4 because it contains
the vectors Pe1 − Pe2, Pe3 − Pe4, Pe5 − Pe6 and Pe7. Hence the vectors
Peh (h ∈ S) are linearly independent. Now

Pe1 − Pe2 = Σ{Pei : i ∈ ∆S(1)}, Pe2 − Pe1 = Σ{Pei : i ∈ ∆S(2)}.

It follows that

Σ{Peh : h ∈ ∆S(1) \∆S(2)}+ Σ{Peh : h ∈ ∆S(2) \∆S(1)}

+ 2Σ{Peh : h ∈ ∆S(1) ∩∆S(2)} = 0,

a final contradiction. 2

Combining the various results from Sections 2, 3 and 4, we have:

Theorem 4.5 Let G be a graph with H as a star complement for the
eigenvalue µ. For each k ∈ IN there exists a smallest non-negative integer
f(k) with the property

µ 6∈ {−1, 0}, κ(H) ≥ k, δ(G) ≥ f(k)⇒ κ(G) ≥ k.

We have k ≤ f(k) ≤ 1
2(k − 1)(k + 2) for all k ≥ 2; moreover, f(1) = 0,

f(2) = 2, f(3) = 3, f(4) = 5, f(5) = 7 and f(6) ≥ 8. (In particular, if
µ 6∈ {−1, 0} and H is connected, then G is connected, while if µ 6∈ {−1, 0}
and H is 2-connected then either G is 2-connected or G has a pendant
vertex.)
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sults in the Theory of Graph Spectra, North-Holland (Amsterdam),
1988.
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