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ABSTRACTS 11 

Deposition of reactive nitrogen derived from intensive agriculture and industrial processes is a major 12 

threat to biodiversity and ecosystem services around the world; however our knowledge of the impacts 13 

of nitrogen is restricted to a very limited range of organisms. Here we examine the response of groups 14 

of microfauna (testate amoebae), mesofauna (enchytraeid worms) and plants to ammonium nitrate 15 

application in the Ruabon heathland long-term experiment. Plant data showed significant differences 16 

between treatments, particularly characterised by a loss of bryophytes in nitrogen-treated plots, by 17 

contrast enchytraeids showed a non-significant increase in abundance in response to treatment. Testate 18 

amoebae showed no significant changes in abundance or inferred biomass but significant changes in 19 

community structure with a reduced abundance of Corythion dubium, interpreted as a response to the 20 

loss of bryophytes. Our results suggest that simple indices of plant community may have value for 21 

bioindication while the bioindication value of testate amoebae and enchytraeids is not clearly 22 

demonstrated.  23 
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1. INTRODUCTION 25 
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Since the first commercial application of the Haber-Bosch process in 1913 human production of 26 

reactive nitrogen (Nr) has grown rapidly, with an increase of over 120% since 1970 [1]. Nr deposition in 27 

the absence of human activity is generally less than around 0.5 kg N ha−1 yr−1, while in the United 28 

Kingdom some areas currently receive deposition in excess of 40 kg N ha−1 yr−1. These levels of nitrogen 29 

deposition are sufficient to lead to a significant reduction in biodiversity [2,3] and damage to ecosystem 30 

services.  Species-loss from ecosystems is driven by both eutrophication and acidification with the 31 

relative contributions of these processes varying by habitat type.  32 

Heathlands are a UK Biodiversity Action Plan priority habitat, covering over 2,000,000 ha of 33 

upland Britain but in England and Wales their cover declined by an estimated 27% between 1947 and 34 

1980 [6]. A critical load range of 10-20 kg N ha−1 yr−1 is exceeded in many heathland areas of the British 35 

Isles with N deposition shown to reduce plant biodiversity, particularly marked by a loss of lichens and 36 

bryophytes [7]. Large-scale ecological surveillance data shows a reduction in plant species richness along 37 

the N deposition gradient even when accounting for other drivers [4]. Impacts of nitrogen on groups of 38 

heathland organisms other than plants are however poorly documented. Here we examine the response 39 

of plants and major groups of eukaryotic microorganisms and mesofauna in the same ecological 40 

experiment and consider the possible inter-relations between these groups. Our study aims to provide a 41 

broader understanding of the ecosystem-wide consequences of nitrogen pollution in heathlands and to 42 

identify possible bioindication approaches.   43 

1.1 The studied groups and their inter-relations 44 

 Testate amoebae are a group of eukaryotic microorganisms characterised by a solid shell (test) 45 

which can constitute a very large proportion of microbial biomass in organic soils [8] and are likely to 46 

have an important role in nutrient cycling [9,10]. Testate amoebae have been shown to respond to soil 47 

environmental changes to which other groups are insensitive [11] and have broad feeding preferences 48 

making them good synthesisers of overall microbial community change. Previous studies have 49 

demonstrated testate amoeba sensitivity to nutrient enrichment [12, 13, 14] and have suggested 50 

impacts from NO2 exposure [15].  51 

The enchytraeidae are a group of detritovorous, bacterivorous and fungivorous annelid worms, 52 

typically 3-30mm in length. Enchytraeids constitute a large proportion of mesofaunal biomass in many 53 

temperate soils (c. 75%: [16]) and may fill a keystone role in heathlands [17]. Enchytraeid abundance has 54 

been shown to respond to application of nitrogen fertilizer [18]. It seems possible that enchytraeids 55 



might predate testate amoebae given their size and observations of predation by other groups of worms 56 

[19 cited in 10]. Bacteria feeding on enchytraeid faeces are likely to provide a food supply for some 57 

testate amoebae and enchytraeid burrowing may aerate soil, modifying the amoeba’s habitat and 58 

translocating individuals [cf. 20]. Enchytraeids may compete with testate amoeba species for food, for 59 

instance with members of the Centropyxidae for fungi [21, 22, 23].   60 

Testate amoeba and enchytraeid communities are both intricately linked to plant communities 61 

with plants shaping the organism’s physical, chemical and biotic environment. Precise mechanisms are 62 

difficult to pin-down but it is probable that for instance amoebae are affected by the chemical quality of 63 

plant litter [24], are closely linked to mycorrhizas [25] and are affected by changes in root exudation 64 

[e.g. 26]. As decomposers enchytraeids are highly sensitive to the quality of plant litter and experimental 65 

removal of different plant species has been shown to differentially modify enchytraeid abundance [27]. 66 

Both enchytraeids and testate amoebae are likely to be involved in nutrient mineralisation and thereby 67 

influence plant nutrition [28].  68 

2. SITE and METHODS 69 

Experiments were first established on wet upland heath near Ruabon, Clwyd, North Wales (53° 70 

02’N, 3°08’W; 470m asl) in 1989 and have been extensively discussed in previous publications [29, 30, 71 

31, 32, 33]. The climate of the site is cool and oceanic: average annual air temperature is 9.8°C (2008-9 72 

data), average annual soil temperature 6.9°C (2008-9 data) and average annual precipitation 1053mm 73 

(2007-2009 data). Vegetation of the site is dominated by Calluna vulgaris with subordinate bryophytes 74 

and scattered Vaccinium myrtillus. The site is representative of the Calluna-dominated heaths (NVC type 75 

H12: C. vulgaris-V. myrtillus heath [34]) which cover large areas of upland Britain. Soil is silty clay loam 76 

with pH around 4.4  and depth of around 50cm. Ambient nitrogen deposition is around 19.9 kg N ha-1 yr-77 

1 (UK Air Pollution Information System (APIS) www.apis.ac.uk), at the upper limit of the critical load 78 

range (10-20 kg N ha-1 yr-1). The original experiments consisted of 1x1m plots which were established in 79 

May 1989, subsequent experiments with 2x2m plots were established in 1998. Nitrogen as ammonium 80 

nitrate is applied ten times a year to plots at concentrations of 0, 40, 80 and 120 kg Nr ha-1 yr-1 in the 81 

1989- (‘old’) plots and 0, 10, 20, 40 and 120 kg Nr ha-1 yr-1 in the 1998- (‘new’) plots with four replicates 82 

for each concentration. The old plots were burned in 2000 in keeping with normal management practise 83 

[35].  84 



For testate amoeba analysis samples were extracted from the control and heaviest treated (120 85 

kg N ha-1 yr-1, hereafter termed 120N) of the older (1989) plots in November 2009, more than 20 years 86 

after the onset of the treatment. Approximately 5cm3 of surface soil with any overlying litter and 87 

bryophytes were removed with a knife, sealed in plastic bags and refrigerated. In the laboratory testate 88 

amoebae were extracted using a method based on the standard methodology [36]. Sub-sample volume 89 

was measured by displacement in deionised water, samples were soaked for c.2 hours and stirred to 90 

disaggregate. The majority of recent testate amoeba studies have been based on relative abundance 91 

data (for ease of application to the palaeoecological record) however this approach may lead to loss of 92 

information [37]. Here we analyse both percentage and concentration data; an exotic Lycopodium 93 

clavatum innoculum of counted spores was added to samples to allow calculation of concentrations 94 

[38]. Suspensions were sieved at 300μm but were not back-sieved to avoid loss of small taxa [39]. 95 

Samples were mounted in glycerol and a count of 100 individuals aimed for [40]. A variety of taxonomic 96 

guides were used [41, 42, 43]; the Euglypha rotunda, Centropyxis aerophila (=Centropyxis cassis) and 97 

Difflugis pristis types follow [41]. Tests with visible cytoplasm (termed ‘live individuals’) were recorded 98 

separately from empty shells (although it was not possible to distinguish living from simply undecayed 99 

individuals). Taxon-specific biovolumes were calculated based on assumed geometric shapes and 100 

published biometric data and converted to estimated biomass [8, 14].  101 

 For enchytraeid analysis soil cores (50mm diameter, 50mm depth) were extracted from the 0, 102 

20, 40 and 120 Nr treatments of the newer (1998) plots between May 2002 and September 2003. Three 103 

replicate cores were taken from each plot at six intervals over this period (May, July and September in 104 

2002 and 2003) giving a total of 216 samples. Enchytraeids were extracted using the wet funnel 105 

technique [44] and identified following Nielsen and Christensen [45]. 106 

 107 

 Changes in plant communities of these plots have been extensively considered over more than 108 

20 years (Table 1). Here we focus solely on vascular plant species with bryophytes and lichens identified 109 

to functional types, a simple approach which may have considerable potential as a quick and effective 110 

bioindication strategy [cf.  46]. Our analysis updates the previous results of Carroll et al. [30] more than 111 

a decade after that study. A 15-point pin quadrat was placed in the centre of each of the old plots (4 112 

replicates of 3 treatments + control) in summer 2005, recording all touches in four categories (Calluna 113 

vulgaris, Vaccinium myrtillus, bryophytes and lichens). Lichens were too rare for meaningful data 114 

analysis. Calluna canopy height was also measured at each pin point.  115 

 116 



2.1 Data analysis 117 

For the testate amoeba data Shannon (H) and Simpson (D) diversity indices, and related 118 

equitability measures (EH, ED) were calculated. A sequence of nested-ANOVAs were used to identify 119 

significant differences between treated and untreated plots for species richness, diversity and 120 

equitability, proportion of occupied tests (a measure of general community health) and amoeba 121 

concentration and biomass based on both all tests and only live individuals. For the enchytraeid count 122 

data a repeated measures ANOVA (RM-ANOVA) was used to compare plot mean data over the 123 

experimental period. For the plant data separate nested-ANOVAs were conducted for total pin touches 124 

and covers (a 1-15 scale counting each pin as one point) of each plant type and for Calluna canopy 125 

height. All data satisfied the requirements of ANOVA.  126 

To examine nitrogen-induced differences in testate amoeba community structure we use a non-127 

parametric approach based on Bray-Curtis dissimilarity [47], which has been shown to be a useful and 128 

robust similarity coefficient for many ecological datasets [48, 49]. We use a non-metric multi-129 

dimensional scaling (NMDS) ordination to visualise the data and then apply a sequence of one-way 130 

analyses of similarity (ANOSIM [50]) to test for similarity between treated and untreated samples. 131 

Significance testing used permutation tests with 10,000 permutations. To identify the taxa principally 132 

responsible for the differences between groups we follow ANOSIM with a Similarity Percentage 133 

(SIMPER) analysis, a simple Bray-Curtis based approach to identify the taxa contributing to observed 134 

community difference [50]. Six sets of multivariate data analyses were conducted using: 1) Percentages 135 

of all tests, 2) Concentrations of all tests, 3) Estimated biomass based on all tests, 4) Percentages of live 136 

amoebae, 5) Concentrations of live amoebae, and 6) Estimated biomass based on only living individuals. 137 

Multivariate data analyses were carried out using PAST ver. 1.84 [51] and univariate analyses with SPSS 138 

ver. 18.  139 

3. RESULTS 140 

The amoeba community of these plots was predominantly composed of generalist taxa which 141 

are very abundant in soils with heavy dominance by Corythion dubium (36% all tests); other major taxa 142 

included Assulina muscorum (12%), Cryptodifflugia oviformis (8%) and Nebela tincta type (8%)(Table 2). 143 

While most common genera were represented to some extent there was a particular predominance of 144 

small taxa with filopodia. There was a significant difference in both Shannon (H) and Simpson (D) 145 

diversity between samples from treated and untreated plots (nested-ANOVA F1,32=9.1, P=0.02 for H; 146 



F1,32=13.8, P=0.01 for D), driven by increased equitability in treated plots (F1,32=11.5, P=0.02 for EH; 147 

F1,32=10.1, P=0.02 for ED) rather than species richness, which did not significantly differ between plots 148 

(P>0.05). This increased equitability is driven by a higher relative abundance of Corythion dubium (Fig. 1) 149 

in the control plots; if this taxon is removed there is no significant difference between treatments 150 

(P>0.05 for H, D, EH & ED). There was no difference between treatment and control in concentration of 151 

total tests, concentration of live amoebae, proportion of occupied tests, estimated biomass based on all 152 

tests or estimated biomass based only on living amoebae (P>0.05). 153 

An NMDS ordination shows the relation of the two sets of samples with a tendency for treated 154 

samples to have higher x-coordinates than untreated samples but considerable overlap (Fig. 2, it should 155 

be noted that the stress value is relatively high so it would be unwise to read too much into the fine 156 

details of sample positioning). Initial analyses of similarity found no evidence for differences between 157 

plots with the same treatment so simple one-way analyses of similarity were used in subsequent tests. 158 

There was a significant difference between treated and control samples for amoeba community based 159 

on the relative abundance of all tests but not for data based on concentrations, biomass or live 160 

individuals only (P>0.05). Differences were relatively small but highly significant (RANOSIM=0.12, P=0.002).  161 

SIMPER identifies the greatest contributors as Corythion dubium, Cryptodifflugia oviformis and Assulina 162 

muscorum. If Corythion dubium is removed from the relative abundance data the analysis loses 163 

significance. If differences in abundance of the major taxa are tested individually there are significant 164 

differences in relative abundance for only two taxa: C. dubium and A. muscorum, and no significant 165 

differences in concentration for any taxa (Table 2).  166 

The community composition of enchytraeids showed little diversity; over 90% of the individuals 167 

identified to species level were Cognettia sphagnetorum, with Mesenchytraeus sanguineous the most 168 

abundant subordinate species. Given this heavy dominance by a single species only abundance of C. 169 

sphagnetorum was used in data analysis. Number of individuals per core varied from 1 to 191 170 

(mean=59). Numbers were highly variable both within cores from the same plots and between plots 171 

with the same treatment. There was considerable change over time with populations of all plots 172 

crashing in the summer of 2003. While there was a general trend of higher enchytraeid numbers in the 173 

most heavily N-treated plots (Fig. 3), there was no significant treatment, or time*treatment effect 174 

(P>0.05), although the difference between control and 120N treatment (as considered by the testate 175 

amoeba analyses) approached significance in post-hoc testing (Fishers LSD, P=0.06).  176 



 The plant data showed significant differences between treatments for bryophyte total touches 177 

(nested-ANOVA F3,280=7.0 P=0.003) and cover (F3,280=11.5 P<0.001). In all treated plots bryophytes were 178 

significantly less abundant than in control plots (P<0.001 in post-hoc testing with Tukey’s HSD; Fig. 4), 179 

individual treatments were significantly different from each other (P<0.01) with the exception of the 180 

40N and 120N treatments which could not be distinguished (P>0.05). There were significant differences 181 

between treatments for Calluna touches (F3,280=4.2 P=0.02) with more touches in the 20N and 120N 182 

plots (P<0.01) than the controls, but no difference between controls and 40N plots (P>0.05) and no 183 

overall trend within the treated plots. There were no differences between treatments for Calluna cover 184 

or for Vaccinium cover and touches (P>0.05). There were differences between treatments for Calluna 185 

height (F3,280=5.4 P=0.009), with taller Calluna in all treated plots (Tukey’s HSD P<0.001; Fig. 5) than 186 

controls.  187 

 188 

4. DISCUSSION 189 

4.1 Testate amoeba response 190 

 The testate amoeba results from plots treated with high levels of nitrogen for 20 years show 191 

evidence for changed community structure but not for changed abundance or biomass, in contrast to 192 

the combined effects of N and P [14]. That significant differences are only found when using relative 193 

abundance data may reflect the inter-dependence of taxon values amplifying real abundance 194 

differences. The low counts of live individuals, exotic marker technique used to derive concentrations, 195 

and the biovolume and carbon content conversions used to estimate biomass will inevitably introduce 196 

some errors into these data. Biovolumes estimated using the geometric shapes approach have been 197 

shown to deviate substantially from direct instrumental measurements [52] and given that an amoeba 198 

may not occupy the full shell volume are likely to over-estimate values. The Lycopodium innoculum 199 

technique has not been formally tested for testate amoebae and differential loss in sample preparation 200 

is not unlikely given the potentially large differences in morphology and density.  201 

 The most distinct change in community composition is a reduced abundance of Corythion 202 

dubium in the control plots. C. dubium is a widely dispersed and locally highly-abundant taxon which 203 

predates bacteria and heterotrophic flagellates [22] and is particularly abundant in mosses [53]. Three 204 

explanations for the decline of C. dubium can be proposed. Firstly that C. dubium is directly affected by 205 

chemical changes due to the nitrogen additions. Previous studies have demonstrated increased 206 

concentrations of ammonium and nitrate in leachate, and modest increases in soil acidity and 207 



Aluminium concentrations in treated plots [32]. It is possible that C. dubium is being affected by these 208 

changes, however there is no particular reason to suspect greater sensitivity in this taxon and there is no 209 

evidence for change towards a more acidophilic community composition. A second hypothesis is that C. 210 

dubium declines because of a reduced food supply due to a decline in abundance in lower microbial 211 

groups. While microbial biomass has been shown to decline following N addition in some ecosystems, in 212 

this heathland the available evidence suggests an increased bacterial and overall microbial biomass [54]. 213 

While C. dubium might exhibit selective predation among prokaryotes and small protists it seems more 214 

probable that the decline of C. dubium is not directly mediated by availability of prey organisms. A final 215 

possibility is that the decline of this species is related to changes in the amoeba’s environment through 216 

changed plant communities (discussed below). Given how intimately linked plant and testate amoeba 217 

communities are (section 1.1) it can be expected that significant plant community change would be 218 

manifested in changed testate amoeba communities [14]. The known preference of C. dubium for 219 

bryophytes and the demonstrable decline in bryophytes in these plots therefore strongly suggests that 220 

testate amoebae are responding to the changed plant communities. Although the testate amoeba 221 

samples were extracted four years after the plant data discussed below the changes demonstrated were 222 

still highly apparent in 2009 with little bryophytes in any of the treated plots.  223 

 As significant changes in testate amoebae communities are shown by our results it is possible 224 

that testate amoebae may have value for bioindication of nitrogen deposition in heathlands. Such an 225 

approach would have some advantages. Generation times of testate amoebae can be very short (several 226 

generations per week in laboratory conditions [21]) so testate amoebae could potentially be a highly 227 

responsive bioindicator group allowing real-time monitoring of changing impacts. Furthermore, the 228 

analysis of empty tests alongside live amoebae allows simultaneous determination of the amoeba 229 

community at both a single moment in time and integrated over a period of perhaps several years. This 230 

multiple time-period approach would be a rather unique advantage of testate amoebae for 231 

bioindication. However our results also point to two important potential drawbacks in the use of testate 232 

amoebae as bioindicators of nitrogen. Firstly, the response is characterised by a reduced abundance of 233 

Corythion dubium, a change which could conceivably be caused by independent environmental changes 234 

such as climatic warming/drying [e.g. 55]. Secondly, it appears probable that the testate amoeba 235 

response is mediated by plant community change, specifically the loss of bryophytes. If this deduction is 236 

correct then it implies that the testate amoeba response to nitrogen is likely to be indirect and therefore 237 

their use as indicators may add little to the direct use of plant communities for bioindication which 238 

would be vastly quicker and simpler.  239 



 240 

4.2 Enchytraeid response 241 

The enchytraeid data from plots treated for four years showed a general trend towards higher 242 

abundance in treated plots but this was not statistically significant. The lack of a significant difference 243 

between treatments may be largely explained by the very high spatial and temporal variability in 244 

numbers (Fig. 3). Particularly low numbers were found in the summer of 2003, probably due to the 245 

severe drought of that year perhaps with vertical migration of enchytraeids to below the sampling zone 246 

[56]. It is possible that with more replication a significant effect might have been identified but this was 247 

not feasible without undue disturbance to the plots. The non-significant trend towards higher 248 

enchytraeid abundance in N-treated plots contrasts with severe reductions in some N-addition 249 

experiments in other ecosystems [18, 57, 58]. The lack of a significant change in enchytraeid abundance 250 

here does however parallel that of Prendergast-Miller et al. [59] who found no significant change in 251 

enchytraeids in response to ammonia fumigation. Although we find no strong evidence for impacts of 252 

nitrogen deposition on enchytraeids our results do not rule out such impacts, it is possible that with 253 

longer treatment periods chemical changes in above-ground plant material would increasingly manifest 254 

themselves in changed enchytraeid food quality and therefore changed enchytraeid abundance [59]. 255 

Our results do however add to other recent studies in questioning whether enchytraeids could provide a 256 

viable bioindication approach given their primary control by soil moisture conditions and extremely 257 

patchy distribution [59].  258 

 259 

4.3 Plant response 260 

 Our data show a very marked nitrogen-induced decline in the bryophytes of these plots. This 261 

decline is particularly apparent in the heaviest treated 120N plots where no bryophyte pin-touches were 262 

recorded. The 120N treatment is very high; however even in the 20N plots, representing a more-263 

frequently encountered pollution level, a decline in bryophyte cover is apparent and statistically 264 

significant and Calluna height is increased. 265 

 Our results largely match those of a number of earlier studies from these plots (Table 1) showing 266 

increased vigour of Calluna and decreased vigour of bryophytes, although a more complex picture 267 

emerges when considering low N doses and interactions with P [60]. Loss of bryophytes has been widely 268 



found in experimental and gradient studies of nitrogen in a number of habitats [7, 31], including a 269 

decline in Hypnum jutlandicum, the overwhelmingly dominant bryophyte of these plots in response to 270 

ammonia exposure [61].  271 

 That distinct changes can be identified at relatively realistic doses supports previous research in 272 

suggesting the potential of plant community-based indices for bioindication of nitrogen pollution. On 273 

the basis of our experiments it seems that even a taxonomically-crude Calluna : bryophyte ratio might 274 

perform well for bioindication. Furthermore the fact that testate amoebae may respond to the plant 275 

community changes suggests that using plants as bioindicators may also reveal indirect impacts of 276 

nitrogen on other components of the ecosystem. A complicating factor is the extent to which 277 

heathlands are an anthropogenic ecosystem with their form and composition heavily dependent on 278 

human management. It is possible that the developmental stage of the Calluna 279 

(pioneer/building/mature/degenerate) will be a serious impediment to the use of plant community 280 

based indicators of nitrogen pollution. Addressing such issues will require larger-scale field data and will 281 

be discussed more in future publications.  282 

  283 

5. CONCLUSIONS 284 

 Our results illustrate some of the less-considered consequences of nitrogen deposition in semi-285 

natural ecosystems. For the first time we demonstrate that application of nitrogen alone has the 286 

potential to modify community structure in an abundant but little studied group of soil protists, the 287 

testate amoebae. By contrast our data do not provide evidence for the sensitivity of enchytraeid 288 

abundance to nitrogen. While this negative result may partly be explained by the sampling intensity and 289 

treatment period of this study it seems probable that other environmental controls are more important 290 

than nitrogen. Plant communities respond strongly to nitrogen deposition and these changes may be 291 

the cause of the testate amoebae changes. Plant community-based bioindication may therefore be both 292 

sensitive to nitrogen deposition and represent changes in the broader ecosystem. Future work could 293 

usefully examine the response of different groups of organisms and their bioindication potential in the 294 

same experimental setting, this is difficult in our study as samples represent differing treatment periods 295 

for different groups.  296 

 297 
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Figures and Tables 459 

Fig. 1. Box plot showing relative abundance of Corythion dubium in 120N (120 kg N ha-1 yr-1) treated and 460 

control plots of Ruabon experiment. Box-plots show median (central line), first and third quartiles (grey 461 

box), tenth and ninetieth percentiles (‘whiskers’) and fifth and ninety-fifth percentiles (dots).  462 

 463 

Fig. 2. NMDS ordination plot based on Bray-Curtis dissimilarity (stress=0.2) for testate amoeba relative 464 

abundance data from 120N (120 kg N ha-1 yr-1)  treated and control plots is autumn 2009.  465 

 466 

Fig. 3. Numbers of the enchytraeid Cognettia sphagnetorum from Ruabon experimental plots over a 16 467 

month period between May 2002 and September 2003. Results shown as mean numbers per core 468 

(0.001m2) and standard deviations.  469 

 470 



 471 

Fig. 4. Average pin touches and total cover values (1-15 scale) for Calluna vulgaris (black bar), 472 

bryophytes (light grey bar) and Vaccinium myrtillus (dark grey bar) in Ruabon plots in summer 2005. 473 

Results shown as plot means and standard deviations. Significant differences between treatments for 474 

bryophyte touches (P=0.003) and cover (P<0.001), and Calluna touches (P=0.02) but not for Calluna 475 

cover and Vaccinium cover or touches (P>0.05). Bars marked ‘*’ show significant difference from 476 

controls in post-hoc testing.  477 

 478 

Fig. 5.  Mean Calluna height for experimental plots in summer 2005 showing 1σ error bars of plot 479 

means. Significant difference between treatments (P=0.009), bars marked ‘*’ show significant difference 480 

from controls in post-hoc testing.  481 



 482 

Table 1. Previous studies of plant response in Ruabon experiments. Showing only properties considered 483 

to have value for ecological indication with minimal resources (i.e. excluding properties requiring 484 

repeated site visits and chemical and physiological parameters).  485 

Reference Period Plots Response 

[29,62] 

 

1992 Old Increased canopy height. 

[63] 1995 Old Increased canopy height. 

Increased C. vulgaris cover.  

Reduced bryophyte and lichen cover.  

[30] 1995-

1996 

Old Increased canopy height. 

Increased C. vulgaris cover. 

Reduced bryophyte and lichen cover.  

[60] 1998-

2002 

New Increased bryophyte cover, non-significant decrease in lichen 

cover (with 20 kg N ha-1 yr-1).  

[64] 2005 New Decreased bryophyte cover.  

Decreased bryophyte diversity (Shannon ‘H).  

This study 2005 Old Decreased bryophyte cover. 

Increased canopy height.  

 486 
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 488 

Table 2. Testate amoeba community composition in control and ammonium nitrate treated plots from 489 

Ruabon, North Wales. Showing, mean concentration and relative abundance of all tests of major taxa 490 

(>5% total tests) in four replicates of treated and control plots. Standard deviations shown in 491 

parentheses. Differences between the treated and control plots tested using nested-ANOVA *P<0.05, 492 

**P<0.01.  493 

Taxon Control Treated 

Mean 

concentration 

total tests 

(tests cm-3) 

Relative 

abundance 

total tests 

(%) 

Mean 

concentration 

total tests 

(tests cm-3) 

Relative 

abundance 

total tests (%) 

Assulina muscorum 2462 (2202)  9.9 (5.7) 4247 (5713) 14.2 (7.9)* 

Corythion dubium 11085 (8390) 41.8 (10.4) 7414 (4185) 30.3 (13.0)** 

Cryptodifflugia oviformis 4057 (5680) 9.8 (8.7) 1870 (1760) 7.4 (5.0) 

Cyclopyxis eurystoma 2188 (3350) 5.3 (4.6) 2001 (2240) 6.6 (3.6) 

Euglypha rotunda type 1372 (1056) 5.9 (3.7) 2919 (4046) 9.7 (6.1) 

Nebela tincta 2313 (1955) 8.0 (4.0) 2521 (2276) 8.4 (5.2) 

Trinema lineare 1910 (2783) 4.8 (4.4) 1736 (2101) 5.3 (5.9) 
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