
This is the peer reviewed version of this article

NOTICE: this is the author’s version of a work that was accepted for publication in Soil Biology and Biochemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, [VOL 57 (2013)] DOI: http://dx.doi.org/10.1016/j.soilbio.2012.09.012
Short Communication

Ammonia exposure promotes algal biomass in an ombrotrophic peatland

Richard J. Payne\(^1,2^*\), Vincent E.J. Jassey\(^2,3,4\), Ian D. Leith\(^5\), Lucy J. Sheppard\(^5\), Nancy B. Dise\(^1\), Daniel Gilbert\(^2\)

\(^1\)School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.

\(^2\)Laboratoire de Chrono-environnement UMR UFC/CNRS 6249 USC INRA Université de Franche-Comté, Pôle Universitaire du Pays de Montbéliard, 4 place Tharradin, BP 71427 25 211 Montbéliard cedex, France.

\(^3\)Laboratory of Ecological Systems (ECOS), École Polytechnique Fédérale de Lausanne, Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland.

\(^4\)WSL - Swiss Federal Research Institute for Forest, Snow and Landscape research, Community Ecology Research Unit, Pasture Woodlands and Wetlands Research Group, station 2, CH–1015 Lausanne, Switzerland

\(^5\)Centre for Ecology and Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK.

*Corresponding author. E-mail: r.payne@mmu.ac.uk.

ABSTRACT

Nitrogen pollution affects many peatlands with consequences for their biodiversity and ecosystem function. Microorganisms control nutrient cycling and constitute most of the biodiversity of peatlands but their response to nitrogen is poorly characterised and likely to depend on the form of deposition. Using a unique field experiment we show that ammonia exposure at realistic point source levels is associated with a general shift from heterotrophic (bacteria and fungi) to autotrophic (algal) dominance and an increase in total biomass. The biomass of larger testate amoeba increased, suggesting increased food supply for microbial predators. Results show the widespread impacts of N pollution and suggest the potential for microbial community-based bioindicators in these ecosystems.

KEYWORDS: Nitrogen; Pollution impact; Bioindication; Euglenids; Desmids; Testate amoebae
Ombrotrophic peatlands, which receive their nutrients from the atmosphere, are naturally oligotrophic and highly sensitive to atmospheric deposition of acids, nutrients, and other pollutants. Nitrogen deposition affects many peatlands in industrialised regions and may shift peatlands from carbon sinks to sources with important consequences for the global carbon cycle (Aerts et al., 1992, Bragazza et al., 2006). Such processes are microbially-mediated but the overall microbial community response to N is poorly characterised. Microbes constitute most of the biodiversity of peatlands (Gilbert and Mitchell 2006) but studies of the biodiversity impacts of N pollution in terrestrial ecosystems are almost entirely restricted to plants. The form of N deposition is an important determinant of ecosystem impacts (Stevens et al., 2011; Liu and Greaver 2009), with evidence that the impacts of gaseous ammonia can be particularly acute (Sheppard et al., 2011). Ammonia is a significant threat to peatlands in areas of intensive agriculture (Sutton et al., 2011) but existing research on the microbial response to N has been limited to wet NH$_4$NO$_3$ application (Gilbert et al., 1998). In this study, we use a morphological, functional group approach to investigate the response of micro-organisms to ammonia dry deposition in a field experiment.

The Whim Moss experiment is a globally-unique pollution experiment on a *Calluna vulgaris*-Eriophorum vaginatum blanket bog in southern Scotland (3° 16’W, 55° 46’N: Leith et al., 2004). NH$_3$ is released from a pipe 1 m above the ground when air temperature exceeds 0°C, wind speed exceeds 2.5 m s$^{-1}$ and wind direction is within the range 180-215°. Monthly average NH$_3$ concentrations are determined using passive ALPHA samplers (Sutton et al., 2001) positioned at 0.1 m above the vegetation along a downwind transect (Sheppard et al., 2011). After nine years of treatment (September 2011), the upper 50mm of ten stems of *Sphagnum capillifolium* (Ehrh.) Hedw. were extracted at seven locations along this transect and placed in 10% formaldehyde. Additional samples were taken off the main transect and from an area receiving only ambient deposition. Samples were prepared by multiple cycles of agitation and washing following Jassey et al. (2011) and examined under inverted microscopy. All larger micro-organisms were identified to group (cyanobacteria, microalgae, fungi, flagellates, ciliates and micrometazoa including rotifers and nematodes) and assigned to a sequence of broad morphotypes. More detailed morpho-species identification was carried out for testate amoebae (>100 individuals; Supplementary Table 1): an abundant group of protists which are sensitive to N deposition (Gilbert et al., 1998; Payne et al., 2012). Flow cytometry (BD FACSCalibur) was used for bacterial counts with samples stained with SYBR Green I (1/10,000 final concentration) for 15 minutes in the dark and run at medium speed (ca 40 μL min$^{-1}$). DAPI-treated sub-samples were examined by epifluorescence microscopy to establish mean bacterial dimensions. All count data were converted to biomass by
calculating biovolumes based on geometric shapes (cf. Mitchell 2004) and applying established conversion factors (Jassey et al., 2011).

Enhanced ammonia exposure was found to drive large changes in the microbial community. Near to the ammonia source the biomass was dominated by algae, contributing over 50% of the total microbial biomass (Fig. 1A), while in samples receiving ambient exposure the biomass was more evenly distributed between algae, fungi, bacteria and protozoa (Fig. 1A). There was a positive trend in total microbial biomass along the ammonia concentration gradient (Spearman’s $r_s=0.71$, $p=0.009$; Fig. 1B); mostly accounted for by difference between those samples receiving <8 and >25 μg m$^{-3}$ (t-test $t=-10.8$, $p<0.001$). Biomass near the ammonia source was more than double that of samples receiving ambient exposure. Considered separately, only algal ($r_s=0.63$, $p=0.03$) biomass was significantly correlated with ammonia concentration. The algae increasing in abundance included euglenids (e.g. *Euglena cf. mutabilis*), and to a lesser extent, desmids (e.g. *Cylindrocystis gracilis*). Cyanobacteria biomass (mostly non-nitrogen fixing genera such as *Merismopedia* and *Chroococcus*) showed a non-significant positive correlation with ammonia ($r_s=0.5$, $p=0.08$) but was a minor component of the total biomass (<3%). Given the many other influences on peatland microbial communities (Mitchell et al., 2000), the impact of ammonia emerges strongly in our data (Fig. 1). The sample at 30 m did not have an elevated overall biomass but does have a larger proportion of algae than untreated samples, perhaps reflecting local micro-topographic sheltering (Fig. 1A).

Ammonia concentration was significantly ($p=0.02$) correlated with the second ordination axis in an NMDS of testate amoeba data, showing ammonia-induced changes in testate amoebae community structure (Fig. 2). Total (living + dead) testate amoeba biomass tends to increase with ammonia but this is of marginal non-significance ($r_s=0.51$, $p=0.09$; Fig. 2). There was a significant positive correlation between ammonia and the total biomass of testate amoeba taxa with larger tests (>50000μm3, e.g. *Nebela tincta*, *Heleopera rosea*), $r_s=0.78$, $p=0.003$) but not with smaller taxa ($p>0.05$). These larger taxa with larger apertures are more likely to be algivorous (e.g. *N. tincta*: Jassey et al., 2012) suggesting that greater biomass is driven by greater availability of algal prey. The lack of a similar biomass response in other groups of predators (ciliates, rotifers) may relate to the palatability of the algal and cyanobacterial species involved (Dokulil and Teubner, 2000).
Our study only considers a relatively small number of samples from a single sampling occasion at a single site, but results are sufficient to suggest that increased ammonia exposure can cause large changes in the structure and functioning of the microbial food-web. Our results show a similar pattern to those of Gilbert et al., (1998) with N enhancing overall microbial biomass, and particularly autotrophs. The magnitude of change is greater in our data, which probably relates to the much longer duration of the experiment but may also reflect differences in sensitivity to N forms and peatland type. Our results are consistent with a direct eutrophying influence of ammonia, suggesting that peatland algae and cyanobacteria are N-limited (or N and P co-limited). However we cannot exclude indirect impacts through changes in pH, soil chemistry and biotic interactions. The positive impact of ammonia on algae contrasts with the deleterious impacts on bryophytes and vascular plants (Sheppard et al., 2011), probably because the microbial community was primarily exposed to ammonium in the moist bryosphere rather than to dry ammonia which can produce direct physiological impacts on plants.

Microbial C biomass with high ammonia exposure is only approximately 1% of *Sphagnum* C but may be an important C pool given its greater lability.

Increased autotroph biomass is apparent with ammonia concentrations above approximately 6 μg m⁻³, which corresponds to an N deposition of approximately 15 kg N ha⁻¹ yr⁻¹ (Sheppard et al., 2011). N deposition in Europe is regulated using a critical load, currently set at 5-10 kg N ha⁻¹ yr⁻¹ and NH₃ using a critical level currently set at 1 μg m⁻³ (Cape et al., 2009). Such values are primarily assigned on the basis of impacts on plant communities with a (usually unstated) assumption that if plants are protected, other ecosystem components will also be conserved. Our results do not contradict this assumption: after 9 years of treatment we find no indication of impacts on microbial communities below either the critical load or level, our results suggest either should be sufficient to avoid major microbial change. Changes in microbial community composition might be a useful addition to the suite of techniques used for the bioindication of N pollution (Sutton et al., 2004), perhaps by considering a ratio of algae to other microbial groups.

ACKNOWLEDGEMENTS

RJP was supported by a fellowship from the Conseil Régional de Franche-Comté. RJP and NBD were supported by the UK Natural Environment Research Council (NERC) through the European Union FP6 BiodivERsA (ERA-NET) project PEATBOG. The Whim Moss experiment is funded by the UK Department.
for Environment, Food and Rural Affairs (DEFRA) through the Terrestrial Umbrella programme, the Centre for Ecology and Hydrology and the EU NITROEUROPE IP project. Further funding was provided to VEJJ by EPFL and WSL. Thanks to William Sinclair Horticulture Ltd for access permission.
FIGURE CAPTIONS

Fig. 1. Microbial response to ammonia. A) NMDS ordination based on Bray-Curtis dissimilarity of microbial group biomass, pies show relative abundance of groups with symbols sized in proportion to total biomass. Ammonia concentration is significantly correlated with NMDS axis one ($r=0.78$, $p=0.002$).

B) Microbial total biomass against NH_3 concentration measured 0.1m above the vegetation. Symbols on both plots labelled with distance along transect (20-108 m, B=background sampling area, (15E)=15 m off main transect). Biomass calculations are likely to under-estimate biomass of some groups not removed in preparation (notably fungi) but provide internally consistent estimates. Ammonia concentrations are means for January 2007-September 2011; these long-term values are very strongly correlated with those for the month of sampling and the preceding 3 month period (both $r=0.99$, $p<0.0001$).

Fig. 2. Testate amoeba community. NMDS ordination based on Bray-Curtis dissimilarity of taxa biomass (calculated on the basis of both living and dead individuals, unlike Fig. 1 based on only living individuals for comparability with other microbial groups). Symbols sized in proportion to total biomass (range: 90-780 μg C (dm)$^{-1}$). Ammonia concentration significantly correlated with axis two ($r=0.66$, $p=0.02$). Pies show relative abundance of selected taxa, labelled as for Fig. 1.
Supplementary Table One. Full list of testate amoeba taxa identified in Whim Moss samples.

Fig. 1. Testate amoeba community. NMDS ordination based on Bray-Curtis dissimilarity of taxa biomass (calculated on the basis of both living and dead individuals, unlike Fig. 1 based on only living individuals for comparability with other microbial groups). Symbols sized in proportion to total biomass (range: 90–780 μg C g(geo)−1). Ammonia concentration significantly correlated with axis two (r = 0.58, p = 0.02). Pies show relative abundance of selected taxa, labelled as for Fig. 1.
REFERENCES

