
Towards Developer-Centered Automatic Program Repair:
Findings from Bloomberg

Emily Rowan Winter
Lancaster University

Lancaster, UK

Vesna Nowack
Lancaster University

Lancaster, UK

David Bowes
Lancaster University

Lancaster, UK

Steve Counsell
Brunel University London

London, UK

Tracy Hall
Lancaster University

Lancaster, UK

Sñmundur Haraldsson
University of Stirling

Stirling, UK

John Woodward
Queen Mary University of London

London, UK

Serkan Kirbas
Bloomberg
London, UK

Etienne Windels
Bloomberg
London, UK

Olayori McBello
Bloomberg
London, UK

Abdurahman Atakishiyev
Bloomberg
London, UK

Kevin Kells
Bloomberg

New York, USA

Matthew Pagano
Bloomberg

Princeton, USA

ABSTRACT

This paper reports on qualitative research into automatic program

repair (APR) at Bloomberg. Six focus groups were conducted with

a total of seventeen participants (including both developers of the

APR tool and developers using the tool) to consider: the develop-

ment at Bloomberg of a prototype APR tool (Fixie); developers’

early experiences using the tool; and developers’ perspectives on

how they would like to interact with the tool in future. APR is

developing rapidly and it is important to understand in greater

detail developers’ experiences using this emerging technology. In

this paper, we provide in-depth, qualitative data from an industrial

setting. We found that the development of APR at Bloomberg had

become increasingly user-centered, emphasising how fixes were

presented to developers, as well as particular features, such as cus-

tomisability. From the focus groups with developers who had used

Fixie, we found particular concern with the pragmatic aspects of

APR, such as how and when fixes were presented to them. Based

on our findings, we make a series of recommendations to inform

future APR development, highlighting how APR tools should ‘start

small’, be customisable, and fit with developers’ workflows. We also

suggest that APR tools should capitalise on the promise of repair

bots and draw on advances in explainable AI.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558953

CCS CONCEPTS

· Software and its engineering;

KEYWORDS

automatic program repair, human factors, qualitative methods

ACM Reference Format:

Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy

Hall, SñmundurHaraldsson, JohnWoodward, SerkanKirbas, EtienneWindels,

Olayori McBello, Abdurahman Atakishiyev, Kevin Kells, and Matthew

Pagano. 2022. Towards Developer-Centered Automatic Program Repair:

Findings from Bloomberg. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’22), November 14ś18, 2022, Singapore, Singapore.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3540250.3558953

1 INTRODUCTION

Automatic program repair (APR) is a rapidly-growing area of soft-

ware engineering involving the automatic generation of patches to

fix code defects and bugs. APR has significant potential for reducing

the time developers spend manually fixing bugs and freeing up time

for other activities. APR research is currently highly technical in

its focus, considering potential learning techniques and the types

of fixes that can be generated. However, much less is known about

developers’ experience using APR, and how professional developers

want to interact with APR tools. Our prior work found that less than

7% of APR papers feature any research with human participants,

and even fewer research with professional developers [28].

Industrial application of APR is currently nascent; Bloomberg

(alongside Facebook [2]) is one of few companies where APR has

been at least partially implemented. Given the currently limited

knowledge of developer experiences using APR, we conducted

exploratory focus group research at Bloomberg. This research was

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1578

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3540250.3558953
https://doi.org/10.1145/3540250.3558953


ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Winter et al.

conducted as part of an intensive, longstanding collaboration with

Bloomberg, in which the first and second authors were seconded

to Bloomberg and embedded within a Bloomberg team.

Expanding our knowledge of developers’ experiences and per-

ceptions of APR is vital for successful industrial adoption of APR.

Within software engineering generally, the gap between academic

advances and their industrial take-up has been highlighted [4] [12].

Advances in APR also bring distinct challenges and opportunities.

For successful APR exploitation, developers need to accept the au-

tomation of their previously manual bug fixing tasks and embrace

and use new APR tools and techniques. Developers will need to

change some of their day-to-day tasks. Some tasks may be removed

(for example, manual bug-fixing) and replaced with other tasks (for

example, providing APR tools with specifications [15] or verify-

ing automatically generated patches [6]). In addition, by reducing

the time needed for manual bug fixing, APR may free up time for

other tasks, leading to restructuring of developer workloads and

activities. Overall, APR tools and techniques are likely to change

developers’ working practices and workflow, potentially having an

impact on significant human factors such as developer job satis-

faction and motivation. Developing APR tools and techniques that

are acceptable to developers is critical to successfully capitalising

on the benefits that APR promises, so it is essential that developer

experiences using APR are considered.

Our research questions are:

• RQ1: What user considerations have influenced the develop-

ment of APR at Bloomberg?

• RQ2: What have been the early experiences of developers

using Fixie (a prototype APR tool developed at Bloomberg

in collaboration with academic researchers)?

• RQ3: How do developers want to interact with Fixie?

• RQ4: What are the lessons learnt from developers’ experi-

ences using Fixie for future APR development?

This paper makes the following contributions:

• To the best of our knowledge, we provide the first analysis

from in-depth qualitative research of developers’ experiences

using APR in an industrial setting

• Based on our findings, we present recommendations to in-

form future APR tool development and hopefully lead to

more effective take-up of APR within industry.

The rest of the paper is structured as follows. We provide back-

ground information about the development of APR at Bloomberg

in Section 2. Our methods and findings are reported in Sections

3 and 4, respectively. Sections 5 and 6 provide recommendations

and a discussion of threats to validity. We report on related work

in Section 7. Finally, we conclude in Section 8.

2 BACKGROUND: AUTOMATIC PROGRAM
REPAIR AT BLOOMBERG

2.1 Developing an APR Tool

Bloomberg is one of few companies where APR has been imple-

mented. A small Bloomberg team has been developing a prototype

APR tool called łFixiež in collaboration with academic researchers.

The team was motivated to explore APR by the prevalence of re-

peated, small bugs/refactorings that Bloomberg developers were

having to fix manually, taking up a lot of time with repetitive work.

The team hoped to develop an APR system that targeted these small

bugs and decrease the manual load on developers. This approach

differed from many academic approaches that aim to automati-

cally generate fixes for ever more complex and challenging bugs.

Bloomberg’s approach was based much more around ‘easy wins’

that nonetheless are seen to offer significant benefit to developers,

removing manual bug-fixing tasks and freeing up developer time.

Our previous work [17] further outlines the approach taken by

Bloomberg and the industry-academia differences this sustained

collaboration brought to light.

In its current form, Fixie provides three different types of fixes:

one, off-the-shelf fixes provided by third-party tools (e.g., clang-

tidy); two, custom fixes Ð fixes that are provided by Bloomberg

developers for application to other code bases; and three, fixes

learnt through version control history. While only the last of these

would typically be seen as APR, all three types of fixes enable a

more automated bug fixing approach. Custom fixes, for example,

allow for automatic application of particular fixes at scale across

repos, rather than the same bugs or defects being fixed manually in

a more ad hoc fashion. Custom fixes have been particularly useful

for enabling deprecated components to be updated.

The Fixie architecture (see Figure 1) involves several components.

Fixie-learn is the learning part of the system able to generate

fix patterns automatically from version control history and other

data sources. The generation of fix patterns in Fixie-learn occurs

through Bloomberg’s implementation of the GumTree [10] and anti-

unification [19] algorithms (also used by Facebook’s Getafix [2]).

Fixie-learn takes a code change (as a commit from version control

history) and finds the differences between two ASTs (before and

after the code change). To generate a fix pattern, Fixie-learn takes a

pair of code changes (two commits), anti-unifies them and extracts

the richest AST fix pattern that can reproduce both original code

changes. A fix pattern is composed of a before pattern and an after

pattern and it is chosen as a fix candidate if the before pattern

matches a targeted part of code. The situation requiring attention

can be any chunk of code, but is usually in the context of an error

code or lint warning, as opposed to a program crash; this can sig-

nificantly improve the outcome, by filtering the fix patterns to only

those learned from such situations. Multiple fix candidates for the

same targeted code need to be ranked. Unlike Getafix (where rank-

ing is based on the relevance of the fix patterns to the code changes

they were generated from), Fixie-learn ranks the fix candidates

according to their success in producing a correct fix in the past. The

fix generated from the top fix pattern is then provided as a report to

software developers who view one fix at a time, each of which they

can then either accept or reject. Fixie-apply offers fixes to devel-

opers in the form of pull requests (PRs). Fixie-analytics measures

software engineers’ acceptance of fixes provided by Fixie-apply.

2.2 Academia-Industry Collaboration

This research came out of a sustained collaboration with Bloomberg.

Their interest in APR had been prompted by early collaboration

with academic researchers, and this relationship was then consol-

idated by the first and second authors (researchers at Lancaster

University) being seconded to Bloomberg for a year, working closely

1579



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Figure 1: The Fixie architecture

with a small Bloomberg team developing APR technologies. The

two researchers became embedded in the team, one focusing on

the technical side, and the other on researching the socio-technical

dimension. The researchers met with the team regularly, usually

two or three times a week, and had access to Bloomberg platforms.

3 METHODOLOGY

3.1 Choice of Focus Group Method

For this research, we chose to use focus groups, a qualitative method

well suited to explorative research. Focus groups are not widely used

in software engineering, though they are common in marketing

and social sciences. One exception is [18], which reports on the

use of focus groups for requirements prioritisation and usability

evaluation studies. Kontio et al. identify several strengths of focus

groups: facilitating discussion of new and unexpected insights;

providing the researcher with in-depth understanding; and aiding

participant recall and being generally beneficial for participants.

Though Kontio et al. consider the existence of group dynamics a

challenge, another key benefit of focus groups is the insight they

offer into interaction and negotiation of perspectives. Given the

importance of team dynamics and group norms in software devel-

opment practice [25], we consider focus groups’ insight into group

dynamics as especially valuable in software engineering research.

In particular, focus groups that bring together participants who

already know each other (e.g., software teams) may be able to cap-

ture group dynamics-related factors that impact tool adoption. An

individual’s attitudes do not exist in a vacuum and are likely to be

shaped by colleagues’ views [8]. In our focus groups, there were

several instances in which participants changed their minds about

a topic or, following discussion, reached agreement. This shows

how attitudes are not static, but dynamic and contextual. Under-

standing these group dynamics may be helpful in contextualising

tool adoption.

Focus groups that bring together participants who know each

other may be more comfortable and familiar for developers to

participate in. Team-based focus groups might also feel similar to

software development process activities, such as retrospectives. In

both focus groups and retrospectives, for example, individuals share

their views on the strengths and weaknesses of a past experience.

3.2 Focus Group Structure and Participants

The focus groups were semi-structured Ð there were some pre-

determined questions, but also openness to follow-up on unex-

pected themes. The focus groups were also adapted to the particular

nature of the participants. One focus group was carried out with

the Bloomberg team developing Fixie, in order to understand their

intentions and goals. The other four focus groups were carried out

with different teams who had at least some interaction with Fixie,

1580



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Winter et al.

Figure 2: Prototype dashboard for applying fixes across

multiple repos

though the extent of this interaction varied. These differences in

focus group composition meant that the questions differed between

focus groups.

The focus group with the Bloomberg team developing Fixie

started with an initial introduction by one researcher and was then

focused around the following key open-ended questions:

• What were the origins of Fixie at Bloomberg?

• What were your original aims? Did these aims change?

• How would you like developers to use and interact with

Fixie?

• What is your vision for the future?

The other focus groups were tailored to the specific user group;

each group had a slightly different experiencewith Fixie (see Section

4.2). However, each focus group followed a similar structure.

• Introduction to the research and the focus group.

• Section 1: Questions about participant knowledge of and

experience with Fixie, including benefits and challenges ex-

perienced so far.

• Section 2: Questions about how participants would like to

interact with Fixie in its current form (provision of fixes as

PRs), including how and when participants would like to be

informed about fixes.

• Section 3: Questions about how participants would like to

interact with Fixie under different possible future directions.

Participants were shown a prototype dashboard (see Figure

2), which would allow developers to apply a particular fix at

scale across multiple repos. Participants were also prompted

about other possible Fixie future developments, such as Fixie

as an automated reviewer of developers’ own PRs.

• Section 4: The focus groups concluded by asking partici-

pants to consider the opportunities and challenges for rolling

out Fixie across Bloomberg more widely.

The focus groups were facilitated by the first author who has

several years’ experience in conducting qualitative research, in-

cluding focus groups. The second author also attended to aid in

facilitation and, given her close involvement in Fixie’s technical

development, to answer more technical questions that participants

might have. This integration of social and technical expertise was

useful for carrying out the research.

Table 1: Focus group participants

Focus group Relationship with Fixie Participants

A Developers of Fixie A1, A2, A3

B Providers of custom fixes B1, B2, B3

C Security experts C1, C2

D Users of Fixie D1, D2

E Users of Fixie E1, E2, E3, E4, E5

F Users of Fixie F1, F2

Potential focus group participants were identified through discus-

sion between the researchers and members of the Bloomberg Fixie

team. Participants were then contacted by email or Bloomberg’s

instant messaging platform. All participants were given an infor-

mation sheet about the research and returned a consent form. The

project had approval from the researchers’ University Research

Ethics Committee and Bloomberg’s Legal and Compliance teams.

Each focus group was made up of people who knew each other,

recruited through their teams. Table 1 outlines each of the partici-

pants, their team, and the team’s relationship with Fixie.

Each focus group took place online, using Bloomberg’s video

conferencing software, and was audio recorded. Each focus groups

lasted between one and one and a half hours, and together they

yielded over 40,000 words of transcribed material.

3.3 Focus Group Analysis

The focus groups were transcribed by the first author. They were

then thematically coded. The first and second authors read the tran-

scripts and then met to discuss coding. It was decided initially to ap-

ply broad brushstroke coding by role and time. The thematic codes

for role were: developing (related to developing Fixie); contributing

(related to contributing to Fixie, e.g., providing custom fixes); and

using (relating to receiving fixes from Fixie). The time codes were

past, present, future, and general. Both authors then independently

coded three transcripts with these broad codes, while also using

open coding to identify emerging and more granular themes. The

unit of analysis was generally each separate unit of speech, i.e.,

what a person said before another person spoke. If speech was

more fragmented (i.e., participants said just a few words each), we

thematically coded multiple units of speech.

After both authors had independently coded three transcripts,

wemet to discuss disagreements and establish agreement. The emer-

gent thematic codes were finalised and written up in a code book.

We then coded the remaining three transcripts using the code book

as reference but continued to use open coding to capture further

emerging themes. We then met again to negotiate any disagree-

ment and agree upon new codes. All transcripts were dual-coded

independently and there was at least partial agreement in the case

of 77.5% units of analysis coded by both authors.

To aid analysis, the transcripts were then uploaded into NVivo,

thematic analysis software. This enabled quotations attached to the

same themes to be clustered, facilitating further organisation of the

data. From these clusters, key findings were identified.

1581



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

4 FINDINGS

In this section, we report on our findings for RQs 1, 2 and 3. Our

recommendations in response to RQ4 are reported in Section 5. For

each RQ, our key findings and indicative supporting quotations are

also presented in a table (see Tables 2, 3, and 4).

4.1 RQ1: What User Considerations Have
Influenced the Development of APR at
Bloomberg?

The key finding from focus group A (with the developers of Fixie)

was that APR development had become increasingly user-

centered, representing a shift away from a predominantly technical

approach. A3 identified a ‘huge mindset shift’: ‘[we] realised that if

we want this to go into production and actually be used by developers,

this [technical details] shouldn’t be the only focus [...] We have to find

a way to make developers trust the fixes and to know [...] when we

should provide fixes’.

One key feature of the user-centered approach was an

emphasis on putting Fixie users in control: ‘if we put the

developer in the driving seat, we believe that it will increase interaction

and also the confidence of the developer in the solution’ (A1). The

team was open to Fixie being shaped by the developers using it:

‘developers are shaping [Fixie] in [...] the way they want to interact’.

A user-centered approach was characterised, in practical

terms, by a strong focus on how and when fixes are presented

to developers. As A2 commented, ‘what’s very important is about

how and when changes are presented to the developer. Maybe that’s

even more important than the correctness of the change in some

way’. This is in contrast to much academic research that targets fix

correctness as a key objective. Our RQ2 and RQ3 findings confirm

this: developers were happy to use Fixie-provided fixes as ‘starting

points’, rather than needing them to be fully accurate, but they

needed fixes to be presented to them in the right way.

The provision of relevant information and metrics along-

side fixes was seen as important to aid developers reviewing

the fix. This was especially significant ‘when a fix is suggested but

the developers don’t really understand what it’s supposed to do or

how it will interact in the code’ (A3). In such cases, it was important

to provide ‘very concrete and empirical metrics to show that this is

actually a good modification, so the most obvious example would be

to fix a test in that case. So if developers know that their current code

is failing a test and with that fix the test is now working they will

have direct proof that this is actually solving something’ (A3).

Several future directions for Fixie development were identified

in focus group A. One future direction is Fixie as a developer’s

assistant, potentially using speech recognition or ‘agent-based’

models to enable the tool to respond to ‘high-level objectives’ (A1).

This vision corresponds with nascent APR research on repair bots

[27] [22]. We discuss this further in Section 5.

Another future direction identified in focus group A was

to enhance Fixie’s customisability, allowing developers to cus-

tomise Fixie according to their needs. This could be based upon

developers’ understanding of other compensating controls in their

environment that reduce the risk being presented. A3 echoed that

Fixie should be customisable according to how open developers are

‘to new ideas and new features’. This suggests that human values are

important for how developers want to interact with an APR tool.

One other future possibility identified was to develop Fixie as a

PR reviewer, motivated by the fact that ‘it is a very natural place to

interact with people, and to raise the problems and also relationship

between a fix and the problem detection’ (A1). A3 agreed: ‘PRs are

good [...] because you know that the developer has been working on

some parts and you know that if you suggest a fix on this part they

will be very likely to engage with the suggestion, so I think that’s a

very good time’. A3 highlighted how this meant they would be able

to provide ‘fixes on what was written during the last modification so

that it doesn’t even get to the code base’.

Currently, Fixie operates as part of CI processes, fixes being

offered as PRs. Focus group A also discussed implementing Fixie

in the IDE as an alternative future direction. A2 explained, ‘so

right now [...] you still have to push your changes before Fixie will

get involved’. A3 agreed: ‘I think that 95% of bug fixing goes on

before reaching the commit phase [. . . ] that means we are missing

a lot of potential bug fixes’. From a technical perspective, an IDE-

based system could expand Fixie’s learning context to incorporate

potentially more valuable fixes: ‘right now [...] most of the fixes we

are trying to address are mainly things that aren’t code-breaking

[...], so if we [were] seeing the entire story of the developer working

locally, and modifying their code to fix tests, we would have much

more patterns I think, and much more useful ones as well, because we

could actually provide fixes that do fix a test and not just marginally

improve the code’ (A3). An IDE-based system could also offer better

user workflow fit, as A2 explained: ‘if I own a code base but I’m not

working on it and someone suggests a PR, I’m going to say ‘why do

we need this change now?’ [...] whereas if I’m working on something

and someone suggests something, even if it’s not as important, even if

it’s not as correct, I’m more willing to pay more attention to it because

I see it as adding more value to what I’m currently doing’.

4.2 RQ2: What Have Been Developers’ Early
Experiences Using Fixie?

The experiences developers had with Fixie varied between focus

groups, related to the role of participants. Participants in focus

group B were involved in providing custom fixes to Fixie, while

participants in focus group C offered a security perspective based

on their roles as senior security experts. Participants in both these

focus groups offered more high-level, strategic insight, whilst the

participants in focus groups D, E and F had all received fixes from

Fixie in the form of pull requests.

One key strategy employed by Fixie developers is user-goal

alignment. This was implemented partly by pushing fixes gener-

ated by Fixie at scale during large events or project milestones, like

migration events. These events involved a degree of gamification

to motivate developers to review PRs, as teams ‘competed’ against

each other over the course of a one-day hackathon. This seems to

be something that worked well. A1 explained that ‘half of the PRs

(at one migration event) were accepted and merged [...] as opposed to

10% in general’ [61 out of 127 changes were accepted - 48%].

Participants who had received PRs from Fixie as part of

migration events were generally positive about the experi-

ence. However, they also identified thatmanual work was still

1582



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Winter et al.

Table 2: Summary of key findings for RQ1 - what user considerations have influenced the development of APR at Bloomberg?

Key finding Indicative quotation(s)

APR development at Bloomberg has become increasingly user-

centered

‘We have to find a way to make developers trust the fixes’ (A3)

‘What’s very important is how and when changes are

presented to the developer’ (A2)

Fixie users need to feel in control ‘If we put the developer in the driving seat, we believe that it will

increase interaction and also the confidence of the developer in

the solution’ (A1)

It is important to provide relevant information and metrics with

fixes to help users review the fix

‘Very concrete and empirical metrics to show that this is actually

a good modification, so the most obvious example would be to

fix a test in that case’ (A3)

Fixie users need to be able to customise Fixie to meet their needs ’This could be based upon developers’ understanding of other

compensating controls in their environment that reduce the

risk being presented’(A1)

Ideas for future development include Fixie as a ‘developer’s

assistant’ and an IDE-based system

‘I imagine maybe Fixie as a developer’s assistant’ (A1)

‘If I’m working on something and someone suggests

something [...], I’m more willing to pay more attention to it

because I see it as adding more value to what I’m currently

doing’ (A2)

Table 3: Summary of key findings for RQ2 - What have been developers’ early experiences using Fixie?

Key finding Indicative quotation(s)

Manual work is still required when using Fixie ‘I had to manually modify the file generated by Fixie’ (F2)

‘You still need manual work [...] sometimes you need to

fix the unit test and I don’t think Fixie can do that for you’ (F1)

‘Fixie-generated fixes offer a helpful starting point Fixie has done the heavy lifting [...] even if the PR is not func-

tioning, one can still make some small changes, small fixes, to

make it production worthy or improve the style of it’ (E5)

required. F1 explained, ‘the overall structure of the migration looks

good but you still need manual work [...] you need to fix the path [...]

and sometimes you need to fix the unit test and I don’t think Fixie can

do that for you’. F2 discussed the need to manually modify the code

changes generated by Fixie: ‘I was using a special version of a library

[that] was not detected when Fixie was run, so I had to manually

modify the file generated by Fixie, so to point at the correct library’.

However, the Fixie-provided fixes still offered a helpful

starting point. E5 explained that Fixie had ‘done the heavy lifting

[. . . ] even if the PR is not functioning, one can still make some small

changes, small fixes, to make it production worthy or improve the

style of it. So even if the Fixie PRs can do most of the job, so like 90%

of the job, but 10% require [a] tweak, that will still be good progress, a

good contribution by an automatic tool for me’. Again, this reveals a

pragmatic approach to automatically generated fixes, rather than

a focus purely on technical precision.

4.3 RQ3: How Do Developers Want to Interact
with Fixie?

4.3.1 Fixie-Generated PRs. As Fixie-generated fixes are currently

presented to developers as PRs, there was much discussion in focus

groups D, E and F of how the PR workflow was best managed.

Participants identified that within Bloomberg generally (not just

related to APR), there could be a delay getting PRs approved,

particularly for very large changes involving many lines of code.

One implication of this challenging context was that Fixie PRs

should be carefully timed. B3 explained that ‘the best way to

guarantee [PR review] is if the team is on board’, because unexpected

PRs might be deprioritised: ‘maybe they have much more important

1583



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 4: Summary of key findings for RQ3 - How do developers want to interact with Fixie?

Key finding Indicative quotation(s)

Fixie-generated PRs should be well timed and incorporated into

existing processes

‘We have a weekly build already, [...] so if at the same time they

can run Fixie and then said łoh by the way, Fixie found those

things that we would like to change"’ (F2)

Processes are needed to support developers if they do not un-

derstand a Fixie-generated PR

‘I think it did happen a few cases where I saw a Fixie PR

and I maybe didn’t really understand why it’s needed [...]

and then I just ignore it, because I don’t have anyone to ask’ (E1)

It would be useful to have ‘a link to some Wiki page or

whatever of why you are doing the changes’ (F2)

Who PRs are assigned to is a key question, provoking different

opinions

‘The one who merged the last PR’ (E3)

‘The one who will most want to take action on it [but]

how do you find out who is most interested in it?’ (E2)

The team lead should ‘distribute the workload’ (E5)

PRs should be small and easy to code review ’If it is relatively small size then I can read it within 5 minutes,

then that’s a good one’ (F1)

PRs should be ‘easy to code review, so they’re simple

and you can easily determine that they’re safe’ (E2)

Automatically merging PRs was a controversial idea for devel-

opers

‘I wouldn’t go for auto-merge in any case’ (E5)

Pre-requisites for automatically merging PRs included high test

coverage and high confidence

‘I think if we have really good test coverage [...] then I would

feel more confident in auto-merging’ (E2)

There would need to be ‘a really high confidence rate-

like, for the past 6 to 8 months, 99% of fixes were approved

without hesitation’ (C1).

Fixie should start with small fixes ‘The way I would do it is I would start with small things and

then you’ll build confidence and people will be more and more

willing to use it’ (F2)

Developer awareness of Fixie activities is paramount ‘If there were communication about it and I was aware of the

change, then there wouldn’t be an issue at all’ (E4)

things to do [...] so they will completely deprioritise the Fixie PRs or

maybe even close them’. One possible solution was to incorporate

Fixie-generated PRs into existing processes, as F2 identified:

‘we have a weekly build already, [...] so if at the same time they can

run Fixie and then said łoh by the way, Fixie found these things that

we would like to change; would you be ok?"’.

The PR-based APR system also raised questions of what to do

if the PR was difficult to understand. E1 explained, ‘if there’s an

open PR by a developer I either just merge it or, if I’m not sure, I reach

out to that person. But in Fixie ś I think it did happen a few cases

where I saw a Fixie PR and I maybe didn’t really understand why it’s

needed, or why it should be added, and then I just ignore it, because I

don’t have anyone to ask’. One solution would be a description of

‘what is this for, what is it trying to fix’ (E1), or a ‘a link to some Wiki

page or whatever of why you are doing the changes’ (F2).

Another key discussion theme was who PRs should be as-

signed to. Participants identified various solutions, including ‘the

last person who committed to that PR’ (E3) or the ‘team lead’ (E2,

E3). E2 felt that PRs should be assigned to ‘who will most want to

take action on it [but] how do you find out who is most interested in

it?’. E2 suggested that assigning PRs to the team lead, who would

then assign to a relevant team member, might work: ‘you want to

involve the team leader somehow so that they’re involved in the pri-

oritisation of work’. E5 agreed that the team lead should ‘distribute

the workload’. In another focus group, B3 suggested that PRs should

be auto-assigned based on ownership or previous PR reviewers.

1584



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Winter et al.

As well as who PRs should be assigned to, there was much

discussion of how and when people should be notified about

Fixie-generated PRs. Participants didn’t want to be notified about

PRs too frequently unless a fix was urgent: ‘I’m a bit worried of

getting a message every day saying łok, you have a new PR from

Fixie", because there’s already a lot of PRs to review’ (F2). E2 agreed

that they would want ‘one message approximately per week, with

a link to the webpage where I can see my matrix of what’s going on

and I can do my assignments’. In addition, it was important that

participants did not receive an overwhelming number of PRs: E2

explained that developers should ‘get only a certain number at a

time, that they don’t pile up’.

Other participants were less worried about frequency and num-

ber of PRs, and more concerned about the size of the PRs, as F1

expressed, ‘the frequency doesn’t matter that much to me but the size

of the PR matters ś [...] if it is relatively small size then I can read it

within 5 minutes, then that’s a good one’. E3 agreed that PRs should

not be too large: ‘the only reluctance a developer may run into is if it

generates a PR which has changes to let’s say hundreds of files’.

As well as small in size, PRs should be easy to code review :

‘so they’re simple and you can easily determine that they’re safe’ (E2).

E2 expanded on what would make a PR easy to code review: ‘that it

does one thing only at a time, that what it’s doing is clearly a fix [. . . ]

and that you know won’t have side effects, and that [won’t] get in the

way of business logic [...] So if Fixie wants to fix an if statement for me,

I’ll say łok, I’ll postpone that and look at that later" *laughs*, but if

Fixie says łactually, the way you’ve done this, here’s the better way to

do it, and I look at it and I know thatł‘oh yeah, this is a transformation

that I understand will have no side effects", then I can approve that

more quickly’.

A contentious issue in the focus groups was whether PRs

should ever be automatically merged to a code base. Some

participants felt that it would always or mostly be necessary for

a developer to check the fix: ‘I wouldn’t go for auto-merge in any

case’ (E5); ‘it does depend very heavily on the change but most of the

time it’s good to just get one last sanity check before it gets merged’

(E4). Other participants felt that certain circumstances might allow

for auto-merge, such as ‘very minor changes’ (E1), in circumstances

where a change had remained unmerged ‘for a long duration’ (E3)

or in conditions of very high test coverage: ‘I think if we have

really good test coverage [...] then I would feel more confident in

auto-merging happening’ (E2). Auto-merge had several prerequi-

sites. These included good communication: ‘I think if there were

communication about it and I was aware of the change, then there

wouldn’t be an issue at all [...] rather than just auto-merge and figure

out what happened after’ (E4); and proven success: developers need

to manually review fixes until there is ‘a really high confidence rate-

like for the past 6 to 8 months, 99% of fixes were approved without

hesitation’ (C1).

Aside from the particular case of auto-merging PRs, high test

coverage was seen as generally important for PR acceptance. F1

recommended that PRs were generated first for ‘higher coverage

repos’, F2 confirming that ‘I have that peace of mind if I have high

coverage in regression and unit tests’.

4.3.2 Trust in Fixie. The notion of automatically-generated fixes

raised various issues related to trust, particularly in the security

focus group, whose members were worried about automatically

generated fixes making code less secure. C2 explained ‘my

biggest fear [...] if someone fixes something the wrong way and either

breaks things or makes it less secure’, and C1 agreed: ‘yes, I was about

to say that too [...] not only not fix the vulnerability, but make it less

secure in the process’.

Trust was also raised as an issue in the other focus groups and

starting with small fixes was seen as an important way to build

trust among Fixie users. F2 explained: ‘the way I would do it is I

would start with small things [...] and then you’ll build confidence

and people will be more and more willing to use it’. Another way of

building trust was for developers to have awareness of what

Fixie was doing. E2 talked about the need for developers to have

‘situational awareness’ and to have Fixie communicate its actions to

the team: ‘so it’s not so much that we’re aware of the syntax changes

that happened, but we’re aware of the theme, in the same way that we

would be aware of something that says ‘ok, this week we’re building

in this or that into the parser’.

4.3.3 Future Directions - Dashboard. Participants in focus groups

D, E and F were presented with a prototype Fixie dashboard to elicit

their responses. The dashboard is a simple web page, which would

allow a developer to pick a specific fix type and then apply this at

scale to a repo, or to multiple repos. The focus groups provided

feedback on the idea itself and its implementation. Regarding the

idea, participants were not fully convinced of its value. This was

partly because they were unsure about the value of triggering

Fixie themselves. Asked if they would be interested in applying

a fix for a deprecated API across multiple repos, one participant

replied ‘but shouldn’t Fixie proactively look for old usages of this

library and open PRs for other repos in the organisation that have

this’ (E1). E1 continued that they didn’t see how this would be

useful for ‘machine generated changes’: ‘if it’s machine generated,

the machine part should also be proactive in searching where this

change is needed and suggesting it’. The proposed dashboard was

only seen as useful for human-created, or ‘custom’ fixes, not for

automatically-generated fixes.

There was also some feedback on the dashboard’s interface. E2

suggested that more visual cues were needed: ‘give me a visual so

I understand how important this change is, and how big of a change

it is [. . . ] I think that will be really helpful to want to interact with

it’. E2 also suggested that a ‘try’ button was needed as well as an

‘apply’ button, which would ‘let you visually inspect the results and

to do it as many times as you want starting from scratch’. Though the

apply button would only generate PRs rather than actually apply

the change to the codebase, E2 still felt that a try button would be

useful: ‘I don’t want to generate PRs that aren’t what I wanted, aren’t

what I thought they were, aren’t what I expected’.

4.3.4 Future Directions - Fixie as a PR Reviewer. As well as the

dashboard, we also asked developers what they felt about the idea

of Fixie as a PR reviewer, receiving a fairly positive response.

E4 could see value in this idea if suggestions were related to code

formatting: ‘something that would maybe catch [formatting errors]

and give a suggestion for that could be useful’. E2 was also positive

about ‘Fixie coming in and saying łok, I see what you’re doing here,

there’s a better way to do it, or there’s a better syntax for that, or here’s

some options for you"’, and felt that developers could be incentivised

1585



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

by knowing that Fixie had helped them develop ‘great code’ that

code reviewers would pick up on. However, not all participants

felt that Fixie as a PR reviewer would add value. C1 explained

that ‘you get already all the benefits by having the [Fixie-generated]

PR making the change and then that can be reviewed’. F2 felt that

recommendations about ‘trivial things’ could also ‘upset’ people.

5 DISCUSSION AND RECOMMENDATIONS

5.1 Developer-APR Interaction

There are several important considerations for developer-APR in-

teraction. One of these is how APR can respond to the problem of

what developers should do if they don’t understand an automati-

cally generated fix. Advances in explainable AI offer one potential

solution, as does the idea of repair bots, which has already had some

attention within APR [22] [27]. Monperrus, for example, envisages

‘conversational systems for patch explanation; developers would be

able to ask questions about the patch behaviour, and the program

repair bots would answer those questions’ [22]. Such solutions also

respond to another significant consideration that emerged in the

focus groups ś how APR communicates its activities and intentions

to developers, leading to developer situational awareness.

The focus groups with Fixie users found that the idea of automat-

ically applied fixes was controversial for developers and unpopular

with many of them. In addition, the developers of Fixie were clear

that it was important for developers to be involved in the process

and to feel in control. This suggests that, for the time being at least,

APR development should focus upon APR tools that continue to

involve the developer in reviewing and approving patches, rather

than aiming to remove the developer completely, a goal for some

APR research (for example, [29]).

Recommendations:

• APR tools should incorporate explainable AI techniques.

• Repair bots offer an important future step for ensuring effec-

tive developer-APR interaction.

• Development of APR should prioritise systems that still in-

volve the developer in reviewing and approving patches.

5.2 Fit with Workflow

The lengthy discussions about how and when PRs should be com-

municated and to whom they should be assigned reveals that the

introduction of APR is not going to be simple. Much work is needed

to identify how APR tools can be developed so that developers can

incorporate them into their existing workflows. This has similarity

with Erlenhov et al.’s work on software bots, which argues that

‘such systems need to carefully evaluate how often, and when, they

should interrupt the developer with suggestions or requests for

further input’ [9]. Within the focus groups, there was not always

agreement about the best ways in which APR could be incorporated

into developer workflows, indicating that there is no simple ‘one-

size-fits all’ model for effective APR. Not only does workflow-fit

vary among developers, but ‘anything for Bloomberg has to be very

tailored to Bloomberg’, complementing its existing processes (C2).

Recommendation:

• APR tools should be developed so that they are customisable

to company workflow processes and developer workflow

preferences. This might include developing APR tools that

can be used in both CI and IDE contexts

5.3 Developer Trust in APR

Trust in APR was a less frequently occurring theme than discussion

of the practicalities of how and when automatically generated fixes

should be presented. However, it was still important. Developers

expressed the view that an APR tool should ‘prove itself’ by starting

small. Though developers varied in their attitudes towards whether

fixes should be ready to apply or a ‘starting point’ for the developer

to modify where needed, there seemed to be general consensus

that showing proven success with small, straightforward fixes was

desirable for building trust. Whilst fixing complex bugs is a key

imperative for academic APR research, offering fixes for small,

simple bugs is an important way to build developer trust.

In addition, the different kinds of developer risk appetite identi-

fied in focus group A is an important consideration (given other

compensating controls), suggesting that some developers prefer

fully understandable patches, while others Ð with greater risk ap-

petite Ð may respond positively to what Monperrus refers to as

‘alien code’ [21].

Recommendations:

• APR tool development should consider how fixes could be

offered in a ‘phased’ way, starting with small fixes and be-

coming more complex. APR tools could learn from accep-

tance metrics when to start offering more complex fixes, or

interact with the developer to ask whether more complex

fixes should be offered (see, for example, advances in APR

bots [22] [27]).

• APR tools should be customisable according to individual

developers’ risk appetite.

5.4 Technical Considerations

Whilst the focus of this work was on the socio-technical dimen-

sions, the focus groups brought to light one particularly significant

technical dimension. Bloomberg, like many companies, has specific

types of bugs, such as bugs that concern business logic. This raises

challenges for APR’s learning context, as it makes it essential to

access proprietary software in order to develop APR tools that are

more effective and useful for different industry settings.

Recommendation:

• Sustained academia-industry collaborations are required to

develop bespoke APR tools for specific industry settings.

6 THREATS TO VALIDITY

Internal validity: One key threat to validity in focus group re-

search is that it may be challenging to capture participants’ ‘actual’

views outside of the social dynamics and pressures present in a

group setting. Whilst we consider the capturing of group dynamics

a strength of focus groups Ð as these group dynamics are likely to

influence tool adoption and acceptance Ð the group setting does

pose challenges, such as more dominant participants. To mitigate

this threat and ensure that less dominant voices were heard, the

focus group facilitator intentionally addressed some people directly

for input at various stages during the focus groups.

1586



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Winter et al.

Another threat to internal validity is that research that inves-

tigates people’s experiences and attitudes is susceptible to social

desirability bias. Our participants may have felt influenced by the

presence of their colleagues and of researchers. Knowing that the

two researchers were working closely with the development team

may have also hindered users in being more critical of Fixie. To

mitigate this threat, we tried to make the focus groups informal and

relaxed; we also stressed that the data would be anonymous and

that only the researchers would have access to the raw transcripts.

To mitigate against interpretive bias in the thematic analysis,

each transcript was independently thematically coded by two au-

thors, and disagreementswere discussed until agreementwas reached.

External validity: Our sample size of 17 is not uncommon for

qualitative research [18], and was purposefully chosen to capture

insights from both developers of Fixie and developers using Fixie.

However, the insights drawn from these focus groups may not apply

to all developers at Bloomberg; in a large and complex organisation,

many factors may influence attitudes towards a new tool and we

would predict different team dynamics and roles to play a part.

This research was embedded in Bloomberg, a specific industrial

setting, and explored a specific prototype APR tool. As a result, our

findings can not be generalised to different industrial settings. How-

ever, we suggest that they are likely to have relevance elsewhere

and we invite further studies to investigate this.

7 RELATED WORK

Our previous work found that only a very small proportion of APR

research included any type of study with human participants [28].

Past studies include controlled experiments [1] [3] [5] [7] [13] [14]

[24] [26] [30] and surveys [11] [16] [20] [23] [24]. These studies

primarily focus on the degree to which participants are aided by

having access to APR (for example, [7] [24]) and also the degree to

which participants trust APR (for example, [1]).

Past experimental studies have largely focused on how partici-

pants performed a task with or without access to an APR tool or

its automated patches. These studies paint a mixed picture of the

effectiveness of participant interaction with APR, and the degree to

which APR assisted them in their tasks. Daniel et al., for example,

suggest that their participants may have ‘become overly reliant

on the tool’, as more faults were introduced by participants that

had access to the APR tool than those that did not [7]. Parnin and

Orso’s participants were able to perform an easy task quicker when

they had access to the tool, but the tool did not help in the case

of more difficult tasks [24]. In Cambronero et al.’s study [5], two

participant groups were asked to repair defects and were given the

location of the defective lines of code, but one group had access

to five automatically generated patches, of which one was correct.

The results found little difference between the two groups in terms

of time taken to perform the assigned tasks and the number of

correct patches submitted. Cambronero et al. concluded that au-

tomatically generated patches on their own were not enough to

increase developer productivity: ‘subjects spent most of their time

trying to understand the defect and the way the provided patches

related to the original source code containing the defect’ [5]. This

finding suggests that work needs to be done regarding how auto-

matically generated patches are presented to developers, and what

information is required to aid developers in approving patches.

APR human studies have also drawn attention to issues related

to trust. In Tao et al.’s study, for example, participants were wor-

ried that generated patches might be unclear or incorrect, and and

that they might not work if the test suite is not sufficient [26]. The

participants in Liu et al.’s study voiced some concern about the

accuracy of the patches generated by the tools [20], while Böhme

et al.’s study [3] found that ‘practitioners are wary of debugging

automation’, particularly for functional bugs. Böhme et al.’s partici-

pants were unsure how feasible APR was, due to the challenges of

code comprehension. Alarcon et al.’s experimental study also con-

sidered trust in APR, and found that the source of the repair (human

vs. automated) had significant influence on trust perceptions and

intentions, participants having higher trust in human repairs than

automated repairs [1]. These trust issues have implications for APR

adoption, and indeed the participants in Parnin and Orso’s study

‘were quick to disregard the tool if they felt they could not trust

the results or understand how such results were computed’ [24].

By contrast, Noller et al.’s survey of 103 participants found high

willingness from participants to review automatically generated

patches [23]. The survey results also provide indications of what

might increase developer trust in automatically generated patches,

such as test cases, explanations of the patch, and evidence of patch

correctness.

These studies provide interesting insights, but are all quantita-

tive, providing little, in-depth, qualitative insight into developer

perceptions about APR. In addition, few studies have been con-

ducted with professional developers (exceptions are [3], [23] and

[24]), and none situated in specific industry settings. A study of

the implementation of Getafix at Facebook suggests that auto-fixes

should be integrated into existing development tools and predicted

fast enough so as not to slow down engineers’ work [2], but these

recommendations are not based on a research with developers.

8 CONCLUSION

This paper reports on findings from in-depth, qualitative research

at Bloomberg, where a prototype APR tool, Fixie, has been devel-

oped and implemented. We find that developers using Fixie are

highly concerned with the pragmatic aspects of APR, such as how

and when fixes are presented to them. Such aspects have so far

been given little attention in APR research. From our findings, we

recommend that APR tools should be customisable, start small, and

be designed with greater consideration of workflow issues. We also

identify research in explainable AI and repair bots as useful fu-

ture directions. We suggest that following these recommendations

will help with the adoption of APR in industry, allowing APR’s

considerable potential benefits to be more fully realised.

ACKNOWLEDGMENTS

This work was supported by an Engineering and Physical Sciences

Research Council grant (EP/S005730/1)/ We are very grateful to the

Bloomberg developers who participated in our focus groups and

gave of their time and expertise.

1587



Towards Developer-Centered Automatic Program Repair: Findings from Bloomberg ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

REFERENCES
[1] Gene M. Alarcon, Charles Walter, Anthony M. Gibson, Rose F. Gamble, August

Capiola, Sarah A. Jessup, and Tyler J. Ryan. 2020. Would You Fix This Code for
Me? Effects of Repair Source and Commenting on Trust in Code Repair. Systems
8, 8 (2020), 1ś17. https://doi.org/10.3390/systems8010008

[2] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[3] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is It Fixed?
An Experiment with Practitioners. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 117ś128.
https://doi.org/10.1145/3106237.3106255

[4] L. Briand. 2012. Embracing the Engineering Side of Software Engineering. IEEE
Software 29, 4 (2012), 96ś96. https://doi.org/10.1109/MS.2012.86

[5] José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena Glassman, and Martin
Rinard. 2019. Characterizing Developer Use of Automatically Generated Patches.
arXiv preprint arXiv:1907.06535 (2019), 1ś9. https://doi.org/10.48550/arXiv.1907.
06535

[6] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 637ś647. https://doi.org/10.1109/ASE.2017.
8115674

[7] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert:
Suggesting Repairs for Broken Unit Tests. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering. 433ś444. https:
//doi.org/10.1109/ASE.2009.17

[8] Fred D. Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Quarterly 13, 3 (1989), 319ś340.
http://www.jstor.org/stable/249008

[9] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2020. An
Empirical Study of Bots in Software Development: Characteristics and Challenges
from a Practitioner’s Perspective. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 445ś455. https://doi.org/10.1145/
3368089.3409680

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313ś324. https://doi.org/10.1145/
2642937.2642982

[11] Hideaki Hata, Emad Shihab, and Graham Neubig. 2018. Learning to Generate
Corrective Patches using Neural Machine Translation. arXiv preprint 1812.07170
(2018), 1ś20. https://doi.org/10.48550/arXiv.1812.07170

[12] Vladimir Ivanov, Alan Rogers, Giancarlo Succi, Jooyong Yi, and Vasilii Zorin. 2017.
What Do Software Engineers Care about? Gaps between Research and Practice. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery,
New York, NY, USA, 890ś895. https://doi.org/10.1145/3106237.3117778

[13] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso. 2014.
Minthint: Automated Synthesis of Repair Hints. In Proceedings of the International
Conference on Software Engineering. Association for Computing Machinery, New
York, NY, USA, 266ś276. https://doi.org/10.1145/2568225.2568258

[14] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. 2006.
Repairing Unsatisfiable Concepts in OWL Ontologies. In The Semantic Web: Re-
search and Applications. Vol. 4011. Springer Berlin Heidelberg, Berlin, Heidelberg,
170ś184. https://doi.org/10.1007/11762256_15

[15] Besma Khaireddine, Matias Martinez, and Ali Mili. 2019. Program Repair at
Arbitrary Fault Depth. In 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). 465ś472. https://doi.org/10.1109/ICST.2019.00056

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802ś811. https://doi.org/10.5555/2486788.2486893

[17] Serkan Kirbas, Etienne Windels, Olayori McBello, Kevin Kells, Matthew Pagano,
Rafal Szalanski, VesnaNowack, EmilyWinter, Steve Counsell, David Bowes, Tracy
Hall, Saemundur Haraldsson, and John Woodward. 2021. On the Introduction
of Automatic Program Repair in Bloomberg. IEEE Software 38, 4 (2021), 43ś51.
https://doi.org/10.1109/MS.2021.3071086

[18] J. Kontio, L. Lehtola, and J. Bragge. 2004. Using the focus group method in
software engineering: obtaining practitioner and user experiences. In Proceedings.
2004 International Symposium on Empirical Software Engineering, 2004. ISESE ’04.
271ś280. https://doi.org/10.1109/ISESE.2004.1334914

[19] Temur Kutsia, Jordi Levy, andMateu Villaret. 2014. Anti-unification for Unranked
Terms and Hedges. Journal of Automated Reasoning 52, 2 (2014), 155ś190. https:
//doi.org/10.1007/s10817-013-9285-6

[20] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. 2013. R2Fix: Automatically
Generating Bug Fixes From Bug Reports. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST). 282ś291. https:
//doi.org/10.1109/ICST.2013.24.

[21] Martin Monperrus. 2014. A Critical Review of "Automatic Patch Generation
Learned from Human-Written Patches": Essay on the Problem Statement and the
Evaluation of Automatic Software Repair. In International Conference on Software
Engineering. Association for Computing Machinery, New York, NY, USA, 234ś242.
https://doi.org/10.1145/2568225.2568324

[22] Martin Monperrus. 2019. Explainable Software Bot Contributions: Case Study of
Automated Bug Fixes. In Proceedings of the 1st International Workshop on Bots in
Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press, 12ś15.
https://doi.org/10.1109/BotSE.2019.00010

[23] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust Enhancement Issues in Program Repair. In Proceedings of the 44th Inter-
national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2228ś2240.
https://doi.org/10.1145/3510003.3510040

[24] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Tech-
niques Actually Helping Programmers?. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (Toronto, Ontario, Canada) (IS-
STA ’11). Association for Computing Machinery, New York, NY, USA, 199ś209.
https://doi.org/10.1145/2001420.2001445

[25] Viktoria Stray, Tor Erlend Fñgri, and Nils Brede Moe. 2016. Exploring Norms in
Agile Software Teams. In Product-Focused Software Process Improvement, Pekka
Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke
Amasaki, and Tommi Mikkonen (Eds.). Springer International Publishing, Cham,
458ś467. https://doi.org/10.1007/978-3-319-49094-6_31

[26] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gen-
erated Patches As Debugging Aids: a Human Study. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
64ś74. https://doi.org/10.1145/2635868.2635873

[27] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/engineer/bot: Principles
for Program Repair Bots. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). 43ś47. https://doi.org/10.1109/BotSE.2019.00019

[28] Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall,
Saemundur OHaraldsson, and JohnWoodward. 2022. Let’s TalkWith Developers,
Not About Developers: A Review of Automatic Program Repair Research. IEEE
Transactions on Software Engineering (2022), 1ś1. https://doi.org/10.1109/TSE.
2022.3152089

[29] He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated Patch Assess-
ment for Program Repair at Scale. Empirial Software Engineering 26, 20 (2021),
1ś38. https://doi.org/10.1007/s10664-020-09920-w

[30] J. Yi, U. Ahmed, A. Karkare, S. Tan, and A. Roychoudhury. 2017. A feasibility study
of using automated program repair for introductory programming assignments.
In Proceedings of ESEC/FSE. https://doi.org/10.1145/3106237.3106262

1588

https://doi.org/10.3390/systems8010008
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3106237.3106255
https://doi.org/10.1109/MS.2012.86
https://doi.org/10.48550/arXiv.1907.06535
https://doi.org/10.48550/arXiv.1907.06535
https://doi.org/10.1109/ASE.2017.8115674
https://doi.org/10.1109/ASE.2017.8115674
https://doi.org/10.1109/ASE.2009.17
https://doi.org/10.1109/ASE.2009.17
http://www.jstor.org/stable/249008
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.48550/arXiv.1812.07170
https://doi.org/10.1145/3106237.3117778
https://doi.org/10.1145/2568225.2568258
https://doi.org/10.1007/11762256_15
https://doi.org/10.1109/ICST.2019.00056
https://doi.org/10.5555/2486788.2486893
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1109/ISESE.2004.1334914
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1007/s10817-013-9285-6
https://doi.org/10.1109/ICST.2013.24.
https://doi.org/10.1109/ICST.2013.24.
https://doi.org/10.1145/2568225.2568324
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1007/978-3-319-49094-6_31
https://doi.org/10.1145/2635868.2635873
https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1109/TSE.2022.3152089
https://doi.org/10.1007/s10664-020-09920-w
https://doi.org/10.1145/3106237.3106262

	Abstract
	1 Introduction
	2 Background: Automatic program repair at Bloomberg
	2.1 Developing an APR Tool
	2.2 Academia-Industry Collaboration

	3 Methodology
	3.1 Choice of Focus Group Method
	3.2 Focus Group Structure and Participants
	3.3 Focus Group Analysis

	4 Findings
	4.1 RQ1: What User Considerations Have Influenced the Development of APR at Bloomberg?
	4.2 RQ2: What Have Been Developers' Early Experiences Using Fixie?
	4.3 RQ3: How Do Developers Want to Interact with Fixie?

	5 Discussion and recommendations
	5.1 Developer-APR Interaction
	5.2 Fit with Workflow
	5.3 Developer Trust in APR
	5.4 Technical Considerations

	6 Threats to validity
	7 Related work
	8 Conclusion
	Acknowledgments
	References

