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Abstract
1. The effectiveness of organic farming on biodiversity has been widely documented 

especially for plants, arthropods and birds; however, the effects of the transition 
period required to become an organic farm on wildlife remain poorly understood.

2. We assessed the effects of organic farming on insectivorous bats in citrus or-
chards in the Republic of Cyprus employing two matched designs (conventional 
vs. 3- year organic- transitional and conventional vs. organic- certified) and a third 
unmatched design (3- year organic- transitional vs. organic- certified). We specifi-
cally investigated whether the transition period prior to full organic certification 
influenced bat activity with a special focus on any moderation effects from sur-
rounding semi- natural areas.

3. The activity of three (Pipistrellus kuhlii, Hypsugo savii and Miniopterus schreibersii) 
of four bat species was significantly lower in farms undergoing the transitional 
period than in conventional farms, and P. kuhlii and H. savii were significantly 
less active in organic transitional farming systems that in organic- certified ones. 
Furthermore, the activity of the most dominant species (P. kuhlii) was signifi-
cantly higher on organic than transitional and conventional citrus orchards, thus 
suggesting a time- lag effect. Landscape complexity measured as the amount of 
semi- natural areas did not moderate the effects of farming system for any study 
species.

4. Synthesis and application. The transition to organic farming had persistent det-
rimental effects on bats and potentially on the pest suppression services they 
provide. Future agri- environmental policy should consider the transition pe-
riod and implement measures to mitigate any negative effects on biodiversity, 
alongside promoting asynchronous transition of nearby farms. Our findings 
further highlight the crucial need to consider the time since transition to or-
ganic farming when assessing potential benefits of organic management on 
biodiversity.
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1  |  INTRODUC TION

Agriculture is a dominant land use worldwide and is the primary land 
use type in the enlarged European Union (EU27) covering 45% of land 
cover (180 million ha; Food and Agriculture Organization of the United 
Nations, 2005), and mostly involving intensive agricultural practice 
(Stoate et al., 2001). A direct consequence of the intensification and 
expansion of modern agricultural practices in the last century is the bio-
logical simplification of the farmed environment, becoming increasingly 
visible through declines in farmland biodiversity and reduced composi-
tional and configurational landscape heterogeneity (Fahrig et al., 2011; 
Fuentes- Montemayor et al., 2011; Reif & Vermouzek, 2019; Traba & 
Morales, 2019; Tscharntke et al., 2005). In addition, there are severe 
losses in regulatory ecosystem services, including biological pest con-
trol (Bianchi et al., 2006; Weibull et al., 2003).

Agri- environment schemes (AESs) have been developed and in-
troduced by the European Union to counteract the negative envi-
ronmental effects of conventional farming on biodiversity (Batáry 
et al., 2015), and organic farming is one of the most well- established 
AES management approaches of the member states (Batáry 
et al., 2013). Organic farming is a production system that sustains 
the health of soils, ecosystems, and people relying on ecological pro-
cesses, biodiversity and cycles adapted to local conditions, rather 
than the use of inputs with adverse effects (Willer et al., 2021). As 
a result, the certified organic and in conversion area within the EU 
increased from 10.04 million hectares in 2012 to 13.43 million hect-
ares in 2018 representing 7.5% of the utilised agricultural area in 
Europe (EU28; EUROSTAT, 2018).

There is a significant and still growing body of studies investi-
gating the effects of organic management on biodiversity (Barbaro 
et al., 2021; Katayama et al., 2019; Rollan et al., 2019; Rundlöf & 
Smith, 2006; Schneider et al., 2014; Wintermantel et al., 2019), and 
it is now widely accepted that (i) the effects of organic farming on 
biodiversity strongly vary among taxa (Fuller et al., 2005; Winqvist 
et al., 2012); (ii) the direction and magnitude of these effects can 
be affected by the character of the surrounding landscape and the 
spatial scale considered (Batáry et al., 2010; Rundlöf & Smith, 2006; 
Tscharntke et al., 2012a; Tuck et al., 2014) and (iii) landscape diver-
sification could potentially be more important than conversion of 
conventional to organic farming (Tscharntke et al., 2021). The poten-
tial time- lag in the response of biodiversity to organic farming could 
also be an important driver of variation in organic management out-
comes (Watts et al., 2020), even though there is so far little evidence 
(Andersson et al., 2010; Jonason et al., 2011). In fact, depending on 
the species group examined (e.g. less mobile vs. more mobile species) 
and the measure implemented (e.g. habitat restoration vs. changes in 
habitat management), the benefits of organic farming may vary over 
time. Besides, research on the effects of organic farming on biodi-
versity in the Mediterranean bioclimatic region has been particularly 
limited despite it being a biodiversity hotspot (Myers et al., 2000). 
This is especially true for the Mediterranean islands, which host 
the highest richness of threatened or endemic species for all taxa in 
Europe (Maiorano et al., 2013).

To become organic certified, a transition period is required. It 
lasts a minimum of 3 years and involves specific constraints and pro-
cedures. Those mainly involve avoidance of any synthetic inputs at 
all stages (e.g. chemical fertilisers and pesticides), taking precaution-
ary measures to avoid contamination; assuring long- term biologically 
based soil fertility and employ long- term, ecological, system- based 
organic management (e.g. increase plant- based ground cover and en-
hance biodiversity; see details in Table S1 in Supporting Information). 
During this transition period, severe weed infestation, inadequate 
soil fertility and other pest problems often occur, resulting in eco-
nomic losses (Bellon & Lamine, 2009; Dabbert & Madden, 1986). 
However, the sole focus of these studies was to assess the impact 
of organic farming during the transition periods on yields for eco-
nomic purposes. Although one would expect that in the absence of 
use of agrochemicals the transitional farms have neutral to positive 
effects on vertebrates, this may not be the case as negative effects 
at the bottom of the food chain could potentially negatively affect 
higher trophic levels (Tsutsui et al., 2018). Invertebrate abundance 
declines during the transition phase that organic farming requires 
before farms are fully certified after a changeover from conventional 
farming (Andersen & Eltun, 2000), and this transition can cause a 
non- equilibrium that could last for a decade (Tsutsui et al., 2018). 
However, none of these studies has examined the effects on verte-
brates. Therefore, an understanding of the effects on biodiversity 
during this transition period is of crucial importance to provide in-
formation about the suitable conversion strategies necessary to im-
plement and minimise any potential negative effects.

Insectivorous bats are an important component of agricul-
tural landscapes and play an important role as bioindicators (Jones 
et al., 2009; Park, 2015) and in pest suppression (Aizpurua et al., 2018; 
Charbonnier et al., 2021; Cohen et al., 2020; Kolkert et al., 2020; 
Maslo et al., 2022; Puig- Montserrat et al., 2020; Russo et al., 2018). 
Studies assessing the effects of a range of agricultural manage-
ment practices on bats have reported inconsistent results. Some 
studies highlighted significant positive impacts of organic farming 
on some bat species (Barré et al., 2018; Lesiski et al., 2013; Puig- 
Montserrat et al., 2021; Rodríguez- San Pedro et al., 2018; Toffoli & 
Rughetti, 2017; Wickramasinghe et al., 2003), whereas other studies 
found no significant effect (Davy et al., 2007; Froidevaux, Louboutin, 
& Jones, 2017; Long & Kurta, 2014; MacDonald et al., 2012; Pocock 
& Jennings, 2008).

In this study, we use bats as model taxa to investigate the effects 
of organic farming with its transitional phase on biodiversity. Our 
main objective was to evaluate the effect of three different farming 
systems (conventional, organic- transitional, organic- certified) on bat 
activity in citrus orchards in Cyprus. We predicted that bat activity 
would be higher on organic farms (both transitional and certified) 
compared to conventional farms due to the use of pesticides in con-
ventional farms, resulting in a decrease in arthropods having cas-
cading effects on bats (Wickramasinghe et al., 2004). Our second 
objective was to assess the interplay between agricultural manage-
ment and landscape simplification in driving bat activity in citrus or-
chards. We predicted that the benefits of organic farming would be 
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higher in landscapes of intermediate complexity based on the ‘inter-
mediate landscape complexity’ hypothesis (Tscharntke et al., 2012b) 
that states that landscape- moderated effectiveness of local conser-
vation management (i.e. organic farming) is highest in structurally 
simple, rather than extremely simplified or complex landscapes.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and sampling design

We conducted the study in the Republic of Cyprus (Figure S1 in 
Supporting Information) (licence: 2.17.3/15, Ministry of Agriculture, 
Rural Development and Environment), where organic farming as 
part of national AES had increased rapidly (over 38×) during the last 
two decades, comprising 4.6% of the agricultural land in 2020 com-
pared to 0.12% of agricultural land in 2002 when it was first initi-
ated (Ministry of Agriculture, Rural Development and Environment, 
2020 unpublished). Sampling took place in 2017 during two critical 
periods for bats: (i) lactation period: mid- July to early August and (ii) 
post- lactation period: mid- September to early October. We surveyed 
a total of 22 matched- pairs of citrus orchards, comprising 11 certi-
fied organic farms matched with 11 conventionally managed control 
farms (period 1: 7 farms; period 2: 4 farms), and 11 organic- transition 
farms matched with 11 conventionally managed control farms (period 
1: 4 farms; period 2: 7 farms). Organic farmers were certified by the 
organic certifying bodies in Cyprus (Lacon Ltd and Biocert Ltd) follow-
ing the criteria of the Cypriot Council Regulation (EC) No 834/2007 
(see Table S2 for detailed information regarding the criteria). To avoid 
any confounding variables affecting any real differences due to farm 
management, we selected citrus orchards (mean area: 0.77 ha; range: 
0.26– 4.06 ha) with similar landscape and local habitat characteristics 
in a pair (see Section 2.3 and Table S3 in Supporting Information). 
Sampling sites were located at the centre of each orchard plot and 
were situated at least 400 m away from each other (mean: 1495 m; 
range: 428– 7000 m). No ethical approval was required. Access to 
sites was granted by private property landholders.

2.2  |  Bat echolocation call recording and 
identification

We acoustically sampled bats using two Song Meter SM2BAT+ bat 
detectors (sampling rate: 384 kHz; Wildlife Acoustics) connected to 
SMX- US ultrasonic microphones mounted on 3 m poles, facing up-
wards at 45°. We programmed the detectors to automatically record 
sounds in the frequency range 12– 192 kHz and ≥12 dB above back-
ground noise. Each recording sample lasted for 15 s. Plots within a 
pair were simultaneously surveyed during one full night, from 30 min 
before sunset until 30 min after sunrise. We switched detectors be-
tween each survey night to avoid any bias caused by possible differ-
ences in microphone sensitivity. Sampling was conducted only during 
good weather conditions (minimum temperature at night >15°C; wind 

speed ≤4 on Beaufort scale). We measured temperature each night 
every 15 min using a Data Logger RC- 5 (accuracy: ±0.5°C; Elitech), 
mounted at the 3 m poles. In case of missing data (<30%), we used 
data provided by the Department of Meteorology, Cyprus.

We manually identified each bat pass— defined as a series of min-
imum two echolocation calls with pulse interval (s) <1— using a full 
spectrum, 15 s WAV file in BatSound 4.1.4. (Pettersson Electronic). 
Over 90% of bat passes were identified to species level while ambig-
uous calls were assigned to species- complex (e.g. Pipistrellus pipist-
rellus/P. kuhlii) or grouped by genus (e.g. Myotis spp). Identification 
criteria were based on call characteristics (see Appendix S2 for de-
tails). We used bat activity (i.e. number of bat passes) as a surrogate 
of bat abundance (Froidevaux, Boughey, et al., 2017).

2.3  |  Local habitat structure and landscape analysis

To control for any potential cofounding variables known to drive bat 
activity, we conducted local and landscape analyses.

We delimited a stand of 15 × 15 m around each sampling site (i.e. 
centre of the citrus orchard where bat detector was installed) to doc-
ument the local habitat variables, including tree height and ground 
vegetation cover (Table S5 in Supporting Information). Local habitat 
variables collected at the stand scale were representative of the farm. 
We also noted the presence/absence of linear features (i.e. hedgerow 
or tree line) along field boundaries. There was little variation in tree 
height and this variable was disregarded for the statistical analysis. 
To get finer details on ground vegetation cover, data were collected 
within each of the nested square (7.5 × 7.5 m). Only one surveyor 
(PCF) conducted the survey, thus eliminating potential observer bias.

We extracted landscape variables within three buffers (1, 2 and 
3 km radii) that we created around the sampling sites using ArcGIS 
Desktop 10.5 (ESRI; Figure S2 in Supporting Information). The scales 
were selected to represent both site- specific characteristics (1 km) and 
main core foraging zones of bats (2 and 3 km; Laforge et al., 2021). We 
reclassified feature classes obtained from CORINE Land Cover data 
2012 supplied by the European Environment Agency (www.eea.eu-
ropa.eu) into 10 categories: urban area, arable, vineyard, fruit orchard, 
olive, other agricultural area, mixed and deciduous forest, coniferous 
forest, semi- natural area and water bodies (Table S6 in Supporting 
Information). Then we calculated the amount of semi- natural habitats 
(natural grasslands, moors and heathland, sclerophyllous vegetation 
and transitional woodland shrub) and urban areas at each spatial scale. 
While semi- natural habitats represent important foraging habitats 
in Mediterranean landscapes for many bat species, urban areas can 
be used as a proxy of roost availability for the most common spe-
cies occurring in the study area such as P. kuhlii and P. pipistrellus that 
are known to roost in man- made structures (Dietz et al., 2009). To 
take into account the extensive use of water bodies by bats espe-
cially in areas with a Mediterranean climate (Cruz et al., 2016; Russo & 
Jones, 2002; Sirami et al., 2013), we calculated for each sampling site 
the Euclidean distance to the nearest main river crossing the study 
area (i.e. Pedieos and Yalias) and the nearest dams and reservoirs.
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2.4  |  Statistical analysis

We performed two separate set of analyses to assess the effects of 
farming system (conventional vs. organic- transitional, conventional 
vs. organic- certified and organic- transitional vs organic- certified) on 
bat activity. In the first set of analyses, we used a series of general-
ised linear mixed- effect models (GLMMs; lme4 package; Bates et al., 
2015) and included the farm system pair (conventional vs. organic- 
certified and conventional vs. organic- transitional) in interaction with 
the amount of semi- natural habitats within 2 km radius buffer scale 
(i.e. proxy of landscape complexity) as independent variables (see 
Figure S3 in Supporting Information) and pair ID as a random effect. 
In the second set of analyses, we ran generalised linear models with 
the farming system of organic- transitional vs. organic- certified as in-
teractions with the amounts of semi- natural habitats as independent 
variables. We also included several covariates to control any con-
founding factors as this pair was not controlled in our design, namely 
structural orchard features (presence/absence of woody linear fea-
ture, ground vegetation cover), landscape characteristics (amount of 
semi- natural habitats, urban areas and distance to the nearest water 
bodies) and Julian days. We compared a series of models contain-
ing all possible preselected predictor variable combinations (see 
Appendix S2 for more details) using the dredge function (mumIn 
package; Bartoń, 2016) for model selection. From the most parsimo-
nious models, we only retained the models with the lowest number 
of parameters and (whenever possible) that included farming systems 
(i.e. the variable of interest; Table S9 in Appendix S1). We considered 
activity of the most active species (i.e. Pipistrellus pipistrellus, P. kuhlii, 
Hypsugo savii and Miniopterus schreibersii) as response variables in our 
models. Models were fitted with the appropriate error distribution, 
that is Poisson or negative binomial family, when overdispersion was 
present, with a logit link function (Zuur et al., 2009).

Models were diagnosed and validated using the DHARmA pack-
age (Hartig, 2018). Residual spatial autocorrelation in the final 
GLMMs models was inspected using Mantel tests and no spatial au-
tocorrelation was found (Table S7 in Supporting Information). We 
used output from the full models and considered an effect to be sig-
nificant at p < 0.05.

We have checked the consistency of our results by implementing 
an alternative approach using the whole dataset in a unique model 
framework (see Appendix S2 form more details). This led to similar 
results (Table S1 in Appendix S2). All statistical analyses were con-
ducted in R version 4.2.0 (R Development Core Team, 2022).

3  |  RESULTS

3.1  |  Bat acoustic sampling

We recorded 9826 bat passes from nine taxa (Table S4) within 44 
citrus orchard plots (22 conventional, 11 certified- organic and 11 
transitional- organic). Nearly 88% of all bat passes (8461 passes) 
belonged to the Pipistrellus genus, with P. kuhlii being 70% more 

frequently recorded than P. pipistrellus. Only four out of nine species 
detected were retained for analysis due to the fact of insufficient 
data for the remaining species.

3.2  |  Effects of farming system on bats

For the first set of analysis, our results showed that P. kuhlii, H. 
savii and M. schreibersii were significantly less active in organic- 
transitional citrus orchards in comparison with conventional 
ones (Figure 1; Table 1). Our models suggested that P. kuhlii and 
M. schreibersii activity was more than twofold lower in organic- 
transitional compared to conventional farming system and H. savii 
threefold. Furthermore, we observed a significant positive effect of 
organic- certified farming compared to conventional farming system 
only for P. kuhlii activity, showing that P. kuhlii was twofold higher 
in organic- certified citrus orchards than conventional ones. For the 
four species, models with only farming system were more informa-
tive than the model with the landscape complexity and the null 
model with dAICc <2 (Table S8).

Our results when comparing organic- transitional to organic- 
certified (second set of analysis) showed that P. kuhlii and H. Savii 
were significantly lower in organic- transitional orchards compared 
to organic- certified ones by threefold and twofold, respectively 
(Figure 1; Table 1). Farming system was retained in almost all most 
parsimonious models, except for models on M. schreibersii activity 
(see Table S9 in Supporting Information).

3.3  |  Testing the intermediate landscape  
hypothesis

The interaction between farming system and landscape complexity 
(i.e. % of semi- natural habitat) was never significant. Furthermore, 
landscape complexity on its own had a negative effect on P. kuh-
lii and a nearly significant effect on P. pipistrellus and H. savii when 
comparing organic certified farming systems with conventional 
ones. However, the models including landscape complexity were 
less informative than the models with only farming system (see 
Table S8 in Supporting Information).

4  |  DISCUSSION

The effects of the transition phase required prior to becoming a cer-
tified organic farm have, to the best of our knowledge, never been 
analysed before on vertebrates. In this study, we provide empirical 
evidence of the effects of farming systems (conventional, organic- 
transitional, organic- certified) considering the transition phase on 
bat activity in Mediterranean citrus orchards. We unexpectedly 
found that bat activity in the organic- transitional farming system 
was significantly lower than in certified organic orchards and con-
ventionally farmed orchards. Furthermore, our findings on the most 
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active species highlight the importance of time- lags in how species 
respond to organic management.

4.1  |  Effects of farming system on bats

Our results indicated that P. kuhlii, H. savii and M. schreibersii ac-
tivity in Mediterranean citrus orchards was PERSISTENGLY nega-
tively affected during the transition to organic farming. This could 
have high impact to bat populations as they lose important forag-
ing grounds. For example, Andersen and Eltun (2000) showed that 
in organic- transitional farming there was a significant decrease in 
the abundance of some insect species, which could be possible 
prey of bats. This can be ultimately linked to soil fertility determin-
ing also insect abundance several studies have emphasised that 
soil nutrient deficiency and inadequate soil fertility occur during 
this transition period (Bellon & Lamine, 2009; Borrelli et al., 2012; 
Dabbert & Madden, 1986; Dalgaard et al., 2002; Gopinath 
et al., 2008). Soil microbial biomass is important to supply plant 
nutrients by mineralisation processes and to avoid nutrient 

leaching (Friedel et al., 2001). In addition, soil macronutrient de-
ficiency can have negative effects on insect abundance, species 
richness and composition (De Araújo, 2017; Haddad et al., 2000; 
Tsutsui et al., 2018) and subsequently on the foraging behaviour 
of insectivorous species, such as bats, creating a bottom- up cas-
cading effect (Basham et al., 2011; Threlfall et al., 2011, 2012). 
Furthermore, Law and Chidel (2001) found a positive association 
between nutrient rich soil and high bat activity. These transition 
years pose many challenges, because the changes in the chemical, 
physical and biological properties of the soil take time to reach an 
ecological balance (Gopinath et al., 2008).

An alternative explanation for the negative effect of transition 
farming could be due to an ‘organic transition effect’ proposed by 
Dabbert and Madden (1986). During the transition period, ecolog-
ical processes are inadequate to supply nutrients to control pests 
and diseases, or to provide essential functions previously pro-
vided by chemical inputs. This effect would be stronger in farms 
that previously used high- intensity agricultural practices (Bellon & 
Lamine, 2009; Borrelli et al., 2015). Some studies suggest that soil 
quality and biological activity improve only after three or more 

F I G U R E  1  Boxplots showing medians and interquartile ranges of the activity (i.e. total number of bat passes per site on a logarithmic 
scale to the base 2) of four bat species (Pipistrellus kuhlii, Pipistrellus pipistrellus, Hypsugo savii and Miniopterus schreibersii). Black dots 
represent the raw data. Superscripts a and b are used to identify statistically significance differences between farming systems. Statistical 
significance arises from three different models (see Section 2.4).
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years of organic management (Bellon & Lamine, 2009; Dabbert & 
Madden, 1986; Riedo et al., 2022; Tsutsui et al., 2018; Tu et al., 2006).

The effects of organic farming on bats are still not well under-
stood, with studies showing contrasting findings. In this study, we 
found that organic citrus orchards compared to transitional and 
conventional citrus orchards enhance P. kuhlii activity and this spe-
cies dominated the species assemblage. These results are in accor-
dance with previous studies (Barré et al., 2018; Fuller et al., 2005; 
Put et al., 2018; Wickramasinghe et al., 2003), which highlight the 
positive influence of organic farming on bats. However, there were 
no statistically significant effects on the other bat species, which 
corroborate with studies that have found no effect of organic farm-
ing on bats (e.g. Froidevaux, Boughey, et al., 2017). Organic farming 
effects on biodiversity might be specific to taxonomic and functional 
groups (Tuck et al., 2014). Moreover, these variable results could be 
attributed to the ‘colonisation credit’ (With, 2007), where there is a 
time- lag in species response following landscape changes (e.g. land 
use changes caused by AESs). That is, even if a patch increases its 
quality (i.e. from conventional to organic farming), it will take some 
time before organisms colonise the patch (Andersson et al., 2010). 
The length of the time- lag will depend on multiple factors such as 
species dispersal ability, mechanisms operating behind species re-
sponses at the individual and population level, on the patch's spatial 
properties (e.g. landscape connectivity) and on the magnitude of the 
changes (e.g. habitat restoration vs. changes in habitat management; 
Cristofoli et al., 2010; Jonason et al., 2011; Watts et al., 2020). In ad-
dition, pesticide residues in soil could explain why there is a delayed/
gradual response of some organisms (Silva et al., 2019). Transitional 
farming could potentially still contain pesticide residues, especially in 
intensively managed permanent crops, persisting for over 20 years, 
affecting the response of some organisms such as arthropods (Riedo 
et al., 2022) and potentially affecting negatively bat activity as a con-
sequence. Tsutsui et al. (2018) found that a non- equilibrium state 

of arthropod populations due to residual pesticides could last for a 
decade after the transition to organic farming.

4.2  |  Intermediate landscape complexity  
hypothesis

Our results did not find any significant effect regarding the interac-
tion of landscape complexity and farming systems, thus not support-
ing the ‘intermediate landscape complexity’ hypothesis that states 
that local conservation management (e.g. organic farming) within 
the agricultural matrix is most effective in landscape of intermediate 
complexity (1%– 20% non- crop habitat) compared to cleared land-
scapes (extremely simplified; <1% non- crop habitat) or in complex 
landscapes (>20% non- crop habitat). However, this only assessed 
the linear effect, without considering the form of such interac-
tion. Nevertheless, these results corroborate those of Froidevaux, 
Boughey, et al. (2017) who found no significant relationship between 
landscape complexity and farming system. In contrast, Boonchuay 
and Bumrungsri (2022) found that bat activity was significantly 
higher in organic rice paddies in simple landscape indicating that 
farming system depends on the level of landscape complexity, thus 
supporting the ‘intermediate landscape complexity’ hypothesis. 
These contrasting results would suggest that any effect of landscape 
complexity is dependent on crop type and context.

4.3  |  Implications for conservation and  
management

The transition phase is an essential step required for all organic farm-
ing systems; however, its effects on vertebrates have not been as-
sessed previously. Our results suggest that the transition to organic 

TA B L E  1  Summary results from generalised linear mixed models (Model 1 and Model 2) and generalised linear models (Model 3) of the 
two set of analysis (see Section 2.4) testing the effects of farming system on bat activity. Estimates, associate standard error (SE), 95% 
confidence intervals, marginal (variance explained by the fixed effects only) and conditional (variance explained by both fixed and random 
effects) R2 values are given. Explanatory variables displayed in bold represent significant variables for which 95% CI did not overlap zero.

Response 
variable Model Explanatory variable Estimate SE

Lower 
95 CI

Upper 
95 CI p mR2 cR2

Pipistrellus kuhlii Model 1 Organic (C) vs. Conventional 0.65 0.18 0.30 1.00 *** 0.06 0.90

Model 2 Organic (T) vs. Conventional −0.89 0.39 −1.64 −0.13 * 0.14 0.20

Model 3 Organic (T) vs. Organic (C) −1.32 0.42 −2.15 −0.49 ** 0.41

Pipistrellus 
pipistrellus

Model 1 Organic (C) vs. Conventional 0.18 0.44 −0.68 1.04 NA 0.04 0.44

Model 2 Organic (T) vs. Conventional −0.75 0.68 −2.07 0.57 NA 0.03 0.22

Model 3 Organic (T) vs. Organic (C) −0.70 0.53 −1.73 −0.33 NA 0.52

Hypsugo savii Model 1 Organic (C) vs. Conventional 0.15 0.13 −0.11 0.41 NA 0.27 0.95

Model 2 Organic (T) vs. Conventional −1.32 0.64 −2.56 −0.07 * 0.08 0.08

Model 3 Organic (T) vs. Organic (C) −1.51 0.59 −2.66 −0.36 * 0.21

Miniopterus 
schreibersii

Model 1 Organic (C) vs. Conventional 0.09 0.47 −0.83 1.01 NA 0.23 0.42

Model 2 Organic (T) vs. Conventional −1.19 0.44 −2.05 −0.33 *** 0.36 0.92

Model 3 Organic (T) vs. Organic (C) / / / / / /
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farming may have potential persistent detrimental effects on bat 
activity and this could be the case for broader biodiversity and could 
be also applied to other slow developing organic crops such as olive 
groves and vineyards. Olive groves and vineyards represent one of 
the main crop systems in the Mediterranean basin. Olive orchards 
cover approximately 10 million hectares worldwide and 90% are lo-
cated in the Mediterranean basin and vineyards cover over 3 million 
hectares in Europe (Food and Agriculture Organization [FAO], 2018).

Simple comparisons of organic and conventional farming are not 
enough especially in the light of possible strong increase in the share 
of organic farming according to the Green Deal of the EU. We there-
fore urge future studies to investigate the effects of transition organic 
farming on other taxa with different functional traits (mobility, dis-
persal ability and home range size). Given that organic farming is one 
of the most popular AESs and is growing continuously, the findings 
of this study could have high relevance to farmers and agricultural 
policymakers. We recommend that future AESs should promote 
asynchronous transition of nearby farms, especially in countries (e.g. 
Cyprus) where the number of organic farms is rising drastically, to 
avoid having large areas within a landscape under transition. We rec-
ommend that future AESs should consider time- lags of population re-
sponses to land- use changes to capture full potential of such schemes 
as it might take some time before species can respond and for the 
potential benefits to be manifested. Hence, these schemes should be 
sustained for a long period of time. To evaluate the costs and benefits 
of organic farming, it is necessary to consider the time- dependent re-
sponses of organisms. Using such an evaluation could help establish 
guidelines pertaining to how long organic farming should continue to 
restore biodiversity or whether an economic subsidy should be pro-
vided to compensate for pests, weed infestations and other factors.

Moreover, AESs should provide suitable conversion strategies to 
mitigate the potential negative effects it could have on biodiversity 
during this critical period of transition by adopting a multi- scale ap-
proach, which could provide benefits to bats for example by (i) in-
creasing connectivity to the source habitats of some arthropods as 
this could restore these arthropod populations, especially in complex 
landscapes with larger species pools; (ii) forming water bodies in the 
vicinity of citrus orchards (Lisón & Calvo, 2011; Russo & Jones, 2003) 
and (iii) increasing the abundance and diversity of herbaceous veg-
etation as this will increase arthropod diversity and enhance soil 
conditions (Silva et al., 2010), which is an important factor during the 
transition period. These strategies will not only mitigate the short- 
term detrimental effects of transitional organic farming, but will also 
increase bat activity and broader biodiversity in the long run.
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