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Aquaculture, or the farmed production of fish and shellfish, has grown rapidly, from

supplying just 7% of fish for human consumption in 1974 to more than half in 2016.

This rapid expansion has led to the growth of Precision Aquaculture concept that aims

to exploit data-driven management of fish production, thereby improving the farmer’s

ability to monitor, control, and document biological processes in farms. Fundamental

to this paradigm is monitoring of environmental and animal processes within a cage,

and processing those data toward farm insight using models and analytics. This paper

presents an analysis of environmental and fish behaviour datasets collected at three

salmon farms in Norway, Scotland, and Canada. Information on fish behaviour were

collected using hydroacoustic sensors that sampled the vertical distribution of fish in

a cage at high spatial and temporal resolution, while a network of environmental sensors

characterised local site conditions. We present an analysis of the hydroacoustic datasets

using AutoML (or automatic machine learning) tools that enables developers with limited

data science expertise to train high-quality models specific to the data at hand. We

demonstrate how AutoML pipelines can be readily applied to aquaculture datasets to

interrogate the data and quantify the primary features that explains data variance. Results

demonstrate that variables such as temperature, wind conditions, and hour-of-day were

important drivers of fish motion at all sites. Further, there were distinct differences in

factors that influenced in-cage variations driven by local variables such as water depth

and ambient environmental conditions (particularly dissolved oxygen). The framework

offers a transferable approach to interrogate fish behaviour within farm systems, and

quantify differences between sites.

Keywords: machine learning, hydroacoustic, aquaculture, AutoML, IoT

1. INTRODUCTION

1.1. Background
Salmon fish farming started on an experimental level in the 1960s but became an industry in
Norway and the UK in the 1980s, and in Chile in the 1990s (Laird, 1996). Global salmon production
is currently circa 2.4 Million Tonnes per annum in 2018 (FAO, 2020) with a market value of
approximately 16 billion euros (Planet Tracker, 2021). Current production is mainly concentrated
inNorway, Chile, UK andCanada. The intensification of the salmon industry requiresmore specific
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knowledge of the use of feed and the control and response to
the environment. The individual number of animals used in
aquaculture has increased substantially over the last 3 decades.
For example, only for Scottish aquaculture the number of fish
transferred to sea increased from 25 million in 1990 to 47 million
in 2018 (Marine Scotland Science, 2018).

The use of big data and models to guide production in the
agriculture space is well established, with initial implementations
of precision agriculture, or information-based management
of agricultural production systems beginning in the 1980s.
The fundamental approach reduces to leveraging data from
disparate sources (satellite, sensor arrays, image data, etc.)
to guide decision and apply treatment in the right place at
the right time. While precision agriculture originated with
crop productions, applications related to livestock farming
subsequently blossomed. These generally related to leveraging
various sensor technologies to monitor health and productivity
of livestock. Examples include radio frequency identification
(RFID) tags to identify cattle in computer-controlled feeders,
milking robots that ease the work of dairy operators, and
automatic milk feeders that customise the milk supplement for
calves, measure body weight and body temperature and generate
reports (Gebbers and Adamchuk, 2010).

Precision aquaculture on the other hand is a nascent
management concept that requires adoption of technologies
from both crop and livestock management systems. Namely, an
effective aquaculture management system needs to understand
the environmental conditions and the conditions of fish within
that cage. Modern fish farms are comprised of cages with up
to 200,000 fish. As farms are typically composed of 10–20
cages, and multiple farms are often co-located in a bay, the
total number of individual fish is enormous. This precludes
the direct translation of concepts from livestock farming, and
in practise, precision aquaculture is a marriage of approaches
developed for both precision livestock and grain cultivation,
i.e., fish are not managed as individuals as are cows, yet
are obviously more complex in management than plants
(O’Donncha and Grant, 2019).

There has been extensive literature on observing, modelling
and quantifying the environmental conditions of aquaculture
systems to inform on aspects such as site carrying capacity
(Ferreira et al., 2013), environmental impacts (Buschmann
et al., 2006), and mitigation activities to reduce environmental
footprint (Costa-Pierce, 2003). These class of studies contribute
to the first pillar of precision aquaculture; of equal importance
is monitoring and extracting insight on fish behaviour to inform
operations. In this paper, we investigate fish behaviour within a
cage using hydroacoustic sensors. These datasets provide high
resolution estimates of fish motion at the biomass (or group)
level, and allow inference on fish behaviour and implications for
farm management. Such data and the information they provide
can be fundamental to empowering precision aquaculture and
data-driven decision making.

This paper presents an analysis of environmental and
hydroacoustic data from three salmon farms in Norway,
Scotland, and Canada. We use statistical and machine learning
approaches to interrogate the primary environmental drivers of

changes in fish behaviour (i.e., variations in vertical motion and
distributions). The contributions of the paper are as follows:

• We describe the monitoring, collection, and statistical
analysis of environmental and hydroacoustic datasets at
three salmon farms with very different environmental and
geographical characteristics.

• We outline an AutoML (or automatic machine learning)
model development pipeline (data curation, preprocessing,
and model setup) to train and deploy a machine learning
model to forecast fish behaviour using a “no-code” paradigm.

• We present a framework to interrogate the trained model and
extract insight into the environmental drivers of fish behaviour
using explainablemachine learning techniques.We discuss the
results of the data driven interrogation of fish response against
known drivers of fish behaviour from literature.

The objective of the paper was to develop a transferable
approach to interrogate caged salmon behaviour and inform
farm management. Results indicate that data-driven approaches
have great promise to provide automated insight into fish
behaviour, and the environmental conditions that influence that
behavioural response. However, the analysis needs to be informed
by domain expertise from ecology and fish welfare to allow a
robust interpretation of results.

The paper is structured as follows: below, we present a
detailed overview and literature review of fish behaviour and how
information on fish movement and vertical distribution provides
insight into behavioural and welfare aspects. Section 2 describes
the study sites, introduces the machine learning approaches
used, and outlines the data curation and analysis framework.
Section 3 presents results from this study while finally, we outline
conclusions from this research and makes recommendations for
further work.

1.2. Behaviour
Many studies of fish behaviour are in the wild or under controlled
laboratory conditions. Few of them have been done under farmed
conditions mainly due to the challenges and multiple restrictions
this production systems poses to the researchers (Johansson
et al., 2006, 2014). However, a greater understanding of the
role of fish behaviour as a key health and welfare indicator is
essential to allow more autonomous monitoring of fish health.
The importance of fish behaviour as a farm management tool
has spurred interests in new technologies to monitor and
infer behaviour such as sonar and video images or the use of
artificial intelligence.

1.2.1. Salmon Aquaculture
Many different biological, environmental and social parameters
influence the behaviour of salmon when farmed in sea cages.
Parasites, such as sea lice, are a biological example that can
cause behavioural changes to farmed salmon in order to combat
infestation (Bui et al., 2016). Sea lice are concentrated near the
surface, and methods to limit fish surface time have been a
focus of farm mitigation activities. Salmon have been observed
to prefer deeper depths once highly infested to avoid further
infestation (Bui et al., 2016). Temperature and dissolved oxygen
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(DO) are an example of environmental parameters that affect
the behaviour of Atlantic salmon. For example, Atlantic salmon
will distribute themselves according to preferred temperature
range, 8–18◦C, with changes in behaviour occurring above and
below the threshold (Johansson et al., 2006, 2009; Oppedal
et al., 2011). Similarly, DO is an important parameter affecting
fish behaviour as concentrations below the optimal range cause
physiological stress and related behavioural changes such as a
reduction in feeding (Dempster et al., 2016; Oldham et al., 2018).
Light intensity is another major contributor to fish behaviour
by changing vertical distribution. During daylight hours, when
light intensity is at its greatest, fish tend to swim deeper in net
pens to avoid surface predators (Fernö et al., 1995; Oppedal
et al., 2001). It has been hypothesised ascent toward the surface
during nighttime is a photo-regulatory behaviour to maintain
schooling as light fades. Furthermore, seasonal variation in light
availability changes vertical distribution with winter swimming
depths generally shallower than summer swimming depths (Juell
and Westerberg, 1993; Oppedal et al., 2001). However, this diel
seasonal pattern changes when surface mounted artificial lights
are installed in net pens (Oppedal et al., 2001). Populations have
also been observed to remain in the upper half of net pens, under
normal stocking densities, to avoid large piscivorous fish present
under net pens (Fernö et al., 1995; Juell and Fosseidengen, 2004;
Johansson et al., 2006, 2009; Dempster et al., 2016; Føre et al.,
2017). Additionally, hydrodynamic conditions, such as waves
and currents, will affect vertical distribution with stronger waves
encouraging fish toward the surface (Johannesen et al., 2020).

A group of fish that voluntarily remain together, or a shoal,
will have social group behaviour (Martins et al., 2011). A shoal
will adopt a polarised swimming pattern in order to minimise
the possibility of collisions and by synchronising these patterns
a shoal can be deemed a school (Oppedal et al., 2011). Within a
school there are rules in which all individuals must follow, and
deviations from these rules by one or a few individuals can result
in a group reaction. As with any population, individuals within a
school will react differently when placed under the same stressors.
For example, one fish may be more motivated by feed and swim
toward the surface while another may be content waiting for feed
to fall. These individual differences can affect the behaviour of
the whole of the shoal regarding the responses to environmental
parameters or other external or internal stressors. The internal
state of the fish is also an important parameter to consider to
understand the fish behavioural responses (Castanheira et al.,
2017; Damsgård et al., 2019). Internal states being the final
behavioural decision maker for the animal to respond to external
stimulae (Huntingford et al., 2011).

1.3. Related Work
Technology on farms has increased significantly in the past
decade (Føre et al., 2018), and ongoing efforts focus on the
improvement of fish welfare and optimisation of farm operations,
e.g., minimising the waste of feed. Sensors such as real-time
oxygen and temperature probes, or acoustic tracking of fish
are becoming more common in fish farming. The use of
hydroacoustic sensors to infer the behavioural response of the
fish to the physical structure of the cage, aquaculture practises,

and the external environment can be a highly reliable and non-
invasive operational welfare indicator (OWI) (Martins et al.,
2011; Damsgård et al., 2019). A key area of research for the
industry is whether sensor observations such as these can be
used to augment welfare indices, thereby reducing the necessity
to collect cumbersome manual samples such as lice counts and
gill health.

Traditional methods of in situ observations of fish behaviour
include visual inspections of the fish through random sampling,
and video cameras placed in the feed zone of cages (Føre
et al., 2018). Visual inspections are difficult to achieve on large
populations and can be stressful to the fish (Martins et al.,
2011). Video cameras can help identify when feed falls below
the depth of the camera indicating the fish within the cage are
satiated. Although these videos provide real-time images, they
only supply a small frame of the cage and are hindered by
the challenge of capturing high quality images underwater. In
order to study behaviour on the cage’s population, a larger view
of the cage is required. One suggested method of continuous
observations includes a commercial system, CageEye (2021).
CageEye is a hydroacoustic sensor which is placed in the
cage and captures (in real-time) the relative density of fish in
the water column. Previous studies (Juell et al., 1993; Lindem
and Houari, 1993) have investigated the effectiveness of using
CageEye to completely automate feeding by using the detection
of fish depth as indication of appetite. However, the use of this
technology has potential to be used to study fish behaviour and
indirectly welfare.

The association between behaviour and welfare can be
determined for Atlantic salmon by understanding abnormal
behaviour as it is linked with stressors (Martins et al., 2011;
Damsgård et al., 2019). Therefore, continuous monitoring of
fish behaviour can provide a more comprehensive perception
of environmental conditions and their effect on welfare. The
description, classification, and understanding of fish movement,
as well as the environmental stimuli responsible for that
behaviour could become the foundation for the creation of
an early-warning system of fish welfare. This early-warning
system can trigger changes in aquaculture practises that result in
improved welfare conditions for farmed fish.

There are numerous studies dedicated to using machine
learning to characterise and manage animal behaviour in
agriculture (Liakos et al., 2018). These include automated
monitoring systems based on video camera (Matthews et al.,
2017), and prediction of bovine weight trajectories based on
historical data (Alonso et al., 2015). Faced with a more
difficult monitoring environment, applications of machine
learning to aquaculture have developed slower. Many studies
have investigated how machine learning could improve ocean
monitoring and forecasting either by mining large ocean
datasets Gokaraju et al. (2011) or relating future conditions
to historical observations (Wolff et al., 2020). More recently,
the applications of machine learning and computer vision
technology to aquaculture is receiving a lot of attention. Broadly
these are applied across two categories: 1) pre-harvest and
during cultivation, and 2) post-harvest (Saberioon et al., 2017).
In the pre-harvest and cultivation stage, much of the research
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focuses on monitoring fish behaviour. A number of studies
have demonstrated accurate monitoring of fish behaviour and
trajectory (Kato et al., 2004; Pérez-Escudero et al., 2014),
although these have been predominantly laboratory-based.
Monitoring and optimising feeding activities using computer
vision and machine learning is an active area of research
(Atoum et al., 2014). However, these provide little information
about behavioural dynamics during feeding and are still at an
early stage of development (Oppedal et al., 2011; Saberioon
et al., 2017). Saberioon et al. (2017) provides an excellent
review of applications of computer vision and machine learning
technologies to aquaculture.

2. MATERIALS AND METHODS

Hydroacoustic methods provide a proxy measure for density and
distribution of marine animals in form of acoustic backscattering
(Foote, 2009). The fundamental principle is based on emitting
a signal of known type and power level from a transducer. As
it encounters regions of the medium with differing properties,
also called heterogeneities, the sound is generally redistributed,
or scattered, in all directions. This makes possible detection of the
scattered sound with transducer and suitable receiver electronics.
Advantages linked to hydroacoustic sampling techniques include,
high spatial and temporal resolution, autonomous long-term
sampling duration, range (especially during poor visibility when
visual-based methods tend to fail), and a non-invasive surveying
approach (Scherelis et al., 2020). Given these advantages,
hydroacoustics is increasingly used to characterise animal
behaviour in the marine environment, and considered a
promising system to improve management of aquaculture farms
(Bjordal et al., 1993; Juell et al., 1993).

In this study, hydroacoustic data were collected by one of
two sensors “CageEye” (Scherelis et al., 2020) or “Aquaculture
Biomass Monitor” ABM (2020). Broadly speaking, processed
hydroacoustic data generates two metrics: volume backscattering
strength (Sv), is often considered as a proxy for fish biomass;
while target strength (TS) is an acoustic measure of fish
length (Simmonds and MacLennan, 2008). TS is a measure of
the acoustic reflectivity of a fish, which varies depending on
the presence of a swim bladder and on the size, behaviour,
morphology, and physiology of the fish. These outputs can be
used to generate estimates of fish density and biomass (Boswell
et al., 2007) within a cage.

2.1. Study Sites
This study considers three salmon cage farms in Norway
(NOR), Scotland (SCO), and Canada (CAN). For each site a
number of environmental sensors were deployed monitoring a
range of parameters, including temperature, DO, and current
speed. These were complemented with weather data from in-
situ weather stations or model generated reanalysis from IBM
Environmental Intelligence Suite available through their public
API IBM (2021b).

2.1.1. Norway Site
The Norwegian site at Røssøya Nord (coordinates: 67◦ 4.38′

N 13◦ 56.855′ E) is a commercial farming site owned by
GIFAS in Gildeskl municipality (Nordland, Norway). The site
has a mooring system with placements for 16 cages (cage
circumference 90 m; maximum cage depth 27 m). Seven cages
(circumference 90m, max depth 20 m) were stocked with 18G
S1 smolt produced at Salten Smolt AS and Helgeland Smolt AS
in August/September 2018. Smolt were transferred at an average
weight of 61 g (Salten) and 122 g (Helgeland) and each cage was
stocked with approximately 150,000 smolt. The fish density at
stocking was 1.3–2.1 kg/m3.

All the cages were fed on a standard commercial diet (EWOS
Robust). Feed was delivered from the silos on the barge to the
cages via an air-blowing system and into a rotor spreader at the
cage surface. Feeding start time, feeding intensity, and number
of meals were adjusted according to day-length, weather, and
observations on fish behaviour by the site staff.

A designated cage was instrumented to explore environmental
variations and fish distribution (hydroacoustic sampling)
between 20/02/2019 and 800 is a numerical ocean 31/10/2019.
During the experiment it was decided to change the fish stock
since they were not growing optimally. Therefore, the stock
were replaced with 50,000 fish supplied by Helgeland Smolt in
July 2019. The fish density after the change in fish stock was
10.1 kg/m3.

Environmental variables were measured by Aanderaa
instruments (Xylem analytics, Norway). The variables measured
were salinity, temperature, DO, as well as current speed
and direction. Animal variables were monitored by an
Aquaculture Biomass Monitor sensor, ABM (Biometrics
AS, Norway) which consists of a split-beam sonar mounted on
a buoy and it can detect over 50,000 fish per day. The sonar
provided an estimate of total biomass, biomass distribution
with depth, fish weight distribution and fish swimming
speed. Fish position and distribution are reported hourly,
while estimates of average fish size are returned at multi-
day period. Figure 1 presents a schematic of typical sensor
configuration within a cage. The hydroacoustic sensor was
installed beneath the cage looking upwards. It sampled at an
angle of approximately 42◦ from horizontal. An environmental
sensor was deployed at approximately mid-depth in
the cage.

Since the environmental sensor deployment (May–July) did
not cover the entire study period, we augmented environmental
data with output from the NorKyst-800 ocean model (Albretsen
et al., 2011). The NorKyst-800 is a numerical ocean modelling
system deployed to simulate physical oceanography variables
such as sea level, temperature, salinity and, currents for all
coastal areas in Norway and adjacent seas. The model has a
horizontal resolution of 800m, 35 layers in the vertical, and can
be downloaded from the OPeNDAP server provisioned by the
Norwegian Meteorological Institute (Norwegian Meteorological
Institute, 2021). The model provides a satisfactory representation
of Norwegian off- and onshore dynamics but requires higher
resolution to resolve the dynamics of most Norwegian fjords
properly (Albretsen et al., 2011).
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FIGURE 1 | Schematic of sensor configuration within a cage. The

environmental sensor is denoted in the left hand side of cage with the exact

location varying across sites (e.g., for Norway it was deployed at 5 m depth in

centre of cage), while the hydroacoustic sensor and it’s sampling domain is

denoted beneath the cage (pointing upwards). Note, that the hydroacoustic

sensor contains sampling “blind spots,” especially toward the bottom of the

cage which causes challenges in shallow sites where depth is limited. This

figure represents an idealised representation of the deployment and naturally

there are many practical considerations with regards sensor deployment

(power source, ease of access, anchoring point, etc.).

2.1.2. Scotland Site
The salmon sea farm is located at Carness Bay, Orkney
(coordinates: 59◦ 00.637′ N 02◦ 55.374′ W). This barge fed site
includes a total of 12× 100m circumference cages andmaximum
net depth of 6m. The total number of fish stocked at the end of
January 2019 was approximately 230,000, with a stocking density
of 5.1 kg/m3. Fish stocked were 18S1 smolts, which were moved
fromMeil bay to Carness Bay on 5th February 2019. Each cage is
stocked with approximately 20,000 salmon.

All the cages were fed on a standard commercial diet (Biomar,
power extreme). Feed was distributed to the fish cage from
the hulls on the barge via an air-blowing system. Feeding
was controlled by AkvaConnect software (AkvaGroup AS).
Feeding started at pre-determined times according to day length,
most often with a meal duration of 30–60 min. The stock
were monitored by camera and feeding intensity was adjusted
accordingly. For example, should the fish exhibit poor feeding
activity, the feeding intensity would be decreased or stopped in
the affected cages. Adjustments in the feeding intensity were done
daily according to requirement and light availability. As soon
as there was enough light, the first meal started (lasting 30 min
according to appetite), and fish were fed again after a pause of
4–6 h. A maximum of 2 meals were administered per day.

Cage 8 was instrumented to collect both environmental
and animal variables i.e., variables concerning fish behaviour,
growth and welfare data. Water temperature, DO, turbidity
and salinity were measured for each cage daily by the site
management staff. Cage 8 was monitored with two sensors to

record DO and temperature: a handheld underwater wireless
sensor (OxyGuard International, 2014) sampled daily from
08/01/2019 to 30/10/2019 and an in-situ Realtime Aquaculture
sensor (Innovasea, 2021) sampled at 10-min intervals at a depth
of 2.5m from 13/11/2019 to 07/02/2020. As for the Norway site,
due to the difficulty to collect continuous environmental data
for the entire period, model data extracted from the Copernicus
Marine Service model repository augmented sensor datasets.
Temperature, DO, sea surface height (SSH), and current speed
were extracted from the Atlantic North West Shelf model at
the surface layer. Data is available at a 1.5 km (Tonani et al.,
2019) horizontal resolution at hourly intervals and can be freely
downloaded from the Copernicus portal. We compared sensor
and model data for the period and since the overall trends
were very similar, we augmented periods when sensor data
were missing with Copernicus data. We noted that the model
tended to overestimate magnitude of temperature, but since
they captured the temporal variations, it served to adequately
represent conditions for machine learning purposes. It’s worth
noting that the ML model is not affected by data magnitudes
since data is normalised. Instead it learns how the predictand
(label) varies in response to predictors (features). Using data from
a physics model can be a pragmatic approach to handling missing
values in environmental studies, thereby avoiding reliance on
statistical imputation methods.

The relative biomass distribution within the cage was assessed
using the beam sonar system, CageEye. The system in Orkney
was made up of an echosounder and one transducer. The
transducer was placed in the cage at a depth of approximately 5.5
m, and connected to the echosounder cabinet, which was placed
on the cage ring and sent the data wirelessly to the base station at
the feeding barge. The transducer was placed as deep as possible,
looking up at most of the biomass of the cage. The transducer had
two angles that they switch between, approximately 14 degrees
(200 kHz) and 42 (50 kHz) degrees: this allowed one to get
echogram recordings of both. It is important to note that this
site did not have power at night, and consequently (since sensor
did not have battery source), the acoustic sensor was switched off
between 18:00 and 06:00.

2.1.3. Canada Site
The Canadian study site located in Saddle Island, Nova Scotia
(coordinates: 44◦ 30.225′ N 64◦ 2.923′ W) is a commercially
operated Atlantic salmon farm. The site had one column of 6
cages measuring 150 m circumference and a maximum depth
of 11 m. Each cage contained approximately 60,000 fish with a
stocking density of about 10 kg/m3. Fish were fed twice daily, with
the exact times dependent on daylight availability.

Each cage was equipped with two RealTime Aquaculture
(Innovasea, 2021) probes deployed at 2 and 8m depths. The
probes measured temperature and DO, while an ADCP profiler
sampling current speed was deployed in the northeast corner of
the farm. Sea surface height was extracted from the Copernicus
portal, in similar manner to the other two sites. Two of the
cages were equipped with a CageEye sensor from 11/09/2019
to 30/10/2019. Each system consisted of three transducers, with
two placed in opposite corners at 7 m depth, facing upwards,
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TABLE 1 | Summary metrics for the three sites describing location, water depth,

cage depth, average tidal range, number of fish per cage, and fish density.

NOR SCO CAN

Latitude 67◦ 4.38′ N 59◦ 00.637′ N 44◦ 30.225′ N

Longitude 13◦ 56.855′ E 02◦ 55.374′ W 64◦ 2.923′ W

Water depth (m) 60 10 11

Cage depth (m) 27 6 11

Tidal range (m) 2.5 1.75 1.3

Fish per cage (-) 50–150,000 20,000 60,000

Fish density (kg/m3) 1.3–10.1 5.1 10

Note that the fish stock were changed at the NOR site, hence we provide the range of

values over the period.

and one near the surface, facing downwards. Table 1 presents
summary metrics on the three sites considered, while Table 2

describes the data collected at sites. Data can be categorised along
hydroacoustic and environmental sensormeasured variables, and
model or product data from ocean or weather model.

2.2. Machine Learning
Given sufficient data, machine learning (ML) models have the
potential to successfully detect, quantify, and predict various
phenomena in the geosciences. While physics-based modelling
involves providing a set of inputs to a model which generates the
corresponding outputs based on a non-linear mapping encoded
from a set of governing equations, supervised machine learning
(ML) instead learns the requisite mapping by being shown large
number of corresponding inputs and outputs. In ML parlance,
the model is trained by being shown a set of inputs (called
features), and corresponding outputs (termed labels), fromwhich
it learns the prediction task—or in our case, we wish to predict the
distribution of fish in a cage (as sampled by hydroacoustic sensor)
based on a set of environmental measurements or features.

Classical works in machine learning and optimisation,
introduced the “no free lunch” theorem Wolpert and Macready
(1997), demonstrating that no single machine learning algorithm
can be universally better than any other in all domains—
variance tradeoff in effect, one must try multiple models and
find one that works best for a particular problem. Selection of
the most suitable algorithm and algorithmic settings is one of
the most complex aspects of machine learning applications and
highly dependent on user skill. An alternative approach leverages
advanced automatic machine learning (AutoML) frameworks
that aims to learn how to learn (Drori et al., 2018). AutoML
systems uses a variety of techniques, such as differentiable
programming, tree search, evolutionary algorithms, and Bayesian
optimisation, to find the best machine learning pipelines for a
given task and dataset (Drori et al., 2018). In this paper we applied
IBMAutoAI (IBM, 2021a) to the data collected at the aquaculture
sites. IBMAutoAI is a technology directed at automating the end-
to-end AI Lifecycle, from data cleaning, to algorithm selection,
and to model deployment and monitoring in the ML workflow
(Wang et al., 2020).

As a benchmark, we compared results against a manually
tuned machine learning model, namely Random Forest (RF).
RF is one of the most popular machine learning models and
has demonstrated excellent performance in complex prediction
problems characterised by a large number of explanatory
variables and nonlinear dynamics. RF is a classification and
regression method based on the aggregation of a large number
of decision trees. Decision trees are a conceptually simple yet
powerful prediction tool that breaks down a dataset into smaller
and smaller subsets while at the same time an associated decision
tree is incrementally developed. The resulting intuitive pathway
from explanatory variables to outcome serves to provide an easily
interpretable model.

In RF Breiman (2001), each tree is a standard Classification
or Regression Tree (CART) that uses what is termed node
"impurity" as a splitting criterion and selects the splitting
predictor from a randomly selected subset of predictors (the
subset is different at each split). Each node in the regression
tree corresponds to the average of the response within the
subdomains of the features corresponding to that node. The node
impurity gives a measure of how badly the observations at a
given node fit the model. In regression trees this is typically
measured by the residual sum of squares within that node.
Each tree is constructed from a bootstrap sample drawn with
replacement from the original data set, and the predictions
of all trees are finally aggregated through majority voting
(Boulesteix et al., 2012).

While RF is popular for its relatively good performance
with little hyperparameter tuning (i.e., works well with the
default values specified in the software library), as with all
machine learning models it is necessary to consider the bias-
variance tradeoff—the balance between a model that tracks the
training data perfectly but does not generalise to new data and
a model that is biassed or incapable of learning the training
data characteristics. Some of the hyperparameters to tune include
number of trees, maximumdepth of each tree, number of features
to consider when looking for the best split, and splitting criteria
(Probst et al., 2019).

2.3. Model Setup and Training
Data preprocessing focused on creating a curated matrix of
environmental and hydroacoustic datasets to allow statistical
and machine learning interrogation of relationships. Important
points to consider included outlier removal, time-averaging,
imputation, data augmentation, and representation of temporal
dependencies). Figure 2 summarises the data processing
workflow. The hydroacoustic sensor returns estimates of fish
depth at sub-second frequency. This data point reports the
location (relative to the sensor) of an individual (random) fish
in the cage and is based on sensor detected change in medium
(water vs. flesh). For a 6-month study, these generated about
45 GB of data. Data were first grouped into 1 m bins to represent
the frequency of returns at different depth levels based on the
Echo Range (m) measurement (i.e., number of individual fish
in each 1 m bin). Measurements that are outside the extents
of the cage were removed as outliers, and the remaining data
were then time-averaged into hourly intervals. The binned data
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TABLE 2 | Synopsis of data collection at the three sites summarising the environmental variables collected and the sampling periods, source of ocean model data (used

to augment sensor data), and weather data source and variables.

NOR SCO CAN

Environmental sensor Aanederaa Realtime Aquaculture Realtime Aquaculture

Deployment dates 21/05/2019–02/10/2019 13/11/2019–04/02/2020 16/09/2019–16/11/2019

Variables Temperature, DO, salinity, current speed Temperature, DO Temperature, DO, current speed

Hydroacoustic sensor Aquaculture Biomass Monitor CageEye CageEye

Deployment dates 20/02/2019–31/10/2019 01/06/2019–29/09/2019 11/09/2019–30/10/2019

Ocean model data source NorKyst-800 Copernicus Atlantic North West Shelf Copernicus Global Ocean

Weather data source IBM Environmental Intelligence Suite

Weather variables Wind speed, air temperature, solar radiation

were depth-averaged to generate a time series vector that is
amenable toward machine learning analysis. Equation 1 was
used to compute the mean of grouped data.

x̄ =

∑
fx

∑
f

(1)

where x refers to the midpoint of depth intervals and f denotes
the frequency of fish in a given interval.

Data gaps or missing values were either imputed or removed:
if the gap was less than 4 h, data were imputed using a
nearest neighbour linear interpolation, while if gaps were greater
than (or equal) 4 h, this portion was removed from analysis
(i.e., both the environmental and hydroacoustic data were
removed). Autoregressive features (i.e., values at previous points
in time) are often informative for machine learning models.
We generated these features using 3 h sliding window size
(i.e., values at previous 1, 2, and 3 h). The resulting matrix
is combined with environmental data, and time-aligned. We
used our open-source packages, TSML (Palmes et al., 2020) and
AutoMLPipeline (Palmes, 2020) for this preprocessing step. The
code we used along with the data from the NOR site is available
on Github at (O’Donncha and Palmes, 2021).

As part of the machine learning model setup, we investigated
two configurations:

• All features: all available environmental variables together
with sliding window values of fish location data were
provided to the model. Each row represents the autoregressive
features together with the date-time features (year, month,
day hour, day of week, etc.), and environmental data. These
features are time-aligned with the corresponding label (i.e.,
fish location) at the desired prediction window. We setup
the problem as a 1-h ahead prediction using 3 h sliding
window size (i.e., autoregressive at previous 3 h were
included) with 1 h stride. Due to the lack of nighttime
observations we did not implement this analysis at SCO
site since the incomplete daily data can reduce the insight
from autoregressive analysis. Instead, at SCO site, we only
considered the configuration below.

• Selected features: to interrogate the strength of relationship
or dependency between fish location and environmental
conditions, a subset of features were provided to the model.

The subset of environmental data were selected based on
analysis of literature and the features identified as being
important in the first experiment above. This configuration
did not include sliding window values from previous timesteps
which simplified the setup (missing data no longer had to be
interpolated, instead those rows could be simply dropped). It
also provides more flexibility when prescribing the prediction
window since once could forecast whenever environmental
data is available [e.g., one could leverage the Copernicus
10-day ahead ocean forecast data (Tonani et al., 2019) to
make corresponding 10-day ahead predictions]. The selected
features for this configuration were: temperature, DO, current
speed and direction, wind speed and direction, sea surface
height, and hour of day (described in Table 2).

The features (environmental data primarily) and label (fish
location) data were split into two groups, to form the training-
data set composed of 90% of the data, and the test-data set the
remaining 10%. After preprocessing and hourly-averaging, the
total number of data points available were 5,847, 1,574, and 840
data points for the NOR, SCO, and CAN study sites, respectively.
The data were provided to the IBM AutoAI tool (IBM,
2021a) which automatically selected the optimal combination of
algorithm, feature transformations, and calibration parameters
(or hyperparameters) that minimised prediction error. Mean-
squared-error (MSE) was selected as the loss function to
optimise. We then used the trained machine learning model to
interrogate how environmental data contributed to variations in
fish location and behaviour. This can be considered the true goal
of the machine learning implementation, and an accurate model
simply served as a means to achieve this goal.

3. RESULTS

We collected data on the observed vertical distribution of relative
intensity of fish biomass within a cage at three sites. The sites were
geographically disparate and had distinct characteristics in terms
of both the local environment, and the farm itself that influenced
fish behaviour.

Figure 3 presents summary statistics for the NOR site: the
top figure shows the centrepoint of the fish biomass over the
duration of the study period, while bottom figure presents a box
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FIGURE 2 | Data processing workflow outlining the main steps of hydroacoustic data binning, data cleansing, environmental data processing, data merging, and

finally machine learning model implementation.

plot elucidating hourly distribution every month. While each site
exhibit unique characteristics, a number of common qualitative
trends were shared, including:

• Each site demonstrated diurnal patterns to varying degrees
(however the prominence of these varied across sites and at
different times of year).

• Observations suggested a weak seasonal-scale pattern,
with fish being at a higher position in the cage during
summer months.

• A very pronounced preference for the upper portion of the
cage that was independent of absolute depth. Generally fish
tended to cluster in the upper one-third of the cage which can
have significant implications for the density of fish in a cage (if
the volume of the cage actually used by the fish is far less than
the volume available).

These observations are interrogated in more detail in remainder
of paper.

Figure 3 presents data from the Norwegian farm highlighting
a number of noticeable trends. Firstly, despite the deep waters
(approximately 60 m), and the large depth of the cage (27m),
fish tended to congregate in the upper third, and spent most of
the time at depths of 3–9 m. The box plot does not show any
pronounced daily pattern. It is worth noting that the northerly
latitude of the site (67◦N) means it is characterised by 24 h
sunlight for most of the summer months which likely impeded
the development of daily patterns during some of the period.
Further, fish in the cage were changed between 26 and 29th July
and new stock introduced, which naturally modifies recurrent
patterns of behaviour. This may be the source of the more widely
dispersed patterns of position evident in August, since the fish
were newly introduced to the cage and conceptually displayed
more chaotic behaviour patterns. Moving past these extenuating
circumstances, the behaviours in September and October are
possibly most indicative of typical cage-fish behaviour. These
months are characterised by a weak diurnal pattern and fish
congregating toward an ambient depth of about 9 m (or a third
of the depth).

Figure 4 summarises information on fish distribution at the
Scotland site. Both cage and water depth were significantly
shallower at this farm, being 6 and 10m, respectively. Naturally
this affects the range that fish could travel and we see a quite tight
clustering of average fish position between 1 and 2m. Box plot
indicates that fish sat within a tight half-metre cluster most of

the time, with the box plot whiskers rarely extending outside this
range. It’s important to note that due to the CageEye transducer
being placed inside the cage (because of the shallow water depth),
some portion of fish in the cage will not be captured by the
sensor. Hence, the degree of clustering is likely overestimated
in this case. Results illustrate that average fish position in the
cage tended to move closer to the surface during the summer
period, likely influenced by warming surface temperatures.
Figure 5 includes temperature data reported at the Scotland site,
illustrating warmer waters that peaked in early August before
returning to moderate temperatures in September. The general
trend of monthly variations in fish position, seem to follow these
patterns, with July and September reporting comparable values
for both temperatures and average fish positions. There was no
clear diurnal pattern obvious in the data. It is important to note
that due to lack of power during the night, data were not collected
between the hours of 18:00 and 06:00. This naturally reduced the
contribution of hour-of-day toward explaining the data.

Finally, Figure 6 presents data from one of the cages at the
CAN site. The CageEye sensor was deployed between 11/09/2019
and 30/10/2019, covering a period of large drop in temperature
and reduction in daylight hours. A strong diurnal pattern was
evident at this site with fish tending deeper in the cage during
daylight hours. Due to the time of year the water column was not
thermally stratified which may reduce the effects of temperature.
While the cage depth is 10m, the box plot illustrates that fish
were generally clustered within a 2m range and this cluster rarely
goes deeper than 4m in the cage, reflecting similar patterns to the
other two sites.

Prior to more detailed statistical analysis of the data, one
desires insight into the primary drivers that explains the
observations. As discussed in section 2.3, machine learning
models such as Random Forest provides a robust approach to
efficiently explore multiple variables and associated response. We
considered an analysis of the CageEye/ABM vertical distribution
data from the three sites using IBM AutoAI (IBM, 2021a),
automated machine learning tool. The data were preprocessed
as described in section 2.3 and uploaded to the AutoAI website.
The hydroacoustic data column was specified as training labels,
and features were selected based on the particular experimental
configuration (either “all features” or “selected features”) using
the AutoAI Graphical User Interface (GUI).

Our first experimental configuration (“all features” described
in section 2.3) provided a wide range of environmental
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FIGURE 3 | Vertical distribution of fish in a cage at NOR farm illustrating the evolution of the centrepoint of fish biomass over the duration of study period (top) and

boxplot of the data grouped into hourly intervals for each month (bottom). The box plot provides insight into distinct patterns developing in the data at different times

with the color legend representing hour of day. Lines extending from the boxplot represent the range of data (i.e., minimum and maximum values), while the box

section reports 25th percentile, median, and 75th percentile values. Filled circles represent outliers for the data.

(temperature, DO, current speed and direction, wind speed and
direction, and sea surface height), temporal (hour of day, day of
year), and autoregressive (measured fish position at 1, 2, and 3
h previously) variables as input (or features) to the model. The
model was trained to make a 1-h-ahead prediction. Since the
model implicitly learned to predict by learning the relationship
between features and labels, we could then use the trained model
to extract insight on how these features contributed to the model
prediction. The resultant model demonstrate strong predictive
skill reporting explained variance of 76, 81, and 75% for the NOR,
SCO, and CAN sites, respectively. The relatively high correlation
scores (equalling 0.87, 0.9, and 0.87, respectively) support the
viability of using the model to explore the contribution that
individual variables or features make toward prediction.

Figure 7 presents the feature importance of the supplied
data to the response variable or model prediction at the CAN
site (extracted from the AutoAI GUI). The feature importance
measure computes the contribution or importance of each
feature by calculating the increase of the model’s prediction error

after permuting the feature. A feature is “important” if permuting
its values increases the model error, because the model relied
on the feature for the prediction. A feature is “unimportant” if
permuting its values keeps the model error unchanged, because
the model ignored the feature for the prediction (Breiman, 2001).

Data from the CAN site provided some useful insight into
salmon cage dynamics. As might be expected, autoregressive
variables were a primary driver of fish behaviour. The most
important feature is value at the previous timestamp (x1,
denoting fish position 1 h previously) with x2 and x3 also
contributing. Hour-of-day was the second most important
feature which suggests that there was some diurnal pattern
to the data that can be explained by this repeating feature.
This information can serve to guide optimal feature selection
for model development. Combined with domain knowledge on
primary variables that influence fish behaviour (summarised
in section 1.2), this information can lead to development of
a more effective model. Selecting the most appropriate set of
features is critical to maximising model performance, while from
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FIGURE 4 | Vertical distribution of fish in a cage at SCO farm illustrating the evolution of the centrepoint of fish biomass over the duration of study period (top) and

boxplot of the data grouped into hourly intervals for each month (bottom). The box plot provides insight into distinct patterns developing in the data at different times

with the color legend representing hour of day.Lines extending from the boxplot represent the range of data (i.e., minimum and maximum values), while the box section

reports 25th percentile, median, and 75th percentile values. Filled circles represent outliers for the data. Note that the plots only include data between 06:00 and 18:00.

a practical point of view amodel with less predictors may bemore
interpretable (Kuhn and Johnson, 2013).

Our second experimental setup involved a reduced set of
features, namely: temperature, DO, current speed, wind speed,
and salinity, together with hour-of-day. Choice of features were
based on both feature importance reported in Figure 7 and those
suggested by literature. Naturally, the variance explained (or
predictive skill) of the model dropped with the reduced feature
set, but the analysis of feature importance or contributions can be
more meaningful. The resultant model explained 59%, 64%, and
61% of variance for the NOR, SCO, and CAN sites, respectively,
which represents a drop of 14–17% compared to the model with
all features provided. This drop in predictive skill was balanced
by an improvement in model interpretability and increased focus
on pertinent variables (environmental conditions).

Figure 8 summarises model performance at the Canada site. It
illustrates that themodel captures data trends quite well reporting
correlation score of 0.78. Visually, the model captures observed
fish depth quite well considering the highly dynamic nature

of the signal. In particular, trends in the data are adequately
tracked and the model accurately replicates whether the fish
move up or down in the cage in response to the provided
model inputs. From a feature analysis perspective, this allows
us to confidently interrogate results since we are primarily
interested in variations in output rather than magnitude (i.e.,
changes of fish position in response to changes in environmental
conditions rather than the magnitude of those changes) We used
the model to understand variance explained by these drivers
together with the feature importance of each. Figure 9 presents
the variable importance computed for the three locations in
Norway, Scotland, and Canada.

While there were similarities in the drivers that influenced
fish position at the three sites, pronounced variations existed
based on the different geography and characteristics of each site.
As suggested by both feature importance analysis and boxplot
visualisation, time-of-day was a primary driver, particularly at the
Canadian farm. This reflected the pronounced diurnal patterns
that are visually evident in Figures 3–6, with the fish being
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FIGURE 5 | Time series plot of temperature (top row), and DO (bottom row) reported at the three sites, NOR (left), SCO (middle), and CAN (right), respectively.

deeper in cage during daylight hours. It’s worth noting that
diurnal patterns were likely under represented in NOR and
SCO data due to long summertime daylight hours and lack
of nighttime observations, respectively. Figure 10 presents a
density plot of daytime and nighttime fish positions for both
CAN and NOR (due to lack of nighttime observations, SCO
was excluded). To remove the effects of long sunshine hours
during June and July in NOR these 2 months were excluded
from the plot. Results demonstrated a clear difference between
daytime and nighttime behaviour for the CAN site and a similar
but much less pronounced difference for the NOR site. In
Canada, fish congregated at about 3.6m depth and the spread
around this was quite narrow during the day, while at night,
fish were distributed more widely across the water column
with a mean depth of 2.8m. Similar trends were observed in
Norway (although not as pronounced). The mean difference
between daytime and nighttime positions were 0.52m while
fish were also more uniformly spread across the water column
at night.

At all sites, physical oceanographic variables represented an
important driver. Physical mixing by current speeds and wind
forcing were particularly critical at the CAN site and three of the
five most important variables represented physical stresses and
mechanical mixing, namely current direction, wind direction,
and wind speed, respectively (in order of influence). Wind stress
did not represent an important driver of fish depth variance at
the NOR site. This is likely due to the increased depth of cage
and fish position serving to shelter from local surface dynamics.
Interestingly, salinity was the primary driver of fish position

at the NOR site which illustrates both fish sensitivities and
local bay characteristics.

Figure 11 presents vertical profile of temperature and salinity
at the site over the duration of the study period. Results illustrate
a pronounced thermal stratification during the summer months,
that breaks down into a well-mixed water column in spring
and autumn. Variations of vertical salinity are more complex
illustrating relatively low surface salinity values in September,
which may be influenced by precipitation or freshwater runoff.
Literature indicates that Atlantic salmon are influenced by
salinity variations when younger than 3 months and during
spawning periods, while indifferent to salinity at other times
(Oppedal et al., 2011). The behavioural influence detected in this
study may be a result of salmon expressing preference for lower
salinity waters in spring, during the return migration period of
salmon toward freshwater. However, Figure 11 indicates that the
vertical variation in salinity was relatively small, and additional
study is necessary to understand the influence this may have on
salmon variations.

While Figures 7, 9 provide insight into which features were
important, we were interested in how the features influence
the predicted outcome. A powerful approach to interrogate
the variations of predictand in response to predictors are
accumulated local effects (ALE) (Apley and Zhu, 2020). ALE
quantifies the contributions of different predictors by considering
the conditional probability or likelihood of changes to prediction.
It has noted advantages in cases where multiple predictors are
correlated and the effects are difficult to separate (which is
naturally the case in ocean systems).
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FIGURE 6 | Vertical distribution of fish in a cage at CAN farm illustrating the evolution of the centrepoint of fish biomass over the duration of study period (top) and

boxplot of the data grouped into hourly intervals for each month (bottom). The box plot provides insight into distinct patterns developing in the data at different times

with the colour legend representing hour of day. Lines extending from the boxplot represent the range of data (i.e., minimum and maximum values), while the box

section reports 25th percentile, median, and 75th percentile values. Filled circles represent outliers for the data.

Figure 12 presents the computed ALE for the CAN site for
four variables, namely, temperature, DO, wind, and current speed
to the response variable. ALE provides a quantitative way to
show how the prediction (fish position) changes locally, when the
feature (environmental variable) is varied. The marks on the x-
axis indicates the distribution of the particular feature, showing
how relevant a region is for interpretation (little or no points
mean that we should not over-interpret this region). Figure 12
allows for extraction of a number of pertinent observations
on the data. The feature effects of temperature and oxygen
suggest that “ambient” conditions had low importance (tends
toward zero), while higher and lower values tends to trigger a
response. Specifically, DO reports low importance when values
were between 7–8 mgL−1, while values outside this range invoke
a large response by the model. It is worth noting that this
large response by the fish is likely indicative of high-stress
conditions. Figure 5 plots time series of DO to illustrate the
evolution at the site and localised periods when values dropped
below 7mgL−1.

The contribution of wind and current speed to fish response
were quite similar (as might be expected). Generally increased
current speed invoked an increase in the model predicted value
(i.e., fish were deeper in the cage). The plot suggests a linear
relationship but is likely not enough data to draw confident
conclusions on the exact relationship. This is amplified by the fact
that the marks on the x-axis are quite sparse for higher values of
wind and current speed indicating low number of observations
for these conditions.

4. DISCUSSION AND CONCLUSIONS

The precision aquaculture concept aims to exploit data-driven
management of fish production, thereby improving the farmer’s
ability to monitor, control and document biological processes in
fish farms. The fundamental approach has been summarised as
a series of steps, namely observe, interpret, decide, and act (Føre
et al., 2018), that strives toward optimised operations of farms.
Where precision aquaculture differs most prominently from its
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FIGURE 7 | Feature importance reported for first experimental configuration “all features” (section 2.3) at the CAN site. We provided all available data as features to

the model (i.e., environmental data, temporal data, and autoregressive data or fish position at previous 3 h). The y-axis reports ranked list of features that contributed

the most to variation in fish depth measurements, while the x-axis presents relative magnitude of those contributions. Ranking predictors in this manner can quickly

help sift through large datasets and understand data trends (Kuhn and Johnson, 2013).

FIGURE 8 | Scatter plot of model predicted fish depth plotted against

observed values for the CAN site. Inputs to the model are environmental data

time-aligned with the target data, and hour of day to represent temporal

variations (which Figure 7 suggested to be an important contributor to fish

motion).

sister industry, agriculture, is in the need for sensing of the
ambient environment also (e.g., water temperature, oxygen)—a
consideration that is less important in agriculture where animals
can be housed (O’Donncha and Grant, 2019). In this paper, we
adopted acoustic measurements of fish distribution to quantify
how environmental conditions influence and modify behaviour.

Results demonstrated pronounced temporal variations in fish
distribution as dictated by factors such as diurnal patterns,
dynamics (currents and winds), and oxygen and temperature
variations. Diurnal patterns driven by natural changes in light

intensity were broadly similar across sites (although lack of
nighttime data at SCO site limited interpretation for this site).
Generally, fish occupied a deeper position in the cage during
the day and were more tightly clustered; while at night, fish
utilised more of the cage volume and were at a higher average
position. These patterns were more pronounced at the CAN site,
while the effect of longer daylight hours possibly ameliorate this
effect during the June and July months at the NOR site. These
diurnal patterns reflect what has been observed in the literature
for salmon group response to natural light (Oppedal et al., 2011).

Analysis indicates that temperature was a primary contributor
at the NOR and SCO site, while less influential at the CAN
site (Figure 9). These results are partly influenced by the longer
study period in these two sites that captured seasonal variation
of temperature. Figure 5 shows that temperature variation at the
CAN site was between approximately 12–14◦C compared to 10–
16◦C at the other two sites. Further, temperature in the warmer
summer months exhibited pronounced stratification before
returning to a well-mixed temperature profile in September
and October. Figure 11 presents vertical temperature profile for
the NOR site, illustrating this summer stratification. Literature
suggests that salmon prefer the highest available temperature
(≤18◦C) and avoid colder temperatures (Oppedal et al., 2001;
Johansson et al., 2009). On the other hand, in reasonably
homogeneous environments where temperature varies little
with depth (such as CAN site during autumn), temperature is
not expected to influence the vertical distribution of salmon
(Oppedal et al., 2011). Hence for the sites studied here, one may
expect active behavioural thermoregulation during the summer
and not in other months where temperature varies little within
the cage.
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FIGURE 9 | Feature importance reported for our second experimental configuration “selected features” (section 2.3) at the (A) NOR, (B) SCO, and (C) CAN sites. The

y-axis reports the ranked list of features that contributed the most to variation in fish depth measurements, while the x-axis presents relative magnitude of those

contributions. Ranking predictors in this manner can quickly help sift through large datasets and understand data trends (Kuhn and Johnson, 2013).

FIGURE 10 | Distribution of fish depth data for the NOR (left) and CAN (right) farm over the duration of the study period. The data is split into daytime and nighttime

periods to explore how behaviours vary between those periods. The dashed vertical lines denote the mean for both periods.

Variation in oxygen levels were most pronounced at the
CAN site which showed consistently lower values than at other
locations (Figure 5). This is reflected in the feature importance
analysis which denotes DO as an important contributor to
fish position, and in particular indicates that lower values of
oxygen have significant influence. Figure 12 suggests that fish
moved toward the surface when values drop below 7mgL−1.
Values dropped below this threshold three times during the
course of this study (Figure 5). This suggests that these low

oxygen periods are worthy of additional study to understand
how fish welfare were impacted and if additional behavioural
modifications (e.g., horizontal swimming patterns or feeding
activity) developed during these times. Research studies indicate
that (at temperature of 16◦ C oxygen levels of 7mgL−1

lead to reduced appetites in full-feeding Atlantic salmon,
while values of 6mgL−1 initiated acute anaerobic metabolism,
and increased skin lesions (CREATE, 2008; Oppedal et al.,
2011).
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FIGURE 11 | Transect of temperature (left) and salinity (right) extracted from the Norkyst ocean model at the grid cell closest to the NOR farm. Colorbar denotes

temperature in ◦C and salinity in units of PPU for the respective plots.

FIGURE 12 | Feature importance reported by the AutoAI model at the CAN site for a subset of environmental variables using accumulated local effects computation.

ALE provides an efficient way to explore how much the target variable (fish depth) in response to selected feature (temperature, DO, wind speed, and current speed).

The y-axis report the accumulated local effects (ALE) of each feature or variable in the units of the prediction variable (m), while the x-axis reports the range of values

for each selected feature. Clockwise from top left results are presented for temperature, DO, current speed, and wind speed. ALE is a valuable technique to explore

how much predictand varies in response to changes in predictors.

As alluded to in previous paragraphs, our approach only
considered group behavioural responses in the vertical. Salmon
typically form a circular swimming patterns that avoids both the

innermost part and edges of the cage. These patterns breakdown
at low stocking density, during feeding, at nighttime, or when
threatened by a predator (Oppedal et al., 2011). Further, there
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are important interactions that happen at the individual level,
such as aggression, that are not captured here. Aggression has
been shown to vary as a function of stocking density and during
feeding times (Adams et al., 2007), but it is not possible to resolve
at the group level. While there is potential to leverage computer
vision technology to monitor at the three-dimensional (Deakin
et al., 2019), or individual level (Tidal, 2020), these are currently
at a laboratory or research stage. An alternative approach is
to tag individual fish to collect continuous data on the three-
dimensional positioning of individual fish within a cage (Roy
et al., 2014). These provide very high temporal resolution of
position but only a small subset of the total fish in the cage can
be feasibly tracked.

Approaches based on sampling at the individual level bear
similarities to more established farm management practises in
agriculture. Farmers have begun to use RFID systems to track
livestock movement and health in order to improve health and
welfare of terrestrial livestock. These systems have provided
health information such as internal body temperature, growth
performance, and even hold medical information; they have
also provided movement data that provides information on
behaviour and interaction between individuals (Ruiz-Garcia and
Lunadei, 2011). Aquaculture faces similar challenges as livestock
agriculture, and therefore lessons can be adapted and applied.
However, additional challenges arise when animals can move
in three-dimensions, and environmental conditions affect health
and welfare more consistently than in agriculture. Fish are much
more dependent on farmers for food, population density, and
environmental conditions (Føre et al., 2018). Further, agriculture
make wide use of radio frequency communicationmethodologies
that are not feasible underwater and instead must rely on
acoustic communication channels that are less technologically
mature (Stojanovic and Preisig, 2009). One of the most striking
differences between both industries is that livestock farming
has been occurring for millennia, where salmon farming has
only been active for the last few decades, and therefore new
methods and technologies to understand animal health and
welfare becomes a more challenging task and requires diligent
research and cooperation between farmers and researchers.

In this paper, we explored statistical and machine learning
approaches to explore environmental drivers of fish behaviour
using environmental observations and hydroacoustic sensors. A
major challenge in research such as this is the data collection
step and this varies depending on the location. In CAN, farm
sites tend to be relatively shallow, ranging between 10–15 m,
and in remote coastal communities. Hydroacoustic systems are
successful in collecting data on high density fish populations
when cage depths allow for full view. In CAN, CageEye was
unable to provide a full view of the cage due to the shallowness
with only 11 m of depth available when the system was designed
to be placed nearer to 15–20m (pers. comm). Without the
ability to place a hydroacoustic system deeper in the water
column, only a small view is available. Data quality issues can
be exacerbated as a result of acoustic interference from other
instruments within the cage and reflection from sea surface or
site bottom. Furthermore, in order to study fish behaviour, a
24-h view is needed requiring consistent clean power to be run

throughout the site. With farms in more remote locations, many
sites use gas-powered generators which often shut down and
require maintenance as well as constant observation. In order to
successfully run hydroacoustic systems at shallow sites, a clean
consistent power source that can provide energy for 24-h a day
would allow for uninterrupted data collection.

Results presented in this paper indicate pronounced
differences between sites and the need to consider these
variations for farm management. One could readily use this
approach to quantify the difference between sites, and further
to identify the fundamental drivers to these variations. This
could be particularly valuable when comparing different farm
systems such as inshore and offshore and the associated
operational implications.

The primary advantage of the hydroacoustic datasets
presented here are the relative ease of collection of high-
density measurements of fish behaviour. This paper presents a
framework to identify the dominant environmental variables
influencing fish behaviour (i.e., vertical motion), and extract
insight on how changes in the environment affect fish response
(e.g., Figure 12). On the other hand, these datasets only
serve as a proxy for key performance metrics that might
be collected on farms, such as feeding activity or satiation,
fish health as measured by things such as gill status or lice
count, and mortalities. In follow-on work we will explore
whether welfare indices collected on farms can be explained or
predicted by a combination of sensor datasets (hydroacoustic
measurements and environmental observations). In particular,
we will investigate how relatively high-density, population level
measurements such as hydroacoustic data can inform more
sparse individual-level measurements such as sea-lice, gill health,
mortalities, etc.). Further, this study considered fish behaviour
in terms of group vertical movement patterns. In subsequent
work, we will deploy fish tags to monitor individual fish in
three-dimensions to better encapsulate individual movement
patterns in three dimensions.
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