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• The plastisphere is a microbially and me-
tabolically diverse environment.

• Relative to prokaryotes, the eukaryotic
component of the plastisphere is
understudied.

• Eukaryotes encompass some of the major
disease-causing microorganisms world-
wide.

• There is an urgent need to assess the
plastispheres role in dissemination of eu-
karyotic pathogens.
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Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities,
known collectively as the ‘plastisphere.’ The plastisphere can facilitate the increased survival and dissemination of
human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour
and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments
and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infec-
tions, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and
marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we
critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and
consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues
to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination,
and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
1. Introduction

The ‘plastisphere’ is the distinct microbial biofilm that colonises envi-
ronmental plastic debris (Zettler et al., 2013). Plastisphere communities
are highly variable, diverse, and genetically distinct from the free-living
communities that surround them, suggesting that the surface of environ-
mental plastics can provide a novel niche for colonisation (Kirstein et al.,
2019; Wu et al., 2020; Wang et al., 2021). Research on the plastisphere
has increased considerably in recent years and advanced our understanding
of its role as a potential reservoir for pathogenic bacteria and viruses
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(Galafassi et al., 2021; Kelly et al., 2021; Zhang et al., 2021; Moresco
et al., 2022). However, the majority of research on the plastisphere has fo-
cused on the prokaryotic species that make up these communities, with
comparably little consideration of the potential for the plastisphere to har-
bour and disseminate pathogenic eukaryotes.

Pathogenic prokaryotes in the plastisphere have been extensively re-
ported (Metcalf et al., 2022a), with bacteria such as Vibrio (Kirstein et al.,
2016; Laverty et al., 2020; Rasool et al., 2021), Salmonella spp. (El-Liethy
et al., 2020), Escherichia coli and intestinal enterococci (Rodrigues et al.,
2019; Metcalf et al., 2022b) known to associate with plastics in the
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Fig. 1. In the environment pathogenic microorganisms can associate with plastic debris and increase the potential for human interaction. Organisms with pathogenic
potential can enter the environment in multiple ways, including in WWTP effluent. There is potential for both prokaryotic organisms such as bacteria; and eukaryotic
organisms including protozoa, fungi and helminths to associate with plastic debris and be disseminated within the environment with an increased risk of exposure for
humans.
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environment and present a potential risk to human health. Human patho-
genic viruses can also adhere to plastic debris and bind to the plastisphere
(Moresco et al., 2021), with rotavirus known to retain its virulence as dem-
onstrated through cell culture and plaque assays (Moresco et al., 2022).

While metagenomics and taxonomic studies are commonly used for
identification, culture-based methods and microscopy have also been em-
ployed allowing for a greater understanding of the association between bac-
terial pathogens and different plastic types (Wright et al., 2020).
Importantly however, these studies often lack information on the retention
of virulence of plastisphere-associated bacterial pathogens, and their ability
to disseminate to the human host (Beloe et al., 2022).

Eukaryotes are ubiquitous in natural environments such as soil and
freshwater and represent some of the most important disease-causing
agents worldwide. Opportunistic fungal pathogens including members of
the genera Candida, Aspergillus, Cryptococcus, and Pneumocystis are global
Table 1
Selected examples of eukaryotic pathogen interaction with different plastic polymers in

Pathogen Environmental
form

Mode of infection Inte

Nos

Fungi Aspergillus spp. Hyphal/Conidia Skin contact; Ingestion (aflatoxin);
Respiratory

PO;

60%

Candida spp. Yeast cell Skin contact; Ingestion PO;

PVC
PS
60%

Cryptococcus
spp.

Encapsulated
yeast cell

Respiratory 60%
PS
PS

Fusarium spp. Filamentous Skin contact; Ingestion (mycotoxins) PO;

PS
Protozoa Cryptosporidium

spp.
Oocyst Ingestion

Giardia spp. Cyst Ingestion Mu
sub

Toxoplasma
gondii

Oocyst Ingestion

Helminths Ascaris sp. Egg Ingestion PS

Trichuris
trichuria

Egg Ingestion –

Ancylostoma sp. Egg Skin contact –
Necator sp. Egg Skin contact –

a Polyethene, PE; Polyurethane, PU; Polypropylene, PP; Polystyrene, PS; Polyester, PO
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in distribution (Firacative, 2020); human pathogenic protozoan parasites
such asToxoplasma,Cryptosporidium andGiardia can survive in both aquatic
and terrestrial environments (Fayer et al., 2004); and helminths such as
nematodes, trematodes and cestodes produce eggs that can remain viable
in the environment for several years (Brooker et al., 2006). Despite the rec-
ognition that eukaryotic pathogens can often survive conventional waste-
water treatments and persist outside the host under harsh environmental
conditions (e.g., extremes in temperature, pH, salinity, UV irradiation)
(Chahal et al., 2016; Guadagnini et al., 2013) (Fig. 1), research identifying
pathogenic eukaryotes associated with the plastisphere has been limited to
large scalemetagenomic studies or in vitro experiments that attempt to rep-
licate environmental settings (Gkoutselis et al., 2021; Zhang et al., 2022).
High-throughput sequencing studies reveal that eukaryotic reads often
dominate the plastisphere community (Bryant et al., 2016), being much
more abundant than the more well-studied prokaryotes.
nosocomial/clinical settings, and in environmental studies.

raction with plastic polymersa

ocomial/lab based References Environmental References

PE; PU (Neely and Orloff,
2001)

PE (Zahra et al., 2010)

Cotton-40%PE (Koca et al., 2012) PE; PA; PU; PP;
PS; CA

(Lacerda et al., 2020)

PE; PU (Neely and Orloff,
2001)

HDPE (Oliveira et al., 2022)

acrylic alloy (Welsh et al., 2017) LLDPE; PA (Wallbank et al., 2022)
(Falanga et al., 2022) PET; PE (Marsay et al., 2022)

Cotton-40%PE (Koca et al., 2012)
Cotton-40%PE (Koca et al., 2012) Mixed polymers (Gkoutselis et al., 2021)

(Korem et al., 2017)
(Yang et al., 2022)

PE; PU (Neely and Orloff,
2001)

PE (Zahra et al., 2010)

(Falanga et al., 2022)
PO; PE (Zhang et al., 2022)
PC (Helmi et al., 2008)
PVC (Skraber et al., 2007)

litple polymeric
stances

(Pickering et al.,
2012)

PO; PE (Zhang et al., 2022)

PC (Helmi et al., 2008)
PO; PE (Zhang et al., 2022)

(Capizzi-Banas et al.,
2002)

– –

– – –

– – –
– – –

; Polyamide, PA; Polyvinylchloride, PVC; Polycarbonate, PC; Cellulose acetate, CA.
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Sequencing of eukaryotic rRNA has shown that diatoms, dinoflagel-
lates, red, green, and brown algae, parasitic ciliates and apicomplexans
are also present in the plastisphere (Dudek et al., 2020), with
microplastic-associated dinoflagellates associated with harmful algal
blooms (HABs) (Maso et al., 2003; Kettner et al., 2019). However, there is
a general lack of understanding of whether environmental plastic pollution
could facilitate the survival, persistence, and dissemination of eukaryotic
human pathogens. Therefore, in this paper we address this knowledge
gap by critically reviewing the currently available information on the po-
tential for fungal, protozoan, and helminth pathogens to associate with
the plastisphere, and pose a risk to human health.

2. Fungi

Fungal infections account for approximately 1.7million deaths per year.
This is considerably more than from diseases such as tuberculosis (1.5 mil-
lion deaths per year) ormalaria (405,000 deaths per year) (Bongomin et al.,
2017; Kainz et al., 2020). Furthermore, over one billion people are affected
each year by fungal infections, of which>150million cases are classified as
severe or life-threatening. Studies on the interactions between fungi and
abiotic surfaces have historically focused on nosocomial settings,with path-
ogenic fungal species such as Aspergillus, Candida and Fusarium known to
form biofilms and persist on surfaces of medical, industrial, and household
appliances (Wirth and Goldani, 2012; Vethaak and Leslie, 2016; Neu et al.,
2018) (Table 1). In the environment, most opportunistic fungal pathogens
are naturally saprophytic organisms; however, they can become opportu-
nistic human pathogens particularly when the immune system of the host
is compromised (Rokas, 2022). Despite the ubiquity of fungi in the environ-
ment, their ability to grow on a wide variety of natural substrates, and their
significant potential to cause disease, research on human pathogenic fungi
in the plastisphere of environmental plastic debris has received relatively
little attention.

Studies of fungi in the plastisphere have so far been limited to taxonomic
characterisation throughDNAmetabarcoding and examination of fungal suc-
cession (Kettner et al., 2017; de Tender et al., 2017; Lacerda et al., 2020),
with several studies identifying fungal pathogens in the plastisphere using
18S ribosomal RNA (rRNA) sequencing (Oberbeckmann et al., 2016;
Kirstein et al., 2018; Kettner et al., 2019). The limitations of using 18S
rRNA sequencing are well documented, as the taxonomic resolution for
some fungal groups is relatively limited (Stoeck et al., 2010; Richards et al.,
2012). Sequencing of the internal transcribed spacer (ITS) region of nuclear
DNA ismore commonly employed to analyse fungal diversity in environmen-
tal samples and has been used to identify pathogenic fungal species such as
Cladosporium and Rhodotorula on plastic debris in freshwater (Xue et al.,
2021), and Candida and Cladosporium in biofilms on nylon-6 (PA) and linear
low-density polyethylene (LLDPE) in the marine environment (Wallbank
et al., 2022). To date, only two high throughput sequencing studies have si-
multaneously analysed prokaryotes and eukaryotes on the same environmen-
tal plastic sample (Bryant et al., 2016; Debroas et al., 2017). In an
environmental setting, single species biofilms are highly unlikely, and so un-
derstanding the interactions and associations between different groups of or-
ganisms in the plastisphere, including pathogenic prokaryotic and eukaryotic
species (such as fungi), would provide important information as to how they
influence each-others survival and virulence. For example, in vitro studies
have shown that interactions between an opportunistic fungal species
(Cryptococcus neoformans) and the soil bacterium Acinetobacter baumannii, re-
sulted in the fungus producingmore robust biofilms, a thicker capsule and re-
leasingmore capsular polysaccharide; consequently, the pathogenicity of this
opportunistic human pathogen could become enhanced (Abdulkareem et al.,
2015). Furthermore, free living amoeba (FLA) in biofilms can promote the
survival and proliferation of pathogenic fungi in hospital and domestic
water supply systems (Vanessa et al., 2012; Hubert et al., 2021). Therefore,
although FLA have not yet been found associated with the plastisphere,
there is potential for FLA to facilitate the persistence of pathogenic
microorganism in biofilms colonising the surfaces of plastic debris in the
environment.
3

Fungal species are well adapted for life in the plastisphere due to their
adsorptive nutritionmode, apical and invasive growth forms, melanisation,
thigmotropism, and their ability to form and associate with established
biofilms (Kumamoto, 2008; Harding et al., 2009; Harms et al., 2011;
Gkoutselis et al., 2021). Microscopy has demonstrated that microbial eu-
karyotes arewell-represented on the surface of environmental plastic debris
(Carson et al., 2013), and scanning electron microscopy (SEM) has shown
that potentially pathogenic fungal species are readily able to colonise
microplastics (Gkoutselis et al., 2021). The mechanisms through which
pathogenic fungi bind to either plastics or established plastisphere biofilms
are complex and yet to be fully elucidated. But as fungal propagules,
i.e., vegetative and reproductive hyphae, and asexual fungal spores, are
all present in large clusters and mats in plastisphere biofilms (Gkoutselis
et al., 2021) it is likely that pathogenic fungi utilise a secreted polymer ma-
trix for adherence to plastics in the environment. In common with bacteria,
microalgae, cyanobacteria (Parikh and Madamwar, 2006; Boonchai et al.,
2015) and protists (Jain et al., 2005; Lee Chang et al., 2014), pathogenic
fungi secrete exopolysaccharides (EPS) which play important structural
and functional roles in the development and maintenance of microbial
biofilms (Hwang et al., 2004; Elisashvili et al., 2009). The filamentous hy-
phae of the medically significant pathogenic fungus Aspergillus fumigatus
grows embedded within an EPS, which mediates adherence to inorganic
substrates (Mowat et al., 2007; Loussert et al., 2010). Understanding
whether environmental plastic debris encourages the secretion of EPS to
aid in fungal adhesion would provide key information on how fungi associ-
ate with plastics and the plastisphere.

Melanins are natural pigments synthesized bymembers of all biological
kingdoms, including fungi, bacteria, and helminths (Nosanchuk and
Casadevall, 2003). While melanin is known to play important roles in fun-
gal pathogenesis through alteration of host cytokine responses, decreasing
phagocytosis, and reducing the toxicity of microbial peptides, it also has a
significant function in fungal cell wall mechanical strength (Gómez and
Nosanchuk, 2003; Nosanchuk and Casadevall, 2006; Nosanchuk et al.,
2015) In addition, melanin can aid in adhesion to surfaces, and provide a
physical protective barrier (Pouliot et al., 2005). The fungal pathogen
C. neoformans undergoes melanisation in response to nutrient starvation;
melanisation can also protect fungi against environmental stressors includ-
ing temperature, antimicrobial compounds, and ionizing radiation
(Cordero et al., 2020). Most fungal species that are associated with plastics
are melanised (Gkoutselis et al., 2021), which may facilitate survival capa-
bilities and virulence of pathogenic fungi once associated with the
plastisphere (and could even be responsible for triggering the transition
from saprophyte to opportunistic fungal pathogen).

Pathogenic fungi have many well-defined adhesion strategies (Weig
et al., 2004; de Groot et al., 2008) that are recognised as major virulence
factors (Calderone and Fonzi, 2001; Sundstrom, 2002; Verstrepen and
Klis, 2006). Most known fungal adhesins are GPI-modified cell wall pro-
teins, with the best described adhesins being from the agglutinin-like se-
quence (ALS) family, which encodes cell-surface glycoproteins involved
in adhesion of fungal cells to host and abiotic surfaces (Hoyer and Cota,
2016), including polypropylene, polyvinyl chloride, polystyrene, and boro-
silicate glass (Aoki et al., 2012; de Groot et al., 2013; Demuyser et al.,
2014). Hydrophobicity is key in microbe-plastic adhesion, as the
hydrophobic nature of plastics stimulates biofilm formation and allows
the establishment of a succession of prokaryotic and eukaryotic micro-
and macro-organisms (Oberbeckmann et al., 2014; Reisser et al., 2014). It
is thought that the hydrophobicity of ALS proteins is important in influenc-
ing ALS-mediated attachment to abiotic surfaces (Frank et al., 2010; Garcia
et al., 2011).

Solid hydrophobic surfaces, such as polystyrene films, are known to in-
duce morphological differentiation and formation of invasive structures in
pathogenic fungi, including Aspergillus fumigatus, A. terreus and Fusarium
solani (Kumamoto, 2008). Altering morphology in response to stress is a
key strategy used by pathogenic fungi to cope with different conditions.
The dimorphic fungus Histoplasma capsulatum for example, grows as a fila-
mentous mould at ambient temperature, and switches to a yeast form at
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elevated host temperature (Maresca and Kobayashi, 1989); whereas at am-
bient temperatures, Candida albicans favours the yeast form, and elevated
temperature induces thefilamentous growth (Gow et al., 2002). Pathogenic
fungal species bound to abiotic surfaces in the environment will likely tra-
verse many different environmental matrices (e.g., terrestrial-freshwater-
marine), each providing different abiotic challenges. The morphological
changes induced by the stress of these conditions may affect numerous phe-
notypic characteristics, including the ability of fungi to adhere to, or be re-
leased from the plastisphere. Furthermore, the specific influence of
different plastic polymers on fungal morphology and virulence has not
yet been elucidated and may provide important information on fungal sur-
vival, dissemination, and virulence strategies.

3. Protozoa

Major protozoan enteric parasites such as Toxoplasma spp. (causing
toxoplasmosis), Cryptosporidium spp. (causing cryptosporidiosis), and Giar-
dia spp. (causing giardiasis) can survive in both aquatic and terrestrial envi-
ronments and infect a wide range of hosts in different ecological niches
(Fayer et al., 2004). Toxoplasma is estimated to infect between 30 and
90 % of the population in Central America, South America, and Europe
(Dubey and Jones, 2008; Minbaeva et al., 2013;Wilking et al., 2016); Cryp-
tosporidium is a leading cause of diarrheal disease worldwide with young
children highly susceptible to infection (Khalil et al., 2018); and Giardia
duodenalis (one of six morphologically distinct species of Giardia to infect
humans) results in approximately 4000 laboratory-confirmed giardiasis
cases each year in the UK and 2.8 × 108 cases worldwide (Horton et al.,
2019). Yet, studies identifying protozoan pathogens on plastic waste in
the environment are substantially fewer than for bacteria or even fungi.

Transmission of terrestrial protozoa to humans is entirely dependent on
factors that affect their transport and survival and mostly occurs through
drinking contaminated water, consuming contaminated foods, or via the
faecal-oral route (Tenter et al., 2000). Pathogenic protozoa can survive ad-
verse environmental conditions including nutrient depletion, increased os-
motic pressure, temperature changes, low pH, and desiccation (King and
Monis, 2007). Their survival is mainly due to the production of thick-
walled organelles, i.e., cysts (Giardia) or oocysts (Cryptosporidium and Toxo-
plasma), which allow them to remain viable in soil and water for years
(Dumètre et al., 2013; Omarova et al., 2018; Pumipuntu and Piratae,
2018). Wastewater treatment strategies vary between countries, with
some treating their waste more thoroughly to remove biological contami-
nants than others (Pauwels and Verstraete, 2006; Carraro et al., 2016;
Yan et al., 2020). Developing countries often do not have the infrastructure
for pre-treatment of waste and so raw wastewater discharge directly into
the environment is common (Laffite et al., 2016; Al Aukidy et al., 2018).
This means that the risk of contamination of water courses by Cryptosporid-
ium and Giardia can be considerable, with cysts and oocysts frequently
found in discharge from wastewater treatment works (Cacciò et al., 2003;
Robertson et al., 2006); although T. gondii oocysts are isolated from waste-
water less commonly (Sotiriadou and Karanis, 2008; Gallas-Lindemann
et al., 2013). Whether this translates into an enhanced ability to survive
in the plastisphere has never before been examined.

Under laboratory conditions, Cryptosporidium oocysts and Giardia cysts
can adhere to, and survive on, abiotic surfaces such as brushed stainless
steel, Formica® laminate, ceramics, and fabrics (Alum et al., 2014). The ad-
dition of organic matter can increase their survival on surfaces, which may
be due to enhanced aggregation of cysts/oocysts, or physio-chemical
changes to the properties of the abiotic surface, or to the surface of the
bilayered wall of the cyst (Alum et al., 2014). In freshwater, the surface of
the oocyst is hydrophilic, negatively charged, and faintly adhesive, which
is thought to be important for dispersal in the environment (Shapiro
et al., 2009; Dumètre et al., 2012; Dumètre et al., 2013); while in estuarine
or marine waters, the oocyst surface becomes neutrally charged, enhancing
the interactions between marine biofilms and algae (Shapiro et al., 2014),
with evidence that Cryptosporidium oocysts readily incorporate into
biofilms (Lefebvre et al., 2021) In contrast, it has been suggested that the
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negatively charged surface of the T. gondii oocyst may be an evolutionary
strategy to prevent its aggregation with other particles in a bid to aid
with dispersal in fresh water (Shapiro et al., 2014).

Cryptosporidium oocysts can readily adhere to polymicrobial biofilms on
polyvinylchloride (PVC) coupons submerged in wastewater (Skraber et al.,
2007), adhere to and integrate with established river water biofilms
(Wolyniak et al., 2009), and attach and detach from biofilms on polycar-
bonate coupons (Helmi et al., 2008). Under in vitro settings T. gondii, C.
parvum, and G. enterica cysts/oocysts can bind to established biofilms on
polyethylene microbeads and polyester microfibers (Zhang et al., 2022).
While providing preliminary evidence that these pathogens can associate
with plastisphere biofilms, these limited studies only demonstrate a super-
ficial association with the plastisphere due to the experimental parameters
used, with oocysts and cysts adhering to the surface of the established bio-
film rather than being incorporated within the true biofilm matrix itself. It
is likely that cysts and oocysts could attach to the biofilm surface and be-
come embedded within the biofilm matrix, although it remains unknown
if this could happen under realistic environmental conditions. A stronger
association with biofilm would potentially enhance protozoan survival
due to the protective environment provided by the plastisphere commu-
nity, but could also increase the potential for widescale dissemination and
transport throughout the landscape with greater opportunities for exposure
to animal or human hosts.

The identification of protozoa within the plastisphere is likely to be hin-
dered by the lack of sensitivity of current methods. As few as 10 oocysts of
Cryptosporidium or G. duodenalis can cause infection in humans (Teunis
et al., 2002) (Erickson and Ortega, 2006), while a single oocyst of
T. gondii can cause infection in rodent models (Dubey, 2016). With current
methodologies it is difficult to detect such low concentrations of protozoa
in environmental samples. For example, extracting sufficient nucleic acid
from cysts/oocysts for PCR or qPCR when the pool of available nucleic
acid is heavily diluted with DNA from other eukaryotic species, such as
fungi, and where organic inhibitors of PCR, such as humic acid, will be
common, the process of identifying and quantifying protozoan pathogens
in the plastisphere will be challenging (Hawash, 2014; Sidstedt et al.,
2020). More sensitive methods, including immunofluorescence assays
(IFA), nested PCR, and loop mediated isothermal amplification (LAMP),
have been employed to identify Giardia and Cryptosporidium in wastewater
(Gallas-Lindemann et al., 2016). However, these approaches are likely to
lead to overestimations of viable cysts/oocysts in the plastisphere, andmea-
surements of gene transcription would be needed to quantify pathogen vi-
ability in this environmental niche (Fradette et al., 2022).

4. Helminths

Soil-transmitted helminths infect >1.5 billion people globally (WHO,
2022), with the most common helminthiases caused by infection with the
intestinal helminths, Ascaris (roundworm), Trichuris (whipworm),
Ancylostoma and Necator (hookworm). Infections are widely distributed in
tropical and subtropical areas, and particularly affect those residing in
low- and middle-income countries (LMIC) with poor environmental sanita-
tion and high levels of water pollution (Ziegelbauer et al., 2012). Helminth
infections arise from contact with faecally-contaminated soils, consumption
of unwashed or raw foods, or contact with contaminated water sources
(Amoah et al., 2018). Helminth eggs are highly infectious, with a single
egg being sufficient to cause infection (Jiménez et al., 2017); and are ex-
tremely persistent in the environment, e.g., eggs of Ascaris spp. can survive
for 20days at temperatures as low as−27 °C and have been recovered from
frozen soils after 10years (Jiménez et al., 2017). In developing countries,
concentrations of helminth eggs in wastewater (16,000 eggs/L) and sludge
(up to 23,000 eggs/g) (Amoah et al., 2018) often exceed limits set by the
WHO guidelines for wastewater/sludge reuse (≤1 egg/L) (WHO, 2006).

Despite the known ability for helminth eggs to persist in the environ-
ment for long periods of time and their well-described ability to survive tra-
ditional decontamination processes, no studies have attempted to identify
helminths (or their eggs) in the plastisphere (Table 1). There is evidence
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that helminth eggs can readily adhere to soil particles, resulting in their per-
sistence in these environments (Landa-Cansigno et al., 2013) but in order to
further advance our understanding of the environmental dissemination
pathways of these pathogens, more information is needed on the associa-
tion between helminths and environmental plastic pollution. Structurally,
helminth eggs have many similar characteristics to protozoan cysts and oo-
cysts (multi-layered, protein and sugar coated, and chitinous), and such ad-
hesive properties could facilitate the association of helminth eggs with
plastics in the environment. Helminth eggs adhere more readily to soil
when there is an abundance of siliceous surfaces such as those found in
sandy and clay-filled soils, although the hydrophobic surface of the hel-
minth egg may result from its association with the organic component of
the soil (Capizzi and Schwartzbrod, 2001). There is evidence that Ascaris
eggs can adhere to polystyrene microspheres through hydrophobic interac-
tions (Capizzi-Banas et al., 2002). Although conducted under controlled
in vitro settings, this study does highlight the potential for helminths to as-
sociate with the plastisphere (Jiménez et al., 2017). Nothing is known
about the interaction between helminths and prokaryotes in the
plastisphere; however, some helminths have bactericidal properties, with
components of the pseudocoelomatic fluid of the porcine intestinal nema-
tode Ascaris suum, inhibiting the growth of Bacillus megaterium and Staphy-
lococcus aureus (Wardlaw et al., 1994); and compounds secreted byA. suum
(lectins, cystatin, and members of the antibacterial factor and cecropin
AMP families) can inhibit biofilm formation of Escherichia coli (Midha
et al., 2018). Therefore, if helminths (or eggs) did become associated with
plastisphere biofilms, they have the potential to alter the community com-
position, including the presence and persistence of bacterial pathogens.
There remain many unanswered questions about the potential for hel-
minths to associate with plastic debris in the environment, and whether
this could increase their survival and transfer.

5. Future perspectives

While several studies have identified eukaryotic pathogens in the
plastisphere, this has often relied on metagenomic approaches. Future
work must include a more in-depth characterisation of the plastisphere
and the ability of fungal, protozoan, and helminth pathogens to traverse en-
vironmental matrices and the points at which they pose a human health
risk. Central to this, is establishing the pathogenic potential of eukaryotic
pathogens in the plastisphere, which is particularly significant as simply
identifying whether a pathogen is present in the plastisphere is not enough
to infer a human health risk (Beloe et al., 2022). While there has been some
success in identifying the presence of prokaryotic virulence genes in the
plastisphere (Kirstein et al., 2016; Silva et al., 2019) the resolution of
amplicon sequencing data is often insufficient to determine pathogenesis
as virulence factors are commonly found on mobile genetic elements
(Sakib et al., 2018). Furthermore, gene presence does not always translate
into a transcribed and functional protein (e.g., DNA fromVBNC or eDNA re-
leased from dead cells can also give positive identification of virulence
genes that do not pose a direct threat to public health) (Wolffs et al.,
2005; Li et al., 2013). This should be taken into consideration when exam-
ining the presence of eukaryotic virulence genes in future plastisphere stud-
ies. Similar difficulties in identification of virulence potential will likely be
apparent in the study of eukaryotic pathogens in the plastisphere. To over-
come this, following recovery of eukaryotic pathogens from the
plastisphere, future studies could employ models such as in vivo challenge
or challenge of in vitro cell lines to establish if eukaryotic pathogens adher-
ing to environmental abiotic debris present a risk to human health. Recent
work has utilised a Galleria mellonella model of infection to indicate reten-
tion of pathogenicity of prokaryotic pathogens following their recovery
from the plastisphere (Ormsby et al., in press). Furthermore, the use of
RNA sequencing could allow for the identification of virulence-protein
encoding RNA transcripts.

With many pathogens known to survive primary, secondary, and in
some instances, tertiary wastewater treatment (Mbanga et al., 2020),
there is increasing risk of microbial pathogens entering the environment.
5

With increasing reports of plastic pollution and contaminated plastic
waste being found in locations where human exposure can be high, there
is a heightened potential for the spread of disease to the human population.
Recent plastisphere research has focused on identifying which genera are
present in the plastisphere, but few identify and confirm the virulence po-
tential of these organisms (Beloe et al., 2022). Quantifying whether eukary-
otic pathogens can persist in the plastisphere, and crucially, understanding
their ability to retain virulence is a neglected environmental and public
health issue, which requires urgent attention.
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