Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/9751
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis
Author(s): Bekaert, Michaël
Edger, Patrick P
Hudson, Corey M
Pires, J Chris
Conant, Gavin C
Contact Email: michael.bekaert@stir.ac.uk
Keywords: adaptation
Arabidopsis thaliana
costly traits
flux balance analysis
metabolic network
Issue Date: Oct-2012
Date Deposited: 19-Oct-2012
Citation: Bekaert M, Edger PP, Hudson CM, Pires JC & Conant GC (2012) Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytologist, 196 (2), pp. 596-605. https://doi.org/10.1111/j.1469-8137.2012.04302.x
Abstract: Here, we describe our updated mathematical model of Arabidopsis thaliana Columbia metabolism, which adds the glucosinolates, an important group of secondary metabolites, to the reactions of primary metabolism. In so doing, we also describe the evolutionary origins of the enzymes involved in glucosinolate synthesis. We use this model to address a long-standing question in plant evolutionary biology: whether or not apparently defensive compounds such as glucosinolates are metabolically costly to produce. We use flux balance analysis to estimate the flux through every metabolic reaction in the model both when glucosinolates are synthesized and when they are absent. As a result, we can compare the metabolic costs of cell synthesis with and without these compounds, as well as inferring which reactions have their flux altered by glucosinolate synthesis. We find that glucosinolate production can increase photosynthetic requirements by at least 15% and that this cost is specific to the suite of glucosinolates found in A. thaliana, with other combinations of glucosinolates being even more costly. These observations suggest that glucosinolates have evolved, and indeed likely continue to evolve, for herbivory defense, since only this interpretation explains the maintenance of such costly traits.
DOI Link: 10.1111/j.1469-8137.2012.04302.x
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
np2012.pdfFulltext - Published Version861.48 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.