Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/8737
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Surface disinfection properties of the combination of an antimicrobial peptide, ranalexin, with an endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA)
Authors: Desbois, Andrew P
Lang, Sue
Gemmell, Curtis G
Coote, Peter J
Contact Email: andrew.desbois@stir.ac.uk
Keywords: antibacterial
chlorhexidine
drug resistance
ex vivo
mupirocin
synergy
Issue Date: Feb-2010
Publisher: Wiley-Blackwell
Citation: Desbois AP, Lang S, Gemmell CG & Coote PJ (2010) Surface disinfection properties of the combination of an antimicrobial peptide, ranalexin, with an endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA), Journal of Applied Microbiology, 108 (2), pp. 723-730.
Abstract: Aims: To characterize the antibacterial synergy of the antimicrobial peptide, ranalexin, used in combination with the anti-staphylococcal endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA), and to assess the combination’s potential as a topical disinfectant or decolonizing agent for MRSA. MRSA causes potentially lethal infections, and pre-operative patients colonized with MRSA are often treated with chlorhexidine digluconate and mupirocin cream to eradicate carriage. However, chlorhexidine is unsuitable for some patients, and mupirocin resistance is increasingly encountered, indicating new agents are required. Methods and Results: Using an ex vivo assay, ranalexin and lysostaphin tested in combination reduced viable MRSA on human skin to a greater extent than either compound individually. The combination killed bacteria within 5 min and remained effective and synergistic even in high salt and low pH conditions. Conclusions: The combination is active against MRSA on human skin and under conditions that may be encountered in sweat. Significance and Impact of the Study: Although the exact mechanism of activity remains unresolved, considering its specific spectrum of activity, fast killing kinetics and low likelihood of resistance arising, the combination of ranalexin with lysostaphin warrants consideration as a new agent to eradicate nasal and skin carriage of Staph. aureus, including MRSA.
Type: Journal Article
URI: http://hdl.handle.net/1893/8737
DOI Link: http://dx.doi.org/10.1111/j.1365-2672.2009.04472.x
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: Aquaculture
Glasgow Caledonian University
University of St Andrews
University of St Andrews

Files in This Item:
File Description SizeFormat 
desbois_JAM_2009.pdf483.25 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.