Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/8712
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections
Authors: Desbois, Andrew P
Gemmell, Curtis G
Coote, Peter J
Contact Email: andrew.desbois@stir.ac.uk
Keywords: Antibacterial
Antibiotic resistance
Bactericidal
Kidney burden
Staphylococcus aureus
Synergy
Issue Date: Jun-2010
Publisher: Elsevier
Citation: Desbois AP, Gemmell CG & Coote PJ (2010) In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections, International Journal of Antimicrobial Agents, 35 (6), pp. 559-565.
Abstract: New treatments are urgently required for infections caused by meticillin- resistant Staphylococcus aureus (MRSA) as these strains are often resistant to multiple conventional antibiotics. Earlier studies showed that ranalexin, an antimicrobial peptide (AMP), in combination with lysostaphin, an antistaphylococcal endopeptidase, synergistically inhibits the growth of MRSA, meaning that it deserved consideration as a new anti-S. aureus therapy. Using haemolysis and Vero cell viability assays, ranalexin with lysostaphin is proven to be non-toxic at antibacterial concentrations. In human serum, ranalexin with lysostaphin is significantly more effective against MRSA than treatment with either component alone. In a rabbit model of wound infection, ranalexin with lysostaphin reduced MRSA in the wound by ca. 3.5 log10 colony-forming units (CFU) compared with the untreated control. The combination is significantly more effective than treatment with ranalexin or lysostaphin alone. In a mouse model of systemic infection, ranalexin with lysostaphin reduced MRSA kidney burden by ca. 1 log10 CFU/g compared with untreated controls or treatment with ranalexin or lysostaphin alone. Importantly, the combination is synergistically bactericidal against various S. aureus isolates in vitro, including those with reduced susceptibility to lysostaphin or vancomycin. Ranalexin and lysostaphin could be incorporated in wound dressings for the prevention and treatment of topical S. aureus infections. That AMPs can enhance the antibacterial effectiveness of lysostaphin in vivo highlights a new avenue of research in the fight against drug-resistant staphylococci.
Type: Journal Article
URI: http://hdl.handle.net/1893/8712
URL: http://www.scopus.com/inward/record.url?partnerID=yv4JPVwI&eid=2-s2.0-77951767027&md5=b041aa27abe16309e9406aa5efcb7c84
DOI Link: http://dx.doi.org/10.1016/j.ijantimicag.2010.01.016
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Affiliation: Aquaculture
University of St Andrews
University of St Andrews

Files in This Item:
File Description SizeFormat 
desboisgemmellcoote_intljantimicrobagents_2010.pdf290.89 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.