http://hdl.handle.net/1893/35091
Appears in Collections: | Accounting and Finance Journal Articles |
Peer Review Status: | Refereed |
Title: | Do Artificial Neural Networks Provide Improved Volatility Forecasts: Evidence from Asian Markets |
Author(s): | McMillan, David Kambouroudis, Dimos Sahiner, Mehmet |
Contact Email: | david.mcmillan@stir.ac.uk |
Keywords: | Volatility Forecasting Neural Networks Machine Learning VaR ES |
Date Deposited: | 10-May-2023 |
Citation: | McMillan D, Kambouroudis D & Sahiner M (2023) Do Artificial Neural Networks Provide Improved Volatility Forecasts: Evidence from Asian Markets. <i>Journal of Economics and Finance</i>. |
Abstract: | This paper enters the ongoing volatility forecasting debate by examining the ability of a wide range of Machine Learning methods (ML), and specifically Artificial Neural Network (ANN) models. The ANN models are compared against traditional econometric models for ten Asian markets using daily data for the time period from 12 September 1994 to 05 March 2018. The empirical results indicate that ML algorithms, across the range of countries, can better approximate dependencies compared to traditional benchmark models. Notably, the predictive performance of such deep learning models is superior perhaps due to its ability in capturing long-range dependencies. For example, the Neuro Fuzzy models of ANFIS and CANFIS, which outperform the EGARCH model, are more flexible in modelling both asymmetry and long memory properties. This offers new insights for Asian markets. In addition to standard statistics forecast metrics, we also consider risk management measures including the value-at-risk (VaR) average failure rate, the Kupiec LR test, the Christoffersen independence test, the expected shortfall (ES) and the dynamic quantile test. The study concludes that ML algorithms provide improving volatility forecasts in the stock markets of Asia and suggest that this may be a fruitful approach for risk management. |
Rights: | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Notes: | Output Status: Forthcoming |
File | Description | Size | Format | |
---|---|---|---|---|
ANN_ Final.pdf | Fulltext - Accepted Version | 1.07 MB | Adobe PDF | Under Embargo until 2026-04-29 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.