Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/33942
Appears in Collections: | Aquaculture Journal Articles |
Peer Review Status: | Refereed |
Title: | In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila |
Author(s): | Ali, Farman Cai, Qilan Hu, Jialing Zhang, Lishan Hoare, Rowena Monaghan, Sean J Pang, Huanying |
Contact Email: | s.j.monaghan@stir.ac.uk |
Keywords: | Aeromonas hydrophila LuxI AhyI Molecular docking AI-1 biosynthesis I-TASSER High throughput virtual screening |
Issue Date: | Jan-2022 |
Date Deposited: | 10-Feb-2022 |
Citation: | Ali F, Cai Q, Hu J, Zhang L, Hoare R, Monaghan SJ & Pang H (2022) In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila. Microbial Pathogenesis, 162, Art. No.: 105356. https://doi.org/10.1016/j.micpath.2021.105356 |
Abstract: | AhyI is homologous to the protein LuxI and is conserved throughout bacterial species including Aeromonas hydrophila. A. hydrophila causes opportunistic infections in fish and other aquatic organisms. Furthermore, this pathogennot only poses a great risk for the aquaculture industry, but also for human public health. AhyI (expressing acylhomoserine lactone) is responsible for the biosynthesis of autoinducer-1 (AI-1), commonly referred to as a quorum sensing (QS) signaling molecule, which plays an essential role in bacterial communication. Studying protein structure is essential for understanding molecular mechanisms of pathogenicity in microbes. Here, we have deduced a predicted structure of AhyI protein and characterized its function using in silico methods to aid the development of new treatments for controlling A.hydrophila infections. In addition to modeling AhyI, an appropriate inhibitor molecule was identified via high throughput virtual screening (HTVS) using mcule drug-like databases.The AhyI-inhibitor N-cis-octadec-9Z-enoyl-l-Homoserine lactone was selected withthe best drug score. In order to understand the pocket sites (ligand binding sites) and their interaction with the selected inhibitor, docking (predicted protein binding complex) servers were used and the selected ligand was docked with the predicted AhyI protein model. Remarkably, N-cis-octadec-9Z-enoyl-l-Homoserine lactone established interfaces with the protein via16 residues (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168), which are involved with regulating mechanisms of inhibition. These proposed predictions suggest that this inhibitor molecule may be used as a novel drug candidate for the inhibition of auto-inducer-1 (AI-1) activity.The N-cis-octadec-9Z-enoyl-l-Homoserine lactone inhibitor molecule was studied on cultured bacteria to validate its potency against AI-1 production. At a concentration of 40 μM, optimal inhibition efficiency of AI-1 was observedin bacterial culture media.These results suggest that the inhibitor molecule N-cis-octadec-9Z-enoyl-l-Homoserine lactone is a competitive inhibitor of AI-1 biosynthesis. |
DOI Link: | 10.1016/j.micpath.2021.105356 |
Rights: | This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Ali F, Cai Q, Hu J, Zhang L, Hoare R, Monaghan SJ & Pang H (2022) In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila. Microbial Pathogenesis, 162, Art. No.: 105356. https://doi.org/10.1016/j.micpath.2021.105356 © 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Licence URL(s): | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
20211102 revised In-silico analysis of AhyI_SM__FINAL_Review_100222.pdf | Fulltext - Accepted Version | 1.61 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.