Please use this identifier to cite or link to this item:
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles
Peer Review Status: Refereed
Title: The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction
Authors: Hunter, Angus
De, Vito Giuseppe
Bolger, Claire
Mullany, Hugh
Galloway, S D
Contact Email:
Keywords: Muscle fibre conduction velocity
central activation ratio
Issue Date: Oct-2009
Publisher: Taylor & Francis (Routledge)
Citation: Hunter A, De Vito G, Bolger C, Mullany H & Galloway SD (2009) The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction, Journal of Sports Sciences, 27 (12), pp. 1261-1269.
Abstract: The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s¼7; _V O2max 62 ml kg71 min71, s¼8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g kg71 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both preingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P50.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P50.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m s71, s¼0.4 vs. 4.2 m s71, s¼0.4) while the EMG amplitude remained the same. Force decline rate was less (P50.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.
Type: Journal Article
DOI Link:
Rights: Full terms and conditions of use: This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.; The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.
Affiliation: Sport
University of Stirling
Mullany Engineering Consultancy Ltd, Ireland

Files in This Item:
File Description SizeFormat 
Hunter et al.pdf662.34 kBAdobe PDFUnder Embargo until 31/12/2999     Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependant on the depositor still being contactable at their original email address.

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.