Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2841
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Mapping of AF1 transactivation domains in duplicated rainbow trout glucocorticoid receptors
Author(s): Sturm, Armin
Bron, James
Green, Darren
Bury, Nicholas R
Contact Email: darren.green@stir.ac.uk
Keywords: teleost
steroid receptor
corticosteroid
cortisol
gene duplication
activation function
Glucocorticoids Receptors
Issue Date: 1-Dec-2010
Date Deposited: 7-Apr-2011
Citation: Sturm A, Bron J, Green D & Bury NR (2010) Mapping of AF1 transactivation domains in duplicated rainbow trout glucocorticoid receptors. Journal of Molecular Endocrinology, 45 (6), pp. 391-404. https://doi.org/10.1677/JME-09-0152
Abstract: The glucocorticoid receptor (GR) is a ligand-dependent transcription factor mediating the genomic effects of glucocorticoids. Two activation functions (AFs) are present in the GR. While the N-terminal AF1 is ligand independent, the C-terminal AF2 overlaps with the ligand-binding domain and is ligand dependent. In this study, we have mapped AF1 in duplicated rainbow trout GRs, called rtGR1 and rtGR2, showing a limited homology (24.5%) in the N-terminal domain. Ablation of this domain from rtGR1 or rtGR2 resulted in a marked decrease (>97%) in maximal hormone-dependent transactivation, but did not affect dexamethasone-binding activity or expression levels. This suggested that, similar to the situation in the human GR (hGR), AF1 is the main AF in the trout GRs. Sequence alignments with hGR suggested a localisation of AF1 to residues 70–230 of rtGR1 and 1–119 of rtGR2. These assignments were generally confirmed in the transactivation experiments with rtGR1- and rtGR2-derived mutants showing partial deletions of their N-terminal domains. In dexamethsone-treated cells (10^-7 M, 2 h), the subcellular distribution of rtGR1 and rtGR2 mutants lacking the entire N-terminal domain, as well that of an rtGR1 mutant lacking the most N-terminal 234 amino acids, was similar to that of the corresponding wild-type GRs, suggesting that the disruption of transactivation activity was not caused by impairment of nuclear access of the mutants. Bioinformatic analyses predicted the presence of potential helical segments in the core of AF1 of rtGR1 and rtGR2, and further revealed that AF1 in rtGR1, rtGR2, and hGR shares a motif composed of hydrophobic and acidic amino acids.
DOI Link: 10.1677/JME-09-0152
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Sturm2010_JME.pdfFulltext - Published Version685.39 kBAdobe PDFUnder Embargo until 2999-12-02    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.