Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2787
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: Does dietary tocopherol level affect fatty acid metabolism in fish?
Author(s): Mourente, Gabriel
Bell, J Gordon
Tocher, Douglas R
Contact Email: drt1@stir.ac.uk
Keywords: vitamin E
alpha-tocopherol
antioxidant
enzymes
lipid peroxidation
polyunsaturated fatty acids
Fishes Feeding and feeds
Lipoproteins Fish
Issue Date: Sep-2007
Date Deposited: 15-Mar-2011
Citation: Mourente G, Bell JG & Tocher DR (2007) Does dietary tocopherol level affect fatty acid metabolism in fish?. Fish Physiology and Biochemistry, 33 (3), pp. 269-280. http://www.springerlink.com/content/0920-1742/; https://doi.org/10.1007/s10695-007-9139-4
Abstract: Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”.
URL: http://www.springerlink.com/content/0920-1742/
DOI Link: 10.1007/s10695-007-9139-4
Rights: Published in Fish Physiology and Biochemistry by Springer.; The final publication is available at www.springerlink.com

Files in This Item:
File Description SizeFormat 
Mourente et al revised.pdfFulltext - Accepted Version286.75 kBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.