Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/27581
Appears in Collections: | Aquaculture Journal Articles |
Peer Review Status: | Refereed |
Title: | Comparative ploidy response to experimental hydrogen peroxide exposure in Atlantic salmon (Salmo salar) |
Author(s): | Chalmers, Lynn Vera, Luisa M Taylor, John F Adams, Alexandra Migaud, Herve |
Keywords: | Triploid Atlantic salmon H2O2 Stress Gene expression Immune response |
Issue Date: | 31-Oct-2018 |
Date Deposited: | 1-Aug-2018 |
Citation: | Chalmers L, Vera LM, Taylor JF, Adams A & Migaud H (2018) Comparative ploidy response to experimental hydrogen peroxide exposure in Atlantic salmon (Salmo salar). Fish and Shellfish Immunology, 81, pp. 354-367. https://doi.org/10.1016/j.fsi.2018.07.017 |
Abstract: | While research into the growth, survival, nutrition and, more recently, disease susceptibility of triploid Atlantic salmon has expanded, there remains an overall lack of studies assessing the response of triploids to chemical treatments. It is essential that the response of triploids to disease treatments be characterised to validate their suitability for commercial production. This study aimed to investigate and compare the stress and immune responses of triploid and diploid Atlantic salmon following an experimental treatment with hydrogen peroxide (H2O2). A dose response test was first undertaken to determine a suitable test dose for both diploid and triploid Atlantic salmon. Following this, diploids and triploids were exposed to H2O2 (1800 ppm) for 20 min, as per commercial practices, after which blood glucose and lactate, and plasma cortisol and lysozyme were measured, along with the expression of oxidative stress and immune-related genes. In the first 6 h post-exposure to H2O2, comparable mortalities occurred in both diploid and triploid Atlantic salmon. Cortisol, glucose and lactate were not significantly influenced by ploidy suggesting that, physiologically, triploid Atlantic salmon are able to cope with the stress associated with H2O2 exposure as well as their diploid counterparts. Exposure to H2O2 significantly elevated the expression of cat and sod2 in diploid livers and gr, il1β and crp/sap1b in diploid gills, while it significantly decreased the expression of saa5 and crp/sap1a in diploid gills. In triploids, the expression levels of cat, hsp70, sod1, saa5, crp/sap1a and crp/sap1b in liver was significantly higher in fish exposed to H2O2 compared to control fish. The expression of gr, sod1 and il1β in triploid gills was also elevated in response to H2O2 exposure. This study represents the first experimental evidence of the effects of H2O2 exposure on triploid Atlantic salmon and continues to support their application into commercial production. |
DOI Link: | 10.1016/j.fsi.2018.07.017 |
Rights: | This article is available under the terms of the Creative Commons Attribution License (CC BY). You may copy and distribute the article, create extracts, abstracts and new works from the article, alter and revise the article, text or data mine the article and otherwise reuse the article commercially (including reuse and/or resale of the article) without permission from Elsevier. You must give appropriate credit to the original work, together with a link to the formal publication through the relevant DOI and a link to the Creative Commons user license above. You must indicate if any changes are made but not in any way that suggests the licensor endorses you or your use of the work. |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S1050464818304157-main.pdf | Fulltext - Published Version | 2.13 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.