Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25550
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles
Peer Review Status: Refereed
Title: Lipid remodelling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion
Author(s): Jeromson, Stewart
Mackenzie, Ivor
Doherty, Mary K
Whitfield, Phillip D
Bell, J Gordon
Dick, James R
Shaw, Andy
Rao, Francesco
Ashcroft, Stephen P
Philp, Andrew
Galloway, S D
Gallagher, Iain J
Hamilton, David Lee
Contact Email: d.l.hamilton@stir.ac.uk
Keywords: cell signalling
fish oil
fatty acid
insulin
lipidomics
lipids
Issue Date: 30-Jun-2018
Date Deposited: 28-Jun-2017
Citation: Jeromson S, Mackenzie I, Doherty MK, Whitfield PD, Bell JG, Dick JR, Shaw A, Rao F, Ashcroft SP, Philp A, Galloway SD, Gallagher IJ & Hamilton DL (2018) Lipid remodelling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion. American Journal of Physiology - Endocrinology and Metabolism, 314 (6), pp. E605-E619. https://doi.org/10.1152/ajpendo.00438.2015
Abstract: In striated muscle, EPA and DHA have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C2C12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment on the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. FAME analysis revealed that both EPA and DHA led to similar but substantial changes in fatty acid profiles. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long chain fatty acids with 5 (EPA treatment) or 6 (DHA treatment) double bonds. As these are typically membrane associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. SILAC based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane associated proteome. We conclude that the EPA specific increase in polyunsaturated long chain fatty acids in the phospholipid fraction is associated with an altered membrane associated proteome and these may be critical events in the metabolic remodelling induced by EPA treatment.
DOI Link: 10.1152/ajpendo.00438.2015
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher policy allows this work to be made available in this repository. Published in AJP - Endocrinology and Metabolism by American Physiological Society. The original publication is available at: https://doi.org/10.1152/ajpendo.00438.2015

Files in This Item:
File Description SizeFormat 
ajpendo.00438.2015.full.pdfFulltext - Accepted Version25.42 MBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.