Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/25067
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWei, Danen_UK
dc.contributor.authorSun, Jingen_UK
dc.contributor.authorBolderson, Jasonen_UK
dc.contributor.authorZhong, Meilingen_UK
dc.contributor.authorDalby, Matthew Johnen_UK
dc.contributor.authorCusack, Maggieen_UK
dc.contributor.authorYin, Huabingen_UK
dc.contributor.authorFan, Hongsongen_UK
dc.contributor.authorZhang, Xingdongen_UK
dc.date.accessioned2017-08-25T01:21:59Z-
dc.date.available2017-08-25T01:21:59Z-
dc.date.issued2017-05en_UK
dc.identifier.urihttp://hdl.handle.net/1893/25067-
dc.description.abstractEngineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research.en_UK
dc.language.isoenen_UK
dc.publisherACS Publicationsen_UK
dc.relationWei D, Sun J, Bolderson J, Zhong M, Dalby MJ, Cusack M, Yin H, Fan H & Zhang X (2017) Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip. ACS Applied Materials and Interfaces, 9 (17), pp. 14606-14617. https://doi.org/10.1021/acsami.7b00078en_UK
dc.rightsThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectbiofabricationen_UK
dc.subjectcell-laden hydrogelen_UK
dc.subjectmicrofluidicen_UK
dc.subjectmicroscale tissue engineeringen_UK
dc.subjectosteon-likeen_UK
dc.titleContinuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chipen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1021/acsami.7b00078en_UK
dc.identifier.pmid28157291en_UK
dc.citation.jtitleACS Applied Materials & Interfacesen_UK
dc.citation.issn1944-8252en_UK
dc.citation.issn1944-8244en_UK
dc.citation.volume9en_UK
dc.citation.issue17en_UK
dc.citation.spage14606en_UK
dc.citation.epage14617en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailmaggie.cusack@stir.ac.uken_UK
dc.citation.date03/02/2017en_UK
dc.contributor.affiliationSichuan Universityen_UK
dc.contributor.affiliationSichuan Universityen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationSichuan Universityen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationSichuan Universityen_UK
dc.identifier.isiWOS:000400802700009en_UK
dc.identifier.scopusid2-s2.0-85018954862en_UK
dc.identifier.wtid534974en_UK
dc.contributor.orcid0000-0003-0145-1180en_UK
dc.date.accepted2017-02-03en_UK
dcterms.dateAccepted2017-02-03en_UK
dc.date.filedepositdate2017-03-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWei, Dan|en_UK
local.rioxx.authorSun, Jing|en_UK
local.rioxx.authorBolderson, Jason|en_UK
local.rioxx.authorZhong, Meiling|en_UK
local.rioxx.authorDalby, Matthew John|en_UK
local.rioxx.authorCusack, Maggie|0000-0003-0145-1180en_UK
local.rioxx.authorYin, Huabing|en_UK
local.rioxx.authorFan, Hongsong|en_UK
local.rioxx.authorZhang, Xingdong|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-03-03en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-03-03|en_UK
local.rioxx.filenameWei_etal_AppliedMaterialsandInterfaces_2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1944-8244en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
Wei_etal_AppliedMaterialsandInterfaces_2017.pdfFulltext - Published Version9.32 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.