Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24077
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings
Peer Review Status: Refereed
Authors: Hong, Libin
Drake, John
Woodward, John
Ozcan, Ender
Contact Email: jrw@cs.stir.ac.uk
Title: Automatically Designing More General Mutation Operators of Evolutionary Programming for Groups of Function Classes Using a Hyper-Heuristic
Citation: Hong L, Drake J, Woodward J & Ozcan E (2016) Automatically Designing More General Mutation Operators of Evolutionary Programming for Groups of Function Classes Using a Hyper-Heuristic GECCO '16 Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO '16: Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20.7.2016 - 24.7.2016, New York: ACM, pp. 725-732.
Issue Date: 2016
Conference Name: GECCO '16: Genetic and Evolutionary Computation Conference 2016
Conference Dates: 2016-07-20T00:00:00Z
Conference Location: Denver, CO, USA
Abstract: In this study we use Genetic Programming (GP) as an offline hyper-heuristic to evolve a mutation operator for Evolutionary Programming. This is done using the Gaussian and uniform distributions as the terminal set, and arithmetic operators as the function set. The mutation operators are automatically designed for a specific function class. The contribution of this paper is to show that a GP can not only automatically design a mutation operator for Evolutionary Programming (EP) on functions generated from a specific function class, but also can design more general mutation operators on functions generated from groups of function classes. In addition, the automatically designed mutation operators also show good performance on new functions generated from a specific function class or a group of function classes.
Type: Conference Paper
Status: Book Chapter: author post-print (pre-copy editing)
Rights: Publisher policy allows this work to be made available in this repository. Published in GECCO '16 Proceedings of the Genetic and Evolutionary Computation Conference 2016, Pages 725-732 by ACM. The original publication is available at: http://dx.doi.org/10.1145/2908812.2908958
URI: http://hdl.handle.net/1893/24077
URL: http://dx.doi.org/10.1145/2908812.2908958
Affiliation: University of Nottingham Ningbo China
University of Nottingham
Computing Science - CSM Dept
University of Nottingham

Files in This Item:
File Description SizeFormat 
GPEPMulti2016 (4).pdf167.13 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.