Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24075
Appears in Collections:Aquaculture Journal Articles
Peer Review Status: Refereed
Title: A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture
Authors: Lamprianidou, Fani
Telfer, Trevor
Ross, Lindsay
Contact Email: t.c.telfer@stir.ac.uk
Keywords: IMTA
Ulva
Paracentrotus lividus
Dynamic energy budget
Nitrogen
Modelling
Issue Date: 5-Oct-2015
Publisher: Elsevier
Citation: Lamprianidou F, Telfer T & Ross L (2015) A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture, Estuarine, Coastal and Shelf Science, 164, pp. 253-264.
Abstract: Integrated multitrophic aquaculture (IMTA) has been proposed as a solution to nutrient enrichment generated by intensive fish mariculture. In order to evaluate the potential of IMTA as a nutrient bioremediation method it is essential to know the ratio of fed to extractive organisms required for the removal of a given proportion of the waste nutrients. This ratio depends on the species that compose the IMTA system, on the environmental conditions and on production practices at a target site. Due to the complexity of IMTA the development of a model is essential for designing efficient IMTA systems. In this study, a generic nutrient flux model for IMTA was developed and used to assess the potential of IMTA as a method for nutrient bioremediation. A baseline simulation consisting of three growth models for Atlantic salmon Salmo salar, the sea urchin Paracentrotus lividus and for the macroalgae Ulva sp. is described. The three growth models interact with each other and with their surrounding environment and they are all linked via processes that affect the release and assimilation of particulate organic nitrogen (PON) and dissolved inorganic nitrogen (DIN). The model forcing functions are environmental parameters with temporal variations that enables investigation of the understanding of interactions among IMTA components and of the effect of environmental parameters. The baseline simulation has been developed for marine species in a virtually closed system in which hydrodynamic influences on the system are not considered. The model can be used as a predictive tool for comparing the nitrogen bioremediation efficiency of IMTA systems under different environmental conditions (temperature, irradiance and ambient nutrient concentration) and production practices, for example seaweed harvesting frequency, seaweed culture depth, nitrogen content of feed and others, or of IMTA systems with varying combinations of cultured species and can be extended to open water IMTA once coupled with waste distribution models.
Type: Journal Article
URI: http://hdl.handle.net/1893/24075
DOI Link: http://dx.doi.org/10.1016/j.ecss.2015.07.045
Rights: Accepted refereed manuscript of: Lamprianidou F, Telfer T & Ross L (2015) A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture, Estuarine, Coastal and Shelf Science, 164, pp. 253-264. DOI: 10.1016/j.ecss.2015.07.045 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Affiliation: University of Stirling
Aquaculture
Aquaculture

Files in This Item:
File Description SizeFormat 
Lamprianidou et al 2015 manuscript ECSS.pdf2.15 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.