Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/2275
Appears in Collections:eTheses from Faculty of Natural Sciences legacy departments
Title: Airborne remote sensing of estuarine intertidal radionuclide concentrations
Author(s): Rainey, Michael Patrick
Issue Date: 1999
Publisher: University of Stirling
Abstract: The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Plc.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafieldderived 137Cs & 241Am and clay content (r2=0.93 & 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5mn) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r2=0.8 1). Subsequently, the established relationships between 137Cs & 241Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92km2) to be mapped at a geomorphic scale (1.75m). The accuracy of these maps was assessed by comparison with in situ samples and the results of previous radiological studies within the estuary. Finally, detailed conclusions are made regarding radionuclide sinks and sources, and surface activity redistribution within the Ribble Estuary environment.
Type: Thesis or Dissertation
URI: http://hdl.handle.net/1893/2275
Affiliation: School of Natural Sciences
Department of Environmental Science



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.