http://hdl.handle.net/1893/12350
Appears in Collections: | Faculty of Health Sciences and Sport Journal Articles |
Peer Review Status: | Refereed |
Title: | mVps34 is activated following high-resistance contractions |
Author(s): | MacKenzie, Matthew G Hamilton, David Lee Murray, James T Taylor, Peter M Baar, Keith |
Contact Email: | d.l.hamilton@stir.ac.uk |
Keywords: | Muscle strength Isometric exercise |
Issue Date: | 1-Jan-2009 |
Date Deposited: | 29-Apr-2013 |
Citation: | MacKenzie MG, Hamilton DL, Murray JT, Taylor PM & Baar K (2009) mVps34 is activated following high-resistance contractions. Journal of Physiology, 587 (1), pp. 253-260. https://doi.org/10.1113/jphysiol.2008.159830 |
Abstract: | Following resistance exercise in the fasted state, both protein synthesis and degradation in skeletal muscle are increased. The addition of essential amino acids potentiates the synthetic response suggesting that an amino acid sensor, which is involved in both synthesis and degradation, may be activated by resistance exercise. One such candidate protein is the class 3 phosphatidylinositol 3OH-kinase (PI3K) Vps34. To determine whether mammalian Vps34 (mVps34) is modulated by high-resistance contractions, mVps34 and S6K1 (an index of mTORC1) activity were measured in the distal hindlimb muscles of rats 0.5, 3, 6 and 18 h after acute unilateral high-resistance contractions with the contralateral muscles serving as a control. In the lengthening tibialis anterior (TA) muscle, S6K1 (0.5 h = 366.3 ± 112.08%, 3 h = 124.7 ± 15.96% and 6 h = 129.2 ± 0%) and mVps34 (3 h = 68.8 ± 15.1% and 6 h = 36.0 ± 8.79%) activity both increased, whereas in the shortening soleus and plantaris (PLN) muscles the increase was significantly lower (PLN S6K1 0.5 h = 33.1 ± 2.29% and 3 h = 47.0 ± 6.65%; mVps34 3 h = 24.5 ± 7.92%). HPLC analysis of the TA demonstrated a 25% increase in intramuscular leucine concentration in rats 1.5 h after exercise. A similar level of leucine added to C2C12 cells in vitro increased mVps34 activity 3.2-fold. These data suggest that, following high-resistance contractions, mVps34 activity is stimulated by an influx of essential amino acids such as leucine and this may prolong mTORC1 signalling and contribute to muscle hypertrophy. |
DOI Link: | 10.1113/jphysiol.2008.159830 |
Rights: | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. |
Licence URL(s): | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
File | Description | Size | Format | |
---|---|---|---|---|
Hamilton_2009_mVps34_is_activated.pdf | Fulltext - Published Version | 285.25 kB | Adobe PDF | Under Embargo until 2999-12-02 Request a copy |
Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.