Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/12338
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles
Peer Review Status: Refereed
Title: Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin Complex 1 Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression
Author(s): Watterson, Kenneth R
Bestow, Dawn
Gallagher, Jennifer
Hamilton, David Lee
Ashford, Fiona B
Meakin, Paul J
Ashford, Michael L J
Contact Email: d.l.hamilton@stir.ac.uk
Keywords: Ghrelin
Leptin
Insulin
AgRP
Hypothalamus
AMP-activated protein kinase
Biophysics and Biological Physics
Protein Structure.
Issue Date: Feb-2013
Date Deposited: 29-Apr-2013
Citation: Watterson KR, Bestow D, Gallagher J, Hamilton DL, Ashford FB, Meakin PJ & Ashford MLJ (2013) Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin Complex 1 Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression. Neurosignals, 21 (1-2), pp. 28-41. https://doi.org/10.1159/000334144
Abstract: Activation of mammalian target of rapamycin 1 (mTORC1) by nutrients, insulin and leptin leads to appetite suppression (anorexia). Contrastingly, increased AMP-activated protein kinase (AMPK) activity by ghrelin promotes appetite (orexia). However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP) mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide- 3-kinase (PI3K)- and protein kinase B (PKB)-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.
DOI Link: 10.1159/000334144
Rights: The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.
Licence URL(s): http://www.rioxx.net/licenses/under-embargo-all-rights-reserved

Files in This Item:
File Description SizeFormat 
Hamilton_2013_Anorexigenic_and_Orexigenic_Hormone_Modulation.pdfFulltext - Published Version1.57 MBAdobe PDFUnder Embargo until 2999-12-29    Request a copy

Note: If any of the files in this item are currently embargoed, you can request a copy directly from the author by clicking the padlock icon above. However, this facility is dependent on the depositor still being contactable at their original email address.



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.