Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/1081
Appears in Collections:Aquaculture eTheses
Title: A Study of the Aetiology and Control of Rainbow Trout Gastroenteritis
Authors: Gonzalez, Jorge Del Pozo
Supervisor(s): Turnbull, James F.
Crumlish, Margaret
Ferguson, Hugh W
Keywords: Rainbow Trout
Fish disease
enteritis
RTGE
Oncorhynchus mykiss
Candidatus arthromitus
Epidemiology
segmented filamentous bacteria
Pathogenesis
Molecular epidemiology
Issue Date: 15-Feb-2009
Publisher: University of Stirling
Citation: -del Pozo, J., Crumlish, M., Ferguson, H. W., Turnbull, J.F.T., “A Retrospective Cross-Sectional Study on Rainbow Trout Gastroenteritis (RTGE) in the UK.”, Aquaculture 2009, 290 (1-2), pp. 22-27
Abstract: Disease has been identified as a major problem in the aquaculture industry for the welfare of the fish stocked as well as for its economic impact. The number of diseases affecting cultured fish has increased significantly during recent years with the emergence of several conditions that have added to the overall impact of disease on the industry. Frequently, a lack of scientific knowledge about these diseases is compounded by an absence of effective treatment and control strategies. This has been the case with rainbow trout gastroenteritis (RTGE), an emerging disease of rainbow trout (Oncorhynchus mykiss Walbaum). This study investigated several aspects related to its aetiology and control. A retrospective survey of UK rainbow trout farmers was undertaken to ascertain the extent and severity of RTGE in the UK as well as to identify RTGE risk factors at the site level. Participants in this study accounted for over 85% of UK rainbow trout production in 2004. It was found that the total number of RTGE-affected sites had risen from 2 in the year 2000 to 7 in 2005. The disease was only reported from sites producing more than 200 tonnes of trout/year for the table market. Analysis of risk factors associated with RTGE at the site level showed that this syndrome was associated with large tonnage and rapid production of rainbow trout for the table market. The data collected during this study enabled the identification of those sites that were most likely to present with RTGE the following year and this information was used to study the epidemiology of RTGE at the unit level. A prospective longitudinal study was undertaken in 12 RTGE-affected UK sites. It described in detail the impact, presentation, current control strategies and spread pattern of RTGE within affected UK sites. The risk factors associated with RTGE presence and severity were also investigated. Data were collected for each productive unit (i.e. cage, pond, raceway or tank) on the mortalities, fish origin, site management and environmental factors. RTGE was identified using a case definition based on gross pathological lesions. Analysis of these data revealed that RTGE behaved in an infectious manner. This conclusion was supported by the presence of a pattern typical of a propagating epidemic within affected units. Also, the risk of an unaffected unit becoming RTGE positive was increased if it had received fish from or was contiguous to a RTGE-affected unit. The presentation also suggested an incubation period of 20-25 days. Risk factor analysis identified management and environmental risk factors for RTGE, including high feed input and stressful events, which could be used to generate a list of control strategies. A study of the histopathological and ultrastructural presentation of RTGE was conducted. The location of segmented filamentous bacteria (SFB) and pathological changes found in affected fish were examined. Pyloric caeca were the digestive organ where SFB were found more frequently and in higher numbers, suggesting that this was the best location to detect SFB in RTGE-affected trout. Scanning and transmission electron microscopy revealed a previously undescribed interaction of SFB with the mucosa of distal intestine and pyloric caeca and this included the presence of attachment sites and SFB engulfment by enterocytes, as previously described in other host species. The SFB were not always adjacent to the pathological changes observed in the digestive tract of RTGE-affected trout. Such changes included cytoskeletal damage and osmotic imbalance of enterocytes, with frequent detachment. These observations suggested that if SFB are indeed the cause of RTGE their pathogenesis must involve the production of extracellular products. Analysis of the gross presentation and blood biochemistry in RTGE-affected fish was used to examine the patho-physiologic mechanisms of RTGE. To enable identification of positive RTGE cases for this study, a case definition was created from the information available on RTGE gross presentation in the literature. This case definition was assessed in a sample including 152 fish cases and 152 fish controls from 11 RTGE-affected UK sites, matched by unit of origin. The analysis of these fish using bacteriology, packed cell volume (PCV) and histopathology revealed that RTGE occurred simultaneously with other parasitic and bacterial diseases in a percentage of fish identified with this case definition. With the information gained after analysing the gross presentation, RTGE-affected fish without concurrent disease were selected for the study of the pathogenesis, which included blood biochemical analyses. These analyses revealed a severe osmotic imbalance, and a reduced albumin/globulin ratio suggesting selective loss of albumin, typical for a protein losing enteropathy. The role of the SFB “Candidatus arthromitus” in the aetiology of RTGE was assessed using a newly developed “C. arthromitus”-specific polymerase chain reaction assay (PCR) in conjunction with histological detection. This technique was applied to eight different groups of trout, including an RTGE-affected group and seven negative control groups. This analysis was conducted on DNA extracted from paraffin wax-embedded tissues as well as fresh intestinal contents. The results revealed the presence of “C. arthromitus” DNA in apparently healthy fish from sites where RTGE had never been reported. Additionally, SFB were observed histologically in two trout from an RTGE-free hatchery. These findings do not permit the exclusion of “C. arthromitus” as the aetiological agent for RTGE, although they suggest that the presence of these organisms in the digestive system of healthy trout is not sufficient to cause clinical disease, and therefore other factors are necessary. In conclusion, this study has used a multidisciplinary approach to the study of RTGE which has generated scientific information related to the epidemiology, pathogenesis and aetiology of this syndrome. The results of this project have suggested priority areas where further work is required, including experimental transmission of RTGE, field assessment of the control strategies proposed and further investigation into the aetiology of RTGE.
Type: Thesis or Dissertation
URI: http://hdl.handle.net/1893/1081
Affiliation: School of Natural Sciences
Aquaculture

Files in This Item:
File Description SizeFormat 
Jorge del Pozo PhD Thesis.pdf116.64 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.