Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/10202
Appears in Collections: | Aquaculture Journal Articles |
Peer Review Status: | Refereed |
Title: | Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae) |
Author(s): | Freeman, Mark Eydal, Matthias Yoshimizu, M Watanabe, K Shinn, Andrew Miura, K Ogawa, Kazuo |
Contact Email: | aps1@stir.ac.uk |
Issue Date: | Feb-2011 |
Date Deposited: | 21-Nov-2012 |
Citation: | Freeman M, Eydal M, Yoshimizu M, Watanabe K, Shinn A, Miura K & Ogawa K (2011) Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae). Parasites and Vectors, 4 (1), p. 15. https://doi.org/10.1186/1756-3305-4-15 |
Abstract: | Background: Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata. Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan. Results: Phylogenetic analyses of small subunit ribosomal DNA (SSU rDNA) sequence data from Atlantic cod X-cells show that they are a related parasite that occupies a basal position to the clade containing other X-cell parasites. The X-cell parasite causing epidermal pseudotumours in P. obscurus is the same parasite that causes pseudotumours in H. dubius. Direct, fish to fish, transmission of the X-cell parasites used in this study, via oral feeding or injection, was not achieved. Non-amoeboid X-cells are contained within discrete sac-like structures that are loosely attached to epidermal pseudotumours in flatfish; these X-cells are able to tolerate exposure to seawater. A sensitive nested PCR assay was developed for the sub clinical detection of both parasites and to assist in future life cycle studies. PCR revealed that the parasite in P. obscurus was detectable in non-pseudotumourous areas of fish that had pseudotumours present in other areas of the body. Conclusions: The inability to successfully transmit both parasites in this study suggests that either host detachment combined with a period of independent development or an alternate host is required to complete the life cycle for X-cell parasites. Phylogenetic analyses of SSU rDNA confirm a monophyletic grouping for all sequenced X-cell parasites, but do not robustly support their placement within any established protist phylum. Analysis of SSU rDNA from X-cells in Japanese flatfish reveals that the same parasite can infect more than one species of fish. |
DOI Link: | 10.1186/1756-3305-4-15 |
Rights: | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Licence URL(s): | http://creativecommons.org/licenses/by/2.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Freeman X-cell 2011.pdf | Fulltext - Published Version | 1.22 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.